13-Mtd (BioDeep_00000862761)

Main id: BioDeep_00000003956

 

PANOMIX_OTCML-2023 Antitumor activity


代谢物信息卡片


Tetradecanoic acid, 13-methyl-

化学式: C15H30O2 (242.2246)
中文名称: 13-甲基十四烷酸
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: CC(C)CCCCCCCCCCCC(=O)O
InChI: InChI=1S/C15H30O2/c1-14(2)12-10-8-6-4-3-5-7-9-11-13-15(16)17/h14H,3-13H2,1-2H3,(H,16,17)

描述信息

13-Methyltetradecanoic acid (13-MTD), a saturated branched-chain fatty acid with potent anticancer effects. 13-Methyltetradecanoic acid induces apoptosis in many types of human cancer cells[1][2].
13-Methyltetradecanoic acid (13-MTD), a saturated branched-chain fatty acid with potent anticancer effects. 13-Methyltetradecanoic acid induces apoptosis in many types of human cancer cells[1][2].

同义名列表

17 个代谢物同义名

Tetradecanoic acid, 13-methyl-; 13-Methyl tetradecanoic acid; 13-methyl-tetradecanoic acid; 13-Methyltetradecanoic acid; Isopentadecanoic acid (VAN); 13-methylmyristic acid; Isopentadecanoic acid; Isopentadecylic acid; 13-methylmyristate; EINECS 256-870-9; LMFA01020009; CHEBI:39250; M7031_SIGMA; 27836-87-9; 50973-09-6; 2485-71-4; 13-Mtd



数据库引用编号

5 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

20 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 7 CAT, CXXC5, HSPD1, ODC1, PARVA, PER1, RB1
Peripheral membrane protein 2 HK1, MBP
Endoplasmic reticulum membrane 1 RDH11
Nucleus 7 CXXC5, MBP, MN1, PARVA, PER1, RB1, TNP2
cytosol 11 AVP, CAT, CXXC5, HK1, HSPD1, LIPE, MBP, ODC1, PARVA, PER1, RB1
dendrite 1 AVP
nucleoplasm 3 CXXC5, PER1, RB1
Cell membrane 2 LIPE, RGMA
Cytoplasmic side 1 MBP
lamellipodium 1 PARVA
Multi-pass membrane protein 1 SYP
Synapse 2 MBP, SLITRK1
cell surface 3 HSPD1, MBP, RGMA
glutamatergic synapse 1 SLITRK1
lysosomal membrane 1 GAA
mitochondrial inner membrane 1 HSPD1
neuromuscular junction 1 SYP
neuronal cell body 1 MBP
presynaptic membrane 1 SYP
synaptic vesicle 1 SYP
Cytoplasm, cytosol 2 HK1, LIPE
Lysosome 1 GAA
plasma membrane 6 GAA, HSPD1, MBP, PARVA, RGMA, SLITRK1
presynaptic active zone 1 SYP
synaptic vesicle membrane 1 SYP
terminal bouton 1 SYP
Membrane 6 CAT, GAA, HSPD1, LIPE, SLITRK1, SYP
caveola 1 LIPE
extracellular exosome 4 CAT, GAA, HSPD1, MBP
Lysosome membrane 1 GAA
endoplasmic reticulum 1 RGMA
extracellular space 4 AVP, GH1, HSPD1, TNFRSF6B
lysosomal lumen 1 GAA
perinuclear region of cytoplasm 1 SYP
Schaffer collateral - CA1 synapse 1 SYP
mitochondrion 3 CAT, HK1, HSPD1
protein-containing complex 3 CAT, HSPD1, MBP
intracellular membrane-bounded organelle 2 CAT, GAA
Single-pass type I membrane protein 1 SLITRK1
Secreted 5 AVP, GAA, GH1, SLITRK1, TNFRSF6B
extracellular region 7 AVP, CAT, GAA, GH1, MBP, SLITRK1, TNFRSF6B
Mitochondrion outer membrane 1 HK1
mitochondrial outer membrane 1 HK1
excitatory synapse 1 SYP
mitochondrial matrix 2 CAT, HSPD1
photoreceptor inner segment 1 RDH11
Cytoplasmic vesicle, secretory vesicle, synaptic vesicle membrane 1 SYP
actin cytoskeleton 1 PARVA
Z disc 1 PARVA
nucleolus 1 TNP2
Early endosome 1 HSPD1
clathrin-coated pit 1 HSPD1
Single-pass type II membrane protein 1 RDH11
Membrane raft 1 HK1
Cell junction, focal adhesion 1 PARVA
Cytoplasm, cytoskeleton 1 PARVA
focal adhesion 2 CAT, PARVA
spindle 1 RB1
GABA-ergic synapse 1 SLITRK1
Peroxisome 1 CAT
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 1 CAT
PML body 1 RB1
collagen-containing extracellular matrix 1 MBP
secretory granule 2 AVP, HSPD1
neuron projection 1 SYP
chromatin 1 RB1
cell periphery 1 MBP
Chromosome 1 TNP2
[Isoform 3]: Nucleus 1 MBP
Nucleus, nucleolus 1 TNP2
sperm midpiece 1 HSPD1
Lipid-anchor, GPI-anchor 1 RGMA
Endomembrane system 1 SYP
endosome lumen 1 GH1
Lipid droplet 1 LIPE
Membrane, caveola 1 LIPE
tertiary granule membrane 1 GAA
side of membrane 1 RGMA
myelin sheath 1 MBP
sperm plasma membrane 1 HSPD1
Cytoplasm, myofibril, sarcomere, Z line 1 PARVA
lipopolysaccharide receptor complex 1 HSPD1
ficolin-1-rich granule lumen 2 CAT, MBP
secretory granule lumen 1 CAT
transport vesicle 1 MBP
azurophil granule membrane 1 GAA
SWI/SNF complex 1 RB1
postsynaptic density membrane 1 SLITRK1
neuronal dense core vesicle 1 AVP
clathrin-coated endocytic vesicle membrane 1 AVP
Synapse, synaptosome 1 SYP
ficolin-1-rich granule membrane 1 GAA
nucleosome 1 TNP2
coated vesicle 1 HSPD1
growth hormone receptor complex 1 GH1
compact myelin 1 MBP
internode region of axon 1 MBP
catalase complex 1 CAT
chromatin lock complex 1 RB1
Rb-E2F complex 1 RB1
autolysosome lumen 1 GAA
migrasome 1 HSPD1
[Bone marrow proteoglycan]: Secreted 1 MBP
Myelin membrane 1 MBP


文献列表

  • Jing Jin, Jiping Chen, Yuzeng Tian, Lili Zou, Longxing Wang, Fang Li. [Determination of undecanoic acid and 13-methyl-tetradecanoic acid connected to the glyceride with internal standard method and its application to the identification of adulteration of illegal cooking oil]. Se pu = Chinese journal of chromatography. 2013 Jun; 31(6):556-60. doi: 10.3724/sp.j.1123.2012.12036. [PMID: 24063195]
  • Tianxin Lin, XinBao Yin, Qingqing Cai, Xinlan Fan, Kewei Xu, Li Huang, Junhua Luo, Jianping Zheng, Jian Huang. 13-Methyltetradecanoic acid induces mitochondrial-mediated apoptosis in human bladder cancer cells. Urologic oncology. 2012 May; 30(3):339-45. doi: 10.1016/j.urolonc.2010.04.011. [PMID: 20843711]
  • Rinat R Ran-Ressler, Ludmila Khailova, Kelly M Arganbright, Camille K Adkins-Rieck, Zeina E Jouni, Omry Koren, Ruth E Ley, J Thomas Brenna, Bohuslav Dvorak. Branched chain fatty acids reduce the incidence of necrotizing enterocolitis and alter gastrointestinal microbial ecology in a neonatal rat model. PloS one. 2011; 6(12):e29032. doi: 10.1371/journal.pone.0029032. [PMID: 22194981]
  • Kyleann K Brooks, Bin Liang, Jennifer L Watts. The influence of bacterial diet on fat storage in C. elegans. PloS one. 2009 Oct; 4(10):e7545. doi: 10.1371/journal.pone.0007545. [PMID: 19844570]
  • Zoey P Zahorodny Duggan, Heather N Koopman, Suzanne M Budge. Distribution and development of the highly specialized lipids in the sound reception systems of dolphins. Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology. 2009 Aug; 179(6):783-98. doi: 10.1007/s00360-009-0360-6. [PMID: 19373476]
  • Fredrick Lindström, Saskia Thurnhofer, Walter Vetter, Gerhard Gröbner. Impact on lipid membrane organization by free branched-chain fatty acids. Physical chemistry chemical physics : PCCP. 2006 Nov; 8(41):4792-7. doi: 10.1039/b607460j. [PMID: 17043723]
  • Myung Soo Park, Se Ra Jung, Kang Hyun Lee, Myung-Sook Lee, Jin Ok Do, Seung Bum Kim, Kyung Sook Bae. Chryseobacterium soldanellicola sp. nov. and Chryseobacterium taeanense sp. nov., isolated from roots of sand-dune plants. International journal of systematic and evolutionary microbiology. 2006 Feb; 56(Pt 2):433-438. doi: 10.1099/ijs.0.63825-0. [PMID: 16449453]
  • Sawitree Wongtangtintharn, Hirosuke Oku, Hironori Iwasaki, Masashi Inafuku, Takayoshi Toda, Teruyoshi Yanagita. Incorporation of branched-chain fatty acid into cellular lipids and caspase-independent apoptosis in human breast cancer cell line, SKBR-3. Lipids in health and disease. 2005 Nov; 4(?):29. doi: 10.1186/1476-511x-4-29. [PMID: 16305741]
  • Takashi Naka, Nagatoshi Fujiwara, Ikuya Yano, Shinji Maeda, Matsumi Doe, Miki Minamino, Norikazu Ikeda, Yoshiko Kato, Kazuhito Watabe, Yoshio Kumazawa, Ikuko Tomiyasu, Kazuo Kobayashi. Structural analysis of sphingophospholipids derived from Sphingobacterium spiritivorum, the type species of genus Sphingobacterium. Biochimica et biophysica acta. 2003 Dec; 1635(2-3):83-92. doi: 10.1016/j.bbalip.2003.10.010. [PMID: 14729071]
  • N Kadri-Hassani, C L Léger, B Descomps. The fatty acid bimodal action on superoxide anion production by human adherent monocytes under phorbol 12-myristate 13-acetate or diacylglycerol activation can be explained by the modulation of protein kinase C and p47phox translocation. The Journal of biological chemistry. 1995 Jun; 270(25):15111-8. doi: 10.1074/jbc.270.25.15111. [PMID: 7797495]