23513-08-8 (BioDeep_00000861483)

Main id: BioDeep_00000000496

 

PANOMIX_OTCML-2023


代谢物信息卡片


3-Dodecanone, 5-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-, (S)-(+)-

化学式: C19H30O4 (322.2144)
中文名称: 8-姜酚
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: CCCCCCCC(CC(=O)CCC1=CC(=C(C=C1)O)OC)O
InChI: InChI=1S/C19H30O4/c1-3-4-5-6-7-8-16(20)14-17(21)11-9-15-10-12-18(22)19(13-15)23-2/h10,12-13,16,20,22H,3-9,11,14H2,1-2H3/t16-/m0/s1

描述信息

8-Gingerol, found in the rhizomes of ginger (Z. officinale) with oral bioavailability, activates TRPV1, with an EC50 of 5.0 μM. 8-Gingerol inhibits COX-2, and inhibits the growth of H. pylori in vitro[1][2].
8-Gingerol, found in the rhizomes of ginger (Z. officinale) with oral bioavailability, activates TRPV1, with an EC50 of 5.0 μM. 8-Gingerol inhibits COX-2, and inhibits the growth of H. pylori in vitro[1][2].

同义名列表

10 个代谢物同义名

3-Dodecanone, 5-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-, (S)-(+)-; (S)-(+)-5-Hydroxy-1-(4-hydroxy-3-methoxyphenyl)-3-dodecanone; (5S)-5-hydroxy-1-(4-hydroxy-3-methoxy-phenyl)dodecan-3-one; (5s)-5-hydroxy-1-(4-hydroxy-3-methoxyphenyl)dodecan-3-one; (8)-Gingerol; [8]-Gingerol; 23513-08-8; 8-Gingerol; [8]-Gingerol; 8-Gingerol



数据库引用编号

12 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 13 BCL2, CASP3, CASP9, CYP2B6, CYP2C19, CYP2D6, EGFR, ISG20, MAPK14, MAPK8, MTOR, PIK3CA, TYR
Peripheral membrane protein 2 CYP2B6, MTOR
Endosome membrane 1 EGFR
Endoplasmic reticulum membrane 7 BCL2, CYP1A2, CYP2B6, CYP2C19, CYP2D6, EGFR, MTOR
Nucleus 9 BCL2, CASP3, CASP9, EGFR, ISG20, MAPK14, MAPK8, MPO, MTOR
cytosol 8 BCL2, CASP3, CASP9, IL1B, MAPK14, MAPK8, MTOR, PIK3CA
dendrite 1 MTOR
phagocytic vesicle 1 MTOR
nucleoplasm 6 CASP3, ISG20, MAPK14, MAPK8, MPO, MTOR
Cell membrane 2 CD69, EGFR
Cytoplasmic side 1 MTOR
lamellipodium 1 PIK3CA
ruffle membrane 1 EGFR
Early endosome membrane 1 EGFR
Golgi apparatus membrane 1 MTOR
Synapse 1 MAPK8
cell junction 1 EGFR
cell surface 1 EGFR
glutamatergic synapse 3 CASP3, EGFR, MAPK14
Golgi membrane 2 EGFR, MTOR
lysosomal membrane 1 MTOR
neuronal cell body 1 CASP3
Cytoplasm, cytosol 1 IL1B
Lysosome 4 IL1B, MPO, MTOR, TYR
endosome 1 EGFR
plasma membrane 5 CD69, CYP2C19, EGFR, IFNLR1, PIK3CA
Membrane 5 BCL2, CYP2D6, EGFR, IFNLR1, MTOR
apical plasma membrane 1 EGFR
axon 1 MAPK8
basolateral plasma membrane 1 EGFR
extracellular exosome 1 MPO
Lysosome membrane 1 MTOR
endoplasmic reticulum 2 BCL2, CYP2D6
extracellular space 5 EGFR, IL1B, IL2, IL4, MPO
perinuclear region of cytoplasm 3 EGFR, PIK3CA, TYR
intercalated disc 1 PIK3CA
mitochondrion 4 BCL2, CASP9, CYP2D6, MAPK14
protein-containing complex 4 BCL2, CASP9, CD69, EGFR
intracellular membrane-bounded organelle 6 CYP1A2, CYP2B6, CYP2C19, CYP2D6, MPO, TYR
Microsome membrane 4 CYP1A2, CYP2B6, CYP2D6, MTOR
postsynaptic density 1 CASP3
TORC1 complex 1 MTOR
TORC2 complex 1 MTOR
Single-pass type I membrane protein 3 EGFR, IFNLR1, TYR
Secreted 3 IL1B, IL2, IL4
extracellular region 5 IL1B, IL2, IL4, MAPK14, MPO
Mitochondrion outer membrane 2 BCL2, MTOR
Single-pass membrane protein 2 BCL2, CYP2D6
mitochondrial outer membrane 2 BCL2, MTOR
Nucleus membrane 1 BCL2
Bcl-2 family protein complex 1 BCL2
nuclear membrane 2 BCL2, EGFR
external side of plasma membrane 1 CD69
nucleolus 1 ISG20
Melanosome membrane 1 TYR
Cytoplasm, P-body 1 ISG20
P-body 1 ISG20
Golgi-associated vesicle 1 TYR
Single-pass type II membrane protein 1 CD69
Membrane raft 1 EGFR
pore complex 1 BCL2
focal adhesion 1 EGFR
intracellular vesicle 1 EGFR
Nucleus, PML body 1 MTOR
PML body 2 ISG20, MTOR
secretory granule 2 IL1B, MPO
nuclear speck 1 MAPK14
receptor complex 1 EGFR
Nucleus, nucleolus 1 ISG20
spindle pole 1 MAPK14
nuclear envelope 1 MTOR
Endomembrane system 1 MTOR
Melanosome 1 TYR
myelin sheath 1 BCL2
basal plasma membrane 1 EGFR
azurophil granule 1 MPO
synaptic membrane 1 EGFR
ficolin-1-rich granule lumen 1 MAPK14
secretory granule lumen 1 MAPK14
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
Secreted, extracellular exosome 1 IL1B
azurophil granule lumen 1 MPO
apoptosome 1 CASP9
clathrin-coated endocytic vesicle membrane 1 EGFR
phagocytic vesicle lumen 1 MPO
Cajal body 1 ISG20
basal dendrite 1 MAPK8
death-inducing signaling complex 1 CASP3
Cytoplasmic vesicle, phagosome 1 MTOR
Nucleus, Cajal body 1 ISG20
multivesicular body, internal vesicle lumen 1 EGFR
Shc-EGFR complex 1 EGFR
BAD-BCL-2 complex 1 BCL2
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA
caspase complex 1 CASP9
interleukin-28 receptor complex 1 IFNLR1


文献列表

  • Jinpei Yang, Meng Wang, Shuai Zheng, Ruodong Huang, Ganjun Wen, Pan Zhou, Wenbo Wang, Shihao Zhou, Xinlin Jiang, Shuangjiang Liu, Zhizhong Li, Dong Ma, Genlong Jiao. Mesoporous polydopamine delivering 8-gingerol for the target and synergistic treatment to the spinal cord injury. Journal of nanobiotechnology. 2023 Jun; 21(1):192. doi: 10.1186/s12951-023-01896-1. [PMID: 37316835]
  • Jiasheng Li, Ying Zhang, Shurui Liu, Wangjun Li, Yue Sun, Hui Cao, Shumei Wang, Jiang Meng. A network pharmacology integrated pharmacokinetics strategy to investigate the pharmacological mechanism of absorbed components from crude and processed Zingiberis Rhizoma on deficiency-cold and hemorrhagic syndrome. Journal of ethnopharmacology. 2023 Jan; 301(?):115754. doi: 10.1016/j.jep.2022.115754. [PMID: 36195301]
  • Joana M Pais, Bruna Pereira, Filipe A Almeida Paz, Susana M Cardoso, Susana S Braga. Solid γ-Cyclodextrin Inclusion Compound with Gingerols, a Multi-Component Guest: Preparation, Properties and Application in Yogurt. Biomolecules. 2020 02; 10(2):. doi: 10.3390/biom10020344. [PMID: 32098310]
  • Alberto Leoni, Roberta Budriesi, Ferruccio Poli, Mariacaterina Lianza, Alessandra Graziadio, Alice Venturini, Massimiliano Broccoli, Matteo Micucci. Ayurvedic preparation of Zingiber officinale Roscoe: effects on cardiac and on smooth muscle parameters. Natural product research. 2018 Sep; 32(18):2139-2146. doi: 10.1080/14786419.2017.1367779. [PMID: 28846029]
  • Ali Ghasemzadeh, Hawa Z E Jaafar, Asmah Rahmat. Variation of the Phytochemical Constituents and Antioxidant Activities of Zingiber officinale var. rubrum Theilade Associated with Different Drying Methods and Polyphenol Oxidase Activity. Molecules (Basel, Switzerland). 2016 Jun; 21(6):. doi: 10.3390/molecules21060780. [PMID: 27322227]
  • Elizabeth A Townsend, Yi Zhang, Carrie Xu, Ryo Wakita, Charles W Emala. Active components of ginger potentiate β-agonist-induced relaxation of airway smooth muscle by modulating cytoskeletal regulatory proteins. American journal of respiratory cell and molecular biology. 2014 Jan; 50(1):115-24. doi: 10.1165/rcmb.2013-0133oc. [PMID: 23962082]
  • Rao Mukkavilli, Sushma R Gundala, Chunhua Yang, Shashikiran Donthamsetty, Guilherme Cantuaria, Gajanan R Jadhav, Subrahmanyam Vangala, Michelle D Reid, Ritu Aneja. Modulation of cytochrome P450 metabolism and transport across intestinal epithelial barrier by ginger biophenolics. PloS one. 2014; 9(9):e108386. doi: 10.1371/journal.pone.0108386. [PMID: 25251219]
  • Prawez Alam. Densitometric HPTLC analysis of 8-gingerol in Zingiber officinale extract and ginger-containing dietary supplements, teas and commercial creams. Asian Pacific journal of tropical biomedicine. 2013 Aug; 3(8):634-8; discussion 637. doi: 10.1016/s2221-1691(13)60128-8. [PMID: 23905021]
  • Meera Brahmbhatt, Sushma R Gundala, Ghazia Asif, Shahab A Shamsi, Ritu Aneja. Ginger phytochemicals exhibit synergy to inhibit prostate cancer cell proliferation. Nutrition and cancer. 2013; 65(2):263-72. doi: 10.1080/01635581.2013.749925. [PMID: 23441614]
  • Wenwen Peng, Junsong Li, Wen Li, Baochang Cai. [Effect of Zingiber offiicinale and Aconitum cainichaeli before and after compatibility on contents of four gingerols]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2012 Jul; 37(14):2076-8. doi: . [PMID: 23126187]
  • Huadong Chen, Lishuang Lv, Dominique Soroka, Renaud F Warin, Tiffany A Parks, Yuhui Hu, Yingdong Zhu, Xiaoxin Chen, Shengmin Sang. Metabolism of [6]-shogaol in mice and in cancer cells. Drug metabolism and disposition: the biological fate of chemicals. 2012 Apr; 40(4):742-53. doi: 10.1124/dmd.111.043331. [PMID: 22246389]
  • Swarnalatha Dugasani, Mallikarjuna Rao Pichika, Vishna Devi Nadarajah, Madhu Katyayani Balijepalli, Satyanarayana Tandra, Jayaveera Narsimha Korlakunta. Comparative antioxidant and anti-inflammatory effects of [6]-gingerol, [8]-gingerol, [10]-gingerol and [6]-shogaol. Journal of ethnopharmacology. 2010 Feb; 127(2):515-20. doi: 10.1016/j.jep.2009.10.004. [PMID: 19833188]
  • Muhammad N Ghayur, Anwarul H Gilani, Touqeer Ahmed, Asaad Khalid, Sarfraz A Nawaz, Joseph M Agbedahunsi, Muhammad I Choudhary, Peter J Houghton. Muscarinic, Ca(++) antagonist and specific butyrylcholinesterase inhibitory activity of dried ginger extract might explain its use in dementia. The Journal of pharmacy and pharmacology. 2008 Oct; 60(10):1375-83. doi: 10.1211/jpp/60.10.0014. [PMID: 18812031]
  • D Nicholson, R Scalettar, R P Jacobs. Rheumatoid rigor: gold induced myokymia. A report and review of the literature. The Journal of rheumatology. 1986 Feb; 13(1):195-6. doi: NULL. [PMID: 3084775]