CDP-ethanolamine (BioDeep_00000415769)

Main id: BioDeep_00000004450

 

natural product PANOMIX_OTCML-2023


代谢物信息卡片


CDP-ethanolamine

化学式: C11H20N4O11P2 (446.0604)
中文名称:
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: C1=CN(C(=O)N=C1N)C2C(C(C(O2)COP(=O)(O)OP(=O)(O)OCCN)O)O
InChI: InChI=1S/C11H20N4O11P2/c12-2-4-23-27(19,20)26-28(21,22)24-5-6-8(16)9(17)10(25-6)15-3-1-7(13)14-11(15)18/h1,3,6,8-10,16-17H,2,4-5,12H2,(H,19,20)(H,21,22)(H2,13,14,18)/t6-,8-,9-,10-/m1/s1

描述信息

A phosphoethanolamine consisting of ethanolamine having a cytidine 5-diphosphate moiety attached to the oxygen.

同义名列表

2 个代谢物同义名

CDP-ethanolamine; CDP-ethanolamine



数据库引用编号

15 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(2)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

5 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 7 CHKA, CHKB, ETNK1, PCYT2, PEBP1, PISD, SLC9A1
Peripheral membrane protein 2 PCYT1A, PISD
Endoplasmic reticulum membrane 8 CEPT1, HSP90B1, PCYT1A, PCYT2, PEMT, PTDSS1, PTDSS2, SELENOI
Mitochondrion membrane 1 PEMT
Nucleus 6 BCL6, HSP90B1, PCYT1A, PEBP1, PISD, PLCZ1
cytosol 9 CHKA, CHKB, ETNK1, HSP90B1, PCYT1A, PEBP1, PEMT, PISD, PLCZ1
mitochondrial membrane 1 PEMT
nucleoplasm 3 BCL6, PLCZ1, SLC9A1
Cell membrane 2 SLC6A8, SLC9A1
lamellipodium 1 SLC9A1
Multi-pass membrane protein 8 CEPT1, PEMT, PTDSS1, PTDSS2, SELENOI, SLC6A8, SLC9A1, SPG7
cell surface 1 SLC9A1
Golgi apparatus 4 BCL6, CEPT1, PISD, SELENOI
Golgi membrane 1 INS
mitochondrial inner membrane 2 PISD, SPG7
smooth endoplasmic reticulum 1 HSP90B1
Cytoplasm, cytosol 2 CHKA, PCYT1A
plasma membrane 3 CXCR5, SLC6A8, SLC9A1
Membrane 12 CEPT1, CXCR5, ETNK1, HSP90B1, PCYT1A, PEMT, PTDSS1, PTDSS2, SELENOI, SLC6A8, SLC9A1, SPG7
apical plasma membrane 2 SLC6A8, SLC9A1
basolateral plasma membrane 1 SLC9A1
extracellular exosome 3 HSP90B1, PEBP1, SLC9A1
endoplasmic reticulum 3 HSP90B1, PCYT1A, PEMT
extracellular space 1 INS
perinuclear region of cytoplasm 3 HSP90B1, PLCZ1, SLC9A1
intercalated disc 1 SLC9A1
mitochondrion 4 PEMT, PISD, SLC9A1, SPG7
protein-containing complex 1 HSP90B1
intracellular membrane-bounded organelle 1 PEMT
pronucleus 1 PLCZ1
Secreted 1 INS
extracellular region 2 HSP90B1, INS
Single-pass membrane protein 1 PISD
Nucleus membrane 1 CEPT1
nuclear membrane 1 CEPT1
external side of plasma membrane 1 CXCR5
T-tubule 1 SLC9A1
nucleolus 2 BCL6, PLCZ1
axon cytoplasm 1 SPG7
midbody 1 HSP90B1
Apical cell membrane 1 SLC6A8
Cytoplasm, perinuclear region 1 PLCZ1
Mitochondrion inner membrane 1 SPG7
Membrane raft 1 SLC9A1
focal adhesion 2 HSP90B1, SLC9A1
collagen-containing extracellular matrix 1 HSP90B1
Basolateral cell membrane 1 SLC9A1
nuclear envelope 1 PCYT1A
endosome lumen 1 INS
Lipid droplet 2 CHKA, PISD
[Isoform 1]: Endoplasmic reticulum membrane 1 PEMT
Melanosome 1 HSP90B1
sperm plasma membrane 1 HSP90B1
secretory granule lumen 1 INS
Golgi lumen 1 INS
endoplasmic reticulum lumen 2 HSP90B1, INS
transport vesicle 1 INS
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
Sarcoplasmic reticulum lumen 1 HSP90B1
paraspeckles 1 BCL6
Intermembrane side 1 PISD
[Isoform 2]: Endoplasmic reticulum membrane 1 PEMT
endocytic vesicle lumen 1 HSP90B1
sperm head 1 PLCZ1
mitochondrial permeability transition pore complex 1 SPG7
endoplasmic reticulum chaperone complex 1 HSP90B1
cation-transporting ATPase complex 1 SLC9A1
[Isoform 1]: Lipid droplet 1 CHKA
glycogen granule 1 PCYT1A
[Isoform 2]: Mitochondrion inner membrane 1 PISD
[Isoform 1]: Mitochondrion inner membrane 1 PISD
[Phosphatidylserine decarboxylase beta chain]: Mitochondrion inner membrane 1 PISD
[Phosphatidylserine decarboxylase alpha chain]: Mitochondrion inner membrane 1 PISD
m-AAA complex 1 SPG7


文献列表

  • Zhenhua Wang, Meng Yang, Yufan Yang, Yonglin He, Hongwu Qian. Structural basis for catalysis of human choline/ethanolamine phosphotransferase 1. Nature communications. 2023 May; 14(1):2529. doi: 10.1038/s41467-023-38290-2. [PMID: 37137909]
  • Hu Xu, Weizu Li, Lei Huang, Xinyu He, Bei Xu, Xueqing He, Wentong Chen, Yaoxing Wang, Wenjun Xu, Sheng Wang, Qin Kong, Youzhi Xu, Wenjie Lu. Phosphoethanolamine cytidyltransferase ameliorates mitochondrial function and apoptosis in hepatocytes in T2DM in vitro. Journal of lipid research. 2023 Jan; ?(?):100337. doi: 10.1016/j.jlr.2023.100337. [PMID: 36716821]
  • Lance G A Nunes, Matthew W Pitts, Peter R Hoffmann. Selenoprotein I (selenoi) as a critical enzyme in the central nervous system. Archives of biochemistry and biophysics. 2022 10; 729(?):109376. doi: 10.1016/j.abb.2022.109376. [PMID: 36007576]
  • Haifang Zhao, Tao Wang. PE homeostasis rebalanced through mitochondria-ER lipid exchange prevents retinal degeneration in Drosophila. PLoS genetics. 2020 10; 16(10):e1009070. doi: 10.1371/journal.pgen.1009070. [PMID: 33064773]
  • Yi Wu, Keshi Chen, Guangsuo Xing, Linpeng Li, Bochao Ma, Zhijuan Hu, Lifan Duan, Xingguo Liu. Phospholipid remodeling is critical for stem cell pluripotency by facilitating mesenchymal-to-epithelial transition. Science advances. 2019 11; 5(11):eaax7525. doi: 10.1126/sciadv.aax7525. [PMID: 31807705]
  • Elizabeth Calzada, Ouma Onguka, Steven M Claypool. Phosphatidylethanolamine Metabolism in Health and Disease. International review of cell and molecular biology. 2016; 321(?):29-88. doi: 10.1016/bs.ircmb.2015.10.001. [PMID: 26811286]
  • Ahrathy Selathurai, Greg M Kowalski, Micah L Burch, Patricio Sepulveda, Steve Risis, Robert S Lee-Young, Severine Lamon, Peter J Meikle, Amanda J Genders, Sean L McGee, Matthew J Watt, Aaron P Russell, Matthew Frank, Suzanne Jackowski, Mark A Febbraio, Clinton R Bruce. The CDP-Ethanolamine Pathway Regulates Skeletal Muscle Diacylglycerol Content and Mitochondrial Biogenesis without Altering Insulin Sensitivity. Cell metabolism. 2015 May; 21(5):718-30. doi: 10.1016/j.cmet.2015.04.001. [PMID: 25955207]
  • Anne Hartmann, Maria Hellmund, Richard Lucius, Dennis R Voelker, Nishith Gupta. Phosphatidylethanolamine synthesis in the parasite mitochondrion is required for efficient growth but dispensable for survival of Toxoplasma gondii. The Journal of biological chemistry. 2014 Mar; 289(10):6809-6824. doi: 10.1074/jbc.m113.509406. [PMID: 24429285]
  • Jean E Vance, Guergana Tasseva. Formation and function of phosphatidylserine and phosphatidylethanolamine in mammalian cells. Biochimica et biophysica acta. 2013 Mar; 1831(3):543-54. doi: 10.1016/j.bbalip.2012.08.016. [PMID: 22960354]
  • Lin Zhu, Marica Bakovic. Breast cancer cells adapt to metabolic stress by increasing ethanolamine phospholipid synthesis and CTP:ethanolaminephosphate cytidylyltransferase-Pcyt2 activity. Biochemistry and cell biology = Biochimie et biologie cellulaire. 2012 Apr; 90(2):188-99. doi: 10.1139/o11-081. [PMID: 22339418]
  • Sergio Padilla-López, Deanna Langager, Chun-Hung Chan, David A Pearce. BTN1, the Saccharomyces cerevisiae homolog to the human Batten disease gene, is involved in phospholipid distribution. Disease models & mechanisms. 2012 Mar; 5(2):191-9. doi: 10.1242/dmm.008490. [PMID: 22107873]
  • Yerim Kwon, Si-In Yu, Hyoungseok Lee, Joung Han Yim, Jian-Kang Zhu, Byeong-Ha Lee. Arabidopsis serine decarboxylase mutants implicate the roles of ethanolamine in plant growth and development. International journal of molecular sciences. 2012; 13(3):3176-3188. doi: 10.3390/ijms13033176. [PMID: 22489147]
  • Kourosh Zarringhalam, Lu Zhang, Michael A Kiebish, Kui Yang, Xianlin Han, Richard W Gross, Jeffrey Chuang. Statistical analysis of the processes controlling choline and ethanolamine glycerophospholipid molecular species composition. PloS one. 2012; 7(5):e37293. doi: 10.1371/journal.pone.0037293. [PMID: 22662143]
  • Joseph W Brewer, Suzanne Jackowski. UPR-Mediated Membrane Biogenesis in B Cells. Biochemistry research international. 2012; 2012(?):738471. doi: 10.1155/2012/738471. [PMID: 22110962]
  • Susanne E Horvath, Andrea Wagner, Ernst Steyrer, Günther Daum. Metabolic link between phosphatidylethanolamine and triacylglycerol metabolism in the yeast Saccharomyces cerevisiae. Biochimica et biophysica acta. 2011 Dec; 1811(12):1030-7. doi: 10.1016/j.bbalip.2011.08.007. [PMID: 21875690]
  • Ana Marta Silva, Anabela Cordeiro-da-Silva, Graham H Coombs. Metabolic variation during development in culture of Leishmania donovani promastigotes. PLoS neglected tropical diseases. 2011 Dec; 5(12):e1451. doi: 10.1371/journal.pntd.0001451. [PMID: 22206037]
  • Nadia M Penrod, Kwabena A Poku, Douglas E Vaughan, Douglas E Vaughn, Folkert W Asselbergs, Nancy J Brown, Jason H Moore, Scott M Williams. Epistatic interactions in genetic regulation of t-PA and PAI-1 levels in a Ghanaian population. PloS one. 2011 Jan; 6(1):e16639. doi: 10.1371/journal.pone.0016639. [PMID: 21304999]
  • Morgan D Fullerton, Marica Bakovic. Complementation of the metabolic defect in CTP:phosphoethanolamine cytidylyltransferase (Pcyt2)-deficient primary hepatocytes. Metabolism: clinical and experimental. 2010 Dec; 59(12):1691-700. doi: 10.1016/j.metabol.2010.03.022. [PMID: 20427062]
  • Oriol Gallego, Matthew J Betts, Jelena Gvozdenovic-Jeremic, Kenji Maeda, Christian Matetzki, Carmen Aguilar-Gurrieri, Pedro Beltran-Alvarez, Stefan Bonn, Carlos Fernández-Tornero, Lars Juhl Jensen, Michael Kuhn, Jamie Trott, Vladimir Rybin, Christoph W Müller, Peer Bork, Marko Kaksonen, Robert B Russell, Anne-Claude Gavin. A systematic screen for protein-lipid interactions in Saccharomyces cerevisiae. Molecular systems biology. 2010 Nov; 6(?):430. doi: 10.1038/msb.2010.87. [PMID: 21119626]
  • Wei Cun See Too, Mun Teng Wong, Ling Ling Few, Manfred Konrad. Highly specific antibodies for co-detection of human choline kinase α1 and α2 isoforms. PloS one. 2010 Sep; 5(9):e12999. doi: 10.1371/journal.pone.0012999. [PMID: 20886003]
  • Meenakshi Sundaram, Zemin Yao. Recent progress in understanding protein and lipid factors affecting hepatic VLDL assembly and secretion. Nutrition & metabolism. 2010 Apr; 7(?):35. doi: 10.1186/1743-7075-7-35. [PMID: 20423497]
  • Irmgard Schuiki, Martina Schnabl, Tibor Czabany, Claudia Hrastnik, Günther Daum. Phosphatidylethanolamine synthesized by four different pathways is supplied to the plasma membrane of the yeast Saccharomyces cerevisiae. Biochimica et biophysica acta. 2010 Apr; 1801(4):480-6. doi: 10.1016/j.bbalip.2009.12.008. [PMID: 20044027]
  • Hiromi Ando, Yasuhiro Horibata, Satoko Yamashita, Tetsunari Oyama, Hiroyuki Sugimoto. Low-density lipoprotein and oxysterols suppress the transcription of CTP: Phosphoethanolamine cytidylyltransferase in vitro. Biochimica et biophysica acta. 2010 Apr; 1801(4):487-95. doi: 10.1016/j.bbalip.2009.12.014. [PMID: 20045741]
  • José M Jiménez-López, Pablo Ríos-Marco, Carmen Marco, Josefa L Segovia, María P Carrasco. Alterations in the homeostasis of phospholipids and cholesterol by antitumor alkylphospholipids. Lipids in health and disease. 2010 Mar; 9(?):33. doi: 10.1186/1476-511x-9-33. [PMID: 20338039]
  • Roberta Leonardi, Matthew W Frank, Pamela D Jackson, Charles O Rock, Suzanne Jackowski. Elimination of the CDP-ethanolamine pathway disrupts hepatic lipid homeostasis. The Journal of biological chemistry. 2009 Oct; 284(40):27077-89. doi: 10.1074/jbc.m109.031336. [PMID: 19666474]
  • Morgan D Fullerton, Fatima Hakimuddin, Arend Bonen, Marica Bakovic. The development of a metabolic disease phenotype in CTP:phosphoethanolamine cytidylyltransferase-deficient mice. The Journal of biological chemistry. 2009 Sep; 284(38):25704-13. doi: 10.1074/jbc.m109.023846. [PMID: 19625253]
  • Kjell Stålberg, Ulf Ståhl, Sten Stymne, John Ohlrogge. Characterization of two Arabidopsis thaliana acyltransferases with preference for lysophosphatidylethanolamine. BMC plant biology. 2009 May; 9(?):60. doi: 10.1186/1471-2229-9-60. [PMID: 19445718]
  • Sabine Rosenberger, Melanie Connerth, Günther Zellnig, Günther Daum. Phosphatidylethanolamine synthesized by three different pathways is supplied to peroxisomes of the yeast Saccharomyces cerevisiae. Biochimica et biophysica acta. 2009 May; 1791(5):379-87. doi: 10.1016/j.bbalip.2009.01.015. [PMID: 19830909]
  • David Wheeler, Veera Venkata Ratnam Bandaru, Peter A Calabresi, Avindra Nath, Norman J Haughey. A defect of sphingolipid metabolism modifies the properties of normal appearing white matter in multiple sclerosis. Brain : a journal of neurology. 2008 Nov; 131(Pt 11):3092-102. doi: 10.1093/brain/awn190. [PMID: 18772223]
  • Yu-Fang Chang, George M Carman. CTP synthetase and its role in phospholipid synthesis in the yeast Saccharomyces cerevisiae. Progress in lipid research. 2008 Sep; 47(5):333-9. doi: 10.1016/j.plipres.2008.03.004. [PMID: 18439916]
  • Jean E Vance. Phosphatidylserine and phosphatidylethanolamine in mammalian cells: two metabolically related aminophospholipids. Journal of lipid research. 2008 Jul; 49(7):1377-87. doi: 10.1194/jlr.r700020-jlr200. [PMID: 18204094]
  • Kui Yang, Zhongdan Zhao, Richard W Gross, Xianlin Han. Shotgun lipidomics identifies a paired rule for the presence of isomeric ether phospholipid molecular species. PloS one. 2007 Dec; 2(12):e1368. doi: 10.1371/journal.pone.0001368. [PMID: 18159251]
  • Angela Tie, Marica Bakovic. Alternative splicing of CTP:phosphoethanolamine cytidylyltransferase produces two isoforms that differ in catalytic properties. Journal of lipid research. 2007 Oct; 48(10):2172-81. doi: 10.1194/jlr.m600536-jlr200. [PMID: 17646670]
  • Michael C Kersting, George M Carman. Regulation of the Saccharomyces cerevisiae EKI1-encoded ethanolamine kinase by zinc depletion. The Journal of biological chemistry. 2006 May; 281(19):13110-13116. doi: 10.1074/jbc.m601612200. [PMID: 16551612]
  • Maria José Caballero, Germán Gallardo, Lidia Robaina, Daniel Montero, Antonio Fernández, Marisol Izquierdo. Vegetable lipid sources affect in vitro biosynthesis of triacylglycerols and phospholipids in the intestine of sea bream (Sparus aurata). The British journal of nutrition. 2006 Mar; 95(3):448-54. doi: 10.1079/bjn20051529. [PMID: 16512929]
  • Wenyu Yang, James V Moroney, Thomas S Moore. Membrane lipid biosynthesis in Chlamydomonas reinhardtii: ethanolaminephosphotransferase is capable of synthesizing both phosphatidylcholine and phosphatidylethanolamine. Archives of biochemistry and biophysics. 2004 Oct; 430(2):198-209. doi: 10.1016/j.abb.2004.07.016. [PMID: 15369819]
  • Wenyu Yang, Catherine B Mason, Steve V Pollock, Tracey Lavezzi, James V Moroney, Thomas S Moore. Membrane lipid biosynthesis in Chlamydomonas reinhardtii: expression and characterization of CTP:phosphoethanolamine cytidylyltransferase. The Biochemical journal. 2004 Aug; 382(Pt 1):51-7. doi: 10.1042/bj20040254. [PMID: 15147238]
  • Henry A Boumann, Ben de Kruijff, Albert J R Heck, Anton I P M de Kroon. The selective utilization of substrates in vivo by the phosphatidylethanolamine and phosphatidylcholine biosynthetic enzymes Ept1p and Cpt1p in yeast. FEBS letters. 2004 Jul; 569(1-3):173-7. doi: 10.1016/j.febslet.2004.05.043. [PMID: 15225629]
  • Qungang Qi, Yong-fen Huang, Adrian J Cutler, Suzanne R Abrams, David C Taylor. Molecular and biochemical characterization of an aminoalcoholphosphotransferase (AAPT1) from Brassica napus: effects of low temperature and abscisic acid treatments on AAPT expression in Arabidopsis plants and effects of over-expression of BnAAPT1 in transgenic Arabidopsis. Planta. 2003 Aug; 217(4):547-58. doi: 10.1007/s00425-003-1031-6. [PMID: 12739150]
  • Jean E Vance. Molecular and cell biology of phosphatidylserine and phosphatidylethanolamine metabolism. Progress in nucleic acid research and molecular biology. 2003; 75(?):69-111. doi: 10.1016/s0079-6603(03)75003-x. [PMID: 14604010]
  • Eric D Lund, Fu-Lin E Chu. Phospholipid biosynthesis in the oyster protozoan parasite, Perkinsus marinus. Molecular and biochemical parasitology. 2002 May; 121(2):245-53. doi: 10.1016/s0166-6851(02)00046-4. [PMID: 12034458]
  • M Nyako, C Marks, J Sherma, E R Reynolds. Tissue-specific and developmental effects of the easily shocked mutation on ethanolamine kinase activity and phospholipid composition in Drosophila melanogaster. Biochemical genetics. 2001 Oct; 39(9-10):339-49. doi: 10.1023/a:1012209030803. [PMID: 11758729]
  • G M Carman, S A Henry. Phospholipid biosynthesis in the yeast Saccharomyces cerevisiae and interrelationship with other metabolic processes. Progress in lipid research. 1999 Sep; 38(5-6):361-99. doi: 10.1016/s0163-7827(99)00010-7. [PMID: 10793889]
  • S J Stone, Z Cui, J E Vance. Cloning and expression of mouse liver phosphatidylserine synthase-1 cDNA. Overexpression in rat hepatoma cells inhibits the CDP-ethanolamine pathway for phosphatidylethanolamine biosynthesis. The Journal of biological chemistry. 1998 Mar; 273(13):7293-302. doi: 10.1074/jbc.273.13.7293. [PMID: 9516423]
  • R A Igal, R A Coleman. Neutral lipid storage disease: a genetic disorder with abnormalities in the regulation of phospholipid metabolism. Journal of lipid research. 1998 Jan; 39(1):31-43. doi: 10.1016/s0022-2275(20)34200-0. [PMID: 9469583]
  • A K Menon, M Eppinger, S Mayor, R T Schwarz. Phosphatidylethanolamine is the donor of the terminal phosphoethanolamine group in trypanosome glycosylphosphatidylinositols. The EMBO journal. 1993 May; 12(5):1907-14. doi: 10.1002/j.1460-2075.1993.tb05839.x. [PMID: 8491183]
  • M Houweling, L B Tijburg, W J Vaartjes, L M van Golde. Phosphatidylethanolamine metabolism in rat liver after partial hepatectomy. Control of biosynthesis of phosphatidylethanolamine by the availability of ethanolamine. The Biochemical journal. 1992 Apr; 283 ( Pt 1)(?):55-61. doi: 10.1042/bj2830055. [PMID: 1314569]
  • G Arthur, L Page. Synthesis of phosphatidylethanolamine and ethanolamine plasmalogen by the CDP-ethanolamine and decarboxylase pathways in rat heart, kidney and liver. The Biochemical journal. 1991 Jan; 273(Pt 1)(?):121-5. doi: 10.1042/bj2730121. [PMID: 1989575]
  • J E Vance. Lipoproteins secreted by cultured rat hepatocytes contain the antioxidant 1-alk-1-enyl-2-acylglycerophosphoethanolamine. Biochimica et biophysica acta. 1990 Jul; 1045(2):128-34. doi: 10.1016/0005-2760(90)90141-j. [PMID: 2116174]
  • N Marku, L Corazzi, G L Piccinin, G Arienti. Cerebellar metabolism of phosphatidylethanolamine and its water-soluble precursors during bicuculline-induced convulsive seizures. Neurochemical research. 1987 Apr; 12(4):341-4. doi: 10.1007/bf00993242. [PMID: 3600961]
  • R V Dorman, Z Dabrowiecki, L A Horrocks. Effects of CDPcholine and CDPethanolamine on the alterations in rat brain lipid metabolism induced by global ischemia. Journal of neurochemistry. 1983 Jan; 40(1):276-9. doi: 10.1111/j.1471-4159.1983.tb12682.x. [PMID: 6848664]
  • A Gaiti, D Sitkievicz, M Brunetti, G Porcellati. Phospholipid metabolism in neuronal and glial cells during aging. Neurochemical research. 1981 Jan; 6(1):13-22. doi: 10.1007/bf00963901. [PMID: 7219663]
  • L A Horrocks, R V Dorman, Z Dabrowiecki, G Goracci, G Porcellati. CDPcholine and CDPethanolamine prevent the release of free fatty acids during brain ischemia. Progress in lipid research. 1981; 20(?):531-4. doi: 10.1016/0163-7827(81)90093-x. [PMID: 7342106]
  • . . . . doi: . [PMID: 7994181]
  • . . . . doi: . [PMID: 19915674]
  • . . . . doi: . [PMID: 18583706]
  • . . . . doi: . [PMID: 17132865]
  • . . . . doi: . [PMID: 12216837]
  • . . . . doi: . [PMID: 22345606]