Sclareol (BioDeep_00000398550)

Main id: BioDeep_00000000491

 

natural product PANOMIX_OTCML-2023


代谢物信息卡片


1-Naphthalenepropanol, alpha-ethenyldecahydro-2-hydroxy-alpha,2,5,5,8a-pentamethyl-, (alphaR,1R,2R,4aS,8aS)-: (1R,2R,4aS,8aS)-1-[(3R)-3-hydroxy-3-methylpent-4-en-1-yl]-2,5,5,8a-tetramethyldecahydronaphthalen-2-ol

化学式: C20H36O2 (308.2715)
中文名称: 香紫苏醇
谱图信息: 最多检出来源 Homo sapiens(lipidomics) 76.13%

分子结构信息

SMILES: C1C(C)(C)[C@]2([H])CC[C@@](C)(O)[C@H](CC[C@](O)(C)C=C)[C@@]2(C)CC1
InChI: InChI=1S/C20H36O2/c1-7-18(4,21)13-9-16-19(5)12-8-11-17(2,3)15(19)10-14-20(16,6)22/h7,15-16,21-22H,1,8-14H2,2-6H3

描述信息

Sclareol is a labdane diterpenoid that is labd-14-ene substituted by hydroxy groups at positions 8 and 13. It has been isolated from Salvia sclarea. It has a role as an antimicrobial agent, an apoptosis inducer, a fragrance, an antifungal agent and a plant metabolite.
Sclareol is a natural product found in Curcuma aromatica, Curcuma wenyujin, and other organisms with data available.
See also: Clary Sage Oil (part of).
A labdane diterpenoid that is labd-14-ene substituted by hydroxy groups at positions 8 and 13. It has been isolated from Salvia sclarea.
relative retention time with respect to 9-anthracene Carboxylic Acid is 1.468
relative retention time with respect to 9-anthracene Carboxylic Acid is 1.471
Sclareol is isolated from Salvia sclarea with anticarcinogenic activity. Sclareol shows strong cytotoxic activity against mouse leukemia?(P-388), human epidermal?carcinoma?(KB) cells and human?leukemia?cell lines. Sclareol induces cell apoptosis[1].
Sclareol is isolated from Salvia sclarea with anticarcinogenic activity. Sclareol shows strong cytotoxic activity against mouse leukemia?(P-388), human epidermal?carcinoma?(KB) cells and human?leukemia?cell lines. Sclareol induces cell apoptosis[1].

同义名列表

38 个代谢物同义名

1-Naphthalenepropanol, alpha-ethenyldecahydro-2-hydroxy-alpha,2,5,5,8a-pentamethyl-, (alphaR,1R,2R,4aS,8aS)-: (1R,2R,4aS,8aS)-1-[(3R)-3-hydroxy-3-methylpent-4-en-1-yl]-2,5,5,8a-tetramethyldecahydronaphthalen-2-ol; 1-NAPHTHALENEPROPANOL, .ALPHA.-ETHENYLDECAHYDRO-2-HYDROXY-.ALPHA.,2,5,5,8A-PENTAMETHYL-, (1R-(1.ALPHA.(R*),2.BETA.,4A.BETA.,8A.ALPHA.))-; 1-Naphthalenepropanol, alpha-ethenyldecahydro-2-hydroxy-alpha,2,5,5,8a-pentamethyl-, (1theta-(1alpha(theta),2beta,4abeta,8aalpha))-; 1-Naphthalenepropanol, decahydro-alpha-ethenyl-2-hydroxy-alpha,2,5,5,8a-pentamethyl-, (1R-(1-alpha(R*),2-beta,4a-beta,8a-alpha))-; 1-NAPHTHALENEPROPANOL, alpha-ETHENYLDECAHYDRO-2-HYDROXY-alpha,2,5,5,8A-PENTAMETHYL-, (1R-(1alpha(R*),2beta,4Abeta,8Aalpha))-; (1R,2R,4aS,8aS)-1-[(3R)-3-hydroxy-3-methylpent-4-en-1-yl]-2,5,5,8a-tetramethyldecahydronaphthalen-2-ol labd-14-ene-8,13-diol; (1R-(1alpha(R*),2beta,4Abeta,8aalpha))-2-hydroxy-alpha,2,5,5,8a-pentamethyl-alpha-vinyldecahydronaphthalene-1-propan-1-ol; (1R,2R,4As,8aR)-1-[(3R)-3-hydroxy-3-methylpent-4-enyl]-2,5,5,8a-tetramethyl-3,4,4a,6,7,8-hexahydro-1H-naphthalen-2-ol; (1R,2R,4aS,8aS)-1-[(3R)-3-hydroxy-3-methylpent-4-enyl]-2,5,5,8a-tetramethyl-3,4,4a,6,7,8-hexahydro-1H-naphthalen-2-ol; 1-Naphthalenepropanol, .alpha.-ethenyldecahydro-2-hydroxy-.alpha.,2,5,5,8a-pentamethyl-, (.alpha.R,1R,2R,4aS,8aS)-; (1R-(1?(R*),2?,4a?,8a?))-?-Ethylenedecahydro-2-hydroxy-?,2,5,5,8a-pentamethyl-1-naphthalenepropanol; (-)-Sclareol; 1-Naphthalenepropanol, alpha-ethenyldecahydro-2-hydroxy-alpha,2,5,5,8a-pentamethyl-, (alphaR,1R,2R,4aS,8aS)-; (1R,2R,4aS,8aS)-1-[(3R)-3-hydroxy-3-methylpent-4-en-1-yl]-2,5,5,8a-tetramethyl-decahydronaphthalen-2-ol; (1R,2R,4aS,8aS)-1-[(3R)-3-hydroxy-3-methylpent-4-en-1-yl]-2,5,5,8a-tetramethyldecahydronaphthalen-2-ol; (1R,2R,4aS,8aS)-1-((3R)-3-hydroxy-3-methylpent-4-en-1-yl)-2,5,5,8a-tetramethyldecahydronaphthalen-2-ol; (1R,2R,4aS,8aS)-1-((R)-3-hydroxy-3-methylpent-4-en-1-yl)-2,5,5,8a-tetramethyldecahydronaphthalen-2-ol; (1R,2R,8aS)-1-((R)-3-hydroxy-3-methylpent-4-enyl)-2,5,5,8a-tetramethyldecahydronaphthalen-2-ol; (1R,2R,4aS,8aS)-1-[(3R)-3-hydroxy-3-methyl-pent-4-enyl]-2,5,5,8a-tetramethyl-decalin-2-ol; (1R,2R,8aS)-Decahydro-1-(3-hydroxy-3-methyl-4-pentenyl)-2,5,5,8a-tetramethyl-2-naphthol; 4-06-00-05554 (Beilstein Handbook Reference); (13R)-Labd-14-ene-8alpha,13-diol; labd-14-ene-8alpha, 13beta-diol; Labd-14-ene-8,13-diol, (13R)-; Sclareol, analytical standard; XVULBTBTFGYVRC-HHUCQEJWSA-N; (13R)-Labd-14-ene-8,13-diol; labd-14-ene-8,13-diol; Sclareol (natural); SCLAREOL [INCI]; sclareol oxide; Sclareol, 98\\%; Tox21_302727; (-)-SCLAREOL; Sclareol; SCAREOL; Sclareol; Sclareol; Sclareol oxide



数据库引用编号

48 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

156 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 9 AIMP2, ANXA5, BCL2, CCN1, FOXP3, ISG20, MAPK8, PTGS2, STAT3
Peripheral membrane protein 2 ANXA5, PTGS2
Endoplasmic reticulum membrane 5 BCL2, CD4, HMGCR, HMOX1, PTGS2
Nucleus 11 AIMP2, BCL2, CCN1, FOS, FOXP3, HMOX1, ISG20, KDR, MAPK8, PARP1, STAT3
cytosol 11 AIMP2, ANXA5, BCL2, CCN1, FOS, FOXP3, HMOX1, IL1B, MAPK8, PARP1, STAT3
nuclear body 1 PARP1
centrosome 1 CCN1
nucleoplasm 8 CCN1, FOS, FOXP3, HMOX1, ISG20, MAPK8, PARP1, STAT3
RNA polymerase II transcription regulator complex 2 FOS, STAT3
Cell membrane 3 CD4, KDR, TNF
Cytoplasmic side 1 HMOX1
Multi-pass membrane protein 1 HMGCR
Synapse 1 MAPK8
cell junction 1 KDR
cell surface 1 TNF
Golgi apparatus 1 KDR
neuronal cell body 1 TNF
sarcolemma 1 ANXA5
Cytoplasm, cytosol 3 AIMP2, IL1B, PARP1
Lysosome 1 IL1B
endosome 1 KDR
plasma membrane 5 BCHE, CD4, KDR, STAT3, TNF
Membrane 6 AIMP2, ANXA5, BCL2, HMGCR, HMOX1, PARP1
axon 1 MAPK8
caveola 1 PTGS2
extracellular exosome 1 ANXA5
endoplasmic reticulum 6 BCL2, FOS, HMGCR, HMOX1, KDR, PTGS2
extracellular space 7 BCHE, CCN1, HMOX1, IL17A, IL1B, IL4, TNF
perinuclear region of cytoplasm 1 HMOX1
mitochondrion 2 BCL2, PARP1
protein-containing complex 4 BCL2, FOXP3, PARP1, PTGS2
Microsome membrane 1 PTGS2
Single-pass type I membrane protein 1 CD4
Secreted 4 BCHE, IL17A, IL1B, IL4
extracellular region 7 ANXA5, BCHE, IL17A, IL1B, IL4, KDR, TNF
Mitochondrion outer membrane 1 BCL2
Single-pass membrane protein 1 BCL2
mitochondrial outer membrane 2 BCL2, HMOX1
[Isoform 2]: Secreted 1 KDR
anchoring junction 1 KDR
transcription regulator complex 2 PARP1, STAT3
Nucleus membrane 1 BCL2
Bcl-2 family protein complex 1 BCL2
nuclear membrane 1 BCL2
external side of plasma membrane 5 ANXA5, CD4, IL17A, KDR, TNF
nucleolus 2 ISG20, PARP1
Cytoplasm, P-body 1 ISG20
P-body 1 ISG20
Early endosome 2 CD4, KDR
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
Membrane raft 3 CD4, KDR, TNF
pore complex 1 BCL2
focal adhesion 1 ANXA5
peroxisomal membrane 1 HMGCR
PML body 1 ISG20
collagen-containing extracellular matrix 2 ANXA5, CCN1
secretory granule 1 IL1B
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
receptor complex 1 KDR
Zymogen granule membrane 1 ANXA5
neuron projection 1 PTGS2
chromatin 4 FOS, FOXP3, PARP1, STAT3
phagocytic cup 1 TNF
Chromosome 1 PARP1
Nucleus, nucleolus 2 ISG20, PARP1
nuclear replication fork 1 PARP1
chromosome, telomeric region 1 PARP1
blood microparticle 1 BCHE
site of double-strand break 1 PARP1
nuclear envelope 1 PARP1
sorting endosome 1 KDR
myelin sheath 1 BCL2
Peroxisome membrane 1 HMGCR
endoplasmic reticulum lumen 4 BCHE, CCN1, CD4, PTGS2
nuclear matrix 1 FOS
Secreted, extracellular exosome 1 IL1B
Single-pass type IV membrane protein 1 HMOX1
nuclear envelope lumen 1 BCHE
vesicle membrane 1 ANXA5
clathrin-coated endocytic vesicle membrane 1 CD4
Cajal body 1 ISG20
protein-DNA complex 2 FOS, PARP1
basal dendrite 1 MAPK8
female pronucleus 1 CCN1
male pronucleus 1 CCN1
aminoacyl-tRNA synthetase multienzyme complex 1 AIMP2
Nucleus, Cajal body 1 ISG20
site of DNA damage 1 PARP1
cyclin-dependent protein kinase holoenzyme complex 1 CCN1
transcription factor AP-1 complex 1 FOS
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
T cell receptor complex 1 CD4
cyclin A2-CDK1 complex 1 CCN1
endothelial microparticle 1 ANXA5
[Poly [ADP-ribose] polymerase 1, processed N-terminus]: Chromosome 1 PARP1
[Poly [ADP-ribose] polymerase 1, processed C-terminus]: Cytoplasm 1 PARP1
BAD-BCL-2 complex 1 BCL2
cyclin A2-CDK2 complex 1 CCN1
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Xiangyu Yao, Rui Li, Yanan Liu, Peng Song, Ziyi Wu, Meilin Yan, Jinmei Luo, Fenggui Fan, Yingjuan Wang. Feedback regulation of the isoprenoid pathway by SsdTPS overexpression has the potential to enhance plant tolerance to drought stress. Physiologia plantarum. 2024 Mar; 176(2):e14277. doi: 10.1111/ppl.14277. [PMID: 38566271]
  • Nirmaladevi Ponnusamy, Girinath Pillai, Mohanapriya Arumugam. Computational investigation of phytochemicals identified from medicinal plant extracts against tuberculosis. Journal of biomolecular structure & dynamics. 2023 May; ?(?):1-14. doi: 10.1080/07391102.2023.2213341. [PMID: 37211911]
  • Leilei Tang, Xuan Mei, Mengling Ye, Yang Liu, Yujie Huang, Jiawen Yu, Lingdi Zhang, Sheng Zhuge, Guojun Jiang, Jianjun Zhu. Sclareol ameliorates liver injury by inhibiting nuclear factor-kappa B/NOD-like receptor protein 3-mediated inflammation and lipid metabolism disorder in diabetic mice. International journal of immunopathology and pharmacology. 2023 Jan; 37(?):3946320231223644. doi: 10.1177/03946320231223644. [PMID: 38131326]
  • Xuan Cao, Wei Yu, Yu Chen, Shan Yang, Zongbao K Zhao, Jens Nielsen, Hongwei Luan, Yongjin J Zhou. Engineering yeast for high-level production of diterpenoid sclareol. Metabolic engineering. 2023 01; 75(?):19-28. doi: 10.1016/j.ymben.2022.11.002. [PMID: 36371032]
  • Xue Han, Jiajia Zhang, Li Zhou, Jiajia Wei, Yu Tu, Qiaojuan Shi, Yi Zhang, Juan Ren, Yi Wang, Huazhong Ying, Guang Liang. Sclareol ameliorates hyperglycemia-induced renal injury through inhibiting the MAPK/NF-κB signaling pathway. Phytotherapy research : PTR. 2022 Jun; 36(6):2511-2523. doi: 10.1002/ptr.7465. [PMID: 35434887]
  • Aslı Deniz Aydın, Faruk Altınel, Hüseyin Erdoğmuş, Çağdaş Devrim Son. Allergen fragrance molecules: a potential relief for COVID-19. BMC complementary medicine and therapies. 2021 Jan; 21(1):41. doi: 10.1186/s12906-021-03214-4. [PMID: 33478471]
  • Israa Assani, Ying Du, Chun-Gu Wang, Lei Chen, Pei-Lei Hou, Shi-Feng Zhao, Yan Feng, Ling-Fei Liu, Bo Sun, Yan Li, Zhi-Xin Liao, Ri-Zhen Huang. Anti-proliferative effects of diterpenoids from Sagittaria trifolia L. tubers on colon cancer cells by targeting the NF-κB pathway. Food & function. 2020 Sep; 11(9):7717-7726. doi: 10.1039/d0fo00228c. [PMID: 32789317]
  • Angela Bisio, Anna M Schito, Francesca Pedrelli, Ombeline Danton, Jakob K Reinhardt, Giulio Poli, Tiziano Tuccinardi, Thomas Bürgi, Francesco De Riccardis, Mauro Giacomini, Daniela Calzia, Isabella Panfoli, Gian Carlo Schito, Matthias Hamburger, Nunziatina De Tommasi. Antibacterial and ATP Synthesis Modulating Compounds from Salvia tingitana. Journal of natural products. 2020 04; 83(4):1027-1042. doi: 10.1021/acs.jnatprod.9b01024. [PMID: 32182064]
  • Gabriel Silva Marques Borges, Juliana de Oliveira Silva, Renata Salgado Fernandes, Ângelo Malachias de Souza, Geovanni Dantas Cassali, Maria Irene Yoshida, Elaine Amaral Leite, André Luis Branco de Barros, Lucas Antônio Miranda Ferreira. Sclareol is a potent enhancer of doxorubicin: Evaluation of the free combination and co-loaded nanostructured lipid carriers against breast cancer. Life sciences. 2019 Sep; 232(?):116678. doi: 10.1016/j.lfs.2019.116678. [PMID: 31344429]
  • Alessandra Crusco, Helen Whiteland, Rafael Baptista, Josephine E Forde-Thomas, Manfred Beckmann, Luis A J Mur, Robert J Nash, Andrew D Westwell, Karl F Hoffmann. Antischistosomal Properties of Sclareol and Its Heck-Coupled Derivatives: Design, Synthesis, Biological Evaluation, and Untargeted Metabolomics. ACS infectious diseases. 2019 07; 5(7):1188-1199. doi: 10.1021/acsinfecdis.9b00034. [PMID: 31083889]
  • Hans Wilhelm Rauwald, Tobias Liebold, Kristina Grötzinger, Jörg Lehmann, Kenny Kuchta. Labdanum and Labdanes of Cistus creticus and C. ladanifer: Anti-Borrelia activity and its phytochemical profiling✰. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2019 Jul; 60(?):152977. doi: 10.1016/j.phymed.2019.152977. [PMID: 31474477]
  • Keshika Mahadeo, Gaëtan Herbette, Isabelle Grondin, Olivia Jansen, Hippolyte Kodja, Joyce Soulange, Sabina Jhaumeer-Laulloo, Patricia Clerc, Anne Gauvin-Bialecki, Michel Frederich. Antiplasmodial Diterpenoids from Psiadia arguta. Journal of natural products. 2019 05; 82(5):1361-1366. doi: 10.1021/acs.jnatprod.8b00698. [PMID: 30943031]
  • Gabriela Cavazza Cerri, Leandro Ceotto Freitas Lima, Deborah de Farias Lelis, Lucíola da Silva Barcelos, John David Feltenberger, Samuel Vidal Mussi, Renato Sobral Monteiro-Junior, Robson Augusto Souza Dos Santos, Lucas Antônio Miranda Ferreira, Sérgio Henrique Sousa Santos. Sclareol-loaded lipid nanoparticles improved metabolic profile in obese mice. Life sciences. 2019 Feb; 218(?):292-299. doi: 10.1016/j.lfs.2018.12.063. [PMID: 30610871]
  • Mariana Silva Oliveira, Bruno Henrique Santiago Lima, Gisele Assis Castro Goulart, Samuel Vidal Mussi, Gabriel Silva Marques Borges, Rodrigo Lambert Oréfice, Lucas Antônio Miranda Ferreira. Improved Cytotoxic Effect of Doxorubicin by Its Combination with Sclareol in Solid Lipid Nanoparticle Suspension. Journal of nanoscience and nanotechnology. 2018 Aug; 18(8):5609-5616. doi: 10.1166/jnn.2018.15418. [PMID: 29458616]
  • Sen-Wei Tsai, Ming-Chia Hsieh, Shiming Li, Shih-Chao Lin, Shun-Ping Wang, Caitlin W Lehman, Christopher Z Lien, Chi-Chien Lin. Therapeutic Potential of Sclareol in Experimental Models of Rheumatoid Arthritis. International journal of molecular sciences. 2018 May; 19(5):. doi: 10.3390/ijms19051351. [PMID: 29751535]
  • Miaofeng Ma, Jili Feng, Dezhi Wang, Shu-Wei Chen, Hui Xu. Synthesis and Antifungal Activities of Drimane-Amide Derivatives from Sclareol. Combinatorial chemistry & high throughput screening. 2018; 21(7):501-509. doi: 10.2174/1386207321666180925164358. [PMID: 30255746]
  • Sahar Mofidi Tabatabaei, Peyman Salehi, Mahdi Moridi Farimani, Markus Neuburger, Maria De Mieri, Matthias Hamburger, Samad Nejad-Ebrahimi. A nor-diterpene from Salvia sahendica leaves. Natural product research. 2017 Aug; 31(15):1758-1765. doi: 10.1080/14786419.2017.1290619. [PMID: 28278660]
  • Deepa Khare, Hyunju Choi, Sung Un Huh, Barbara Bassin, Jeongsik Kim, Enrico Martinoia, Kee Hoon Sohn, Kyung-Hee Paek, Youngsook Lee. Arabidopsis ABCG34 contributes to defense against necrotrophic pathogens by mediating the secretion of camalexin. Proceedings of the National Academy of Sciences of the United States of America. 2017 07; 114(28):E5712-E5720. doi: 10.1073/pnas.1702259114. [PMID: 28652324]
  • Ji-Eun Park, Kyung-Eun Lee, Eunsun Jung, Seunghyun Kang, Youn Joon Kim. Sclareol isolated from Salvia officinalis improves facial wrinkles via an antiphotoaging mechanism. Journal of cosmetic dermatology. 2016 Dec; 15(4):475-483. doi: 10.1111/jocd.12239. [PMID: 27466023]
  • Lin Wang, Hong-Sheng He, Hua-Long Yu, Yun Zeng, Heng Han, Ning He, Zhi-Gang Liu, Zhi-Yong Wang, Shou-Jia Xu, Min Xiong. Sclareol, a plant diterpene, exhibits potent antiproliferative effects via the induction of apoptosis and mitochondrial membrane potential loss in osteosarcoma cancer cells. Molecular medicine reports. 2015 Jun; 11(6):4273-8. doi: 10.3892/mmr.2015.3325. [PMID: 25672419]
  • Taketo Fujimoto, Takayuki Mizukubo, Hiroshi Abe, Shigemi Seo. Sclareol induces plant resistance to root-knot nematode partially through ethylene-dependent enhancement of lignin accumulation. Molecular plant-microbe interactions : MPMI. 2015 Apr; 28(4):398-407. doi: 10.1094/mpmi-10-14-0320-r. [PMID: 25423264]
  • Philipp Zerbe, Jörg Bohlmann. Enzymes for synthetic biology of ambroxide-related diterpenoid fragrance compounds. Advances in biochemical engineering/biotechnology. 2015; 148(?):427-47. doi: 10.1007/10_2015_308. [PMID: 25846965]
  • Mahdi Moridi Farimani, Mansour Miran. Labdane diterpenoids from Salvia reuterana. Phytochemistry. 2014 Dec; 108(?):264-9. doi: 10.1016/j.phytochem.2014.08.024. [PMID: 25236692]
  • Wei Yang, Yongjin Zhou, Wujun Liu, Hongwei Shen, Zongbao K Zhao. [Engineering Saccharomyces cerevisiae for sclareol production]. Sheng wu gong cheng xue bao = Chinese journal of biotechnology. 2013 Aug; 29(8):1185-92. doi: ". [PMID: 24364354]
  • Burcu Çulhaoğlu, Gönül Yapar, Tuncay Dirmenci, Gülaçtı Topçu. Bioactive constituents of Salvia chrysophylla Stapf. Natural product research. 2013 Mar; 27(4-5):438-47. doi: 10.1080/14786419.2012.734820. [PMID: 23126495]
  • Shigemi Seo, Kenji Gomi, Hisatoshi Kaku, Hiroshi Abe, Hideharu Seto, Shingo Nakatsu, Masahiro Neya, Michie Kobayashi, Kazuhiro Nakaho, Yuki Ichinose, Ichiro Mitsuhara, Yuko Ohashi. Identification of natural diterpenes that inhibit bacterial wilt disease in tobacco, tomato and Arabidopsis. Plant & cell physiology. 2012 Aug; 53(8):1432-44. doi: 10.1093/pcp/pcs085. [PMID: 22685082]
  • Anne Caniard, Philipp Zerbe, Sylvain Legrand, Allison Cohade, Nadine Valot, Jean-Louis Magnard, Jörg Bohlmann, Laurent Legendre. Discovery and functional characterization of two diterpene synthases for sclareol biosynthesis in Salvia sclarea (L.) and their relevance for perfume manufacture. BMC plant biology. 2012 Jul; 12(?):119. doi: 10.1186/1471-2229-12-119. [PMID: 22834731]
  • Alex Van Moerkercke, Carlos S Galván-Ampudia, Julian C Verdonk, Michel A Haring, Robert C Schuurink. Regulators of floral fragrance production and their target genes in petunia are not exclusively active in the epidermal cells of petals. Journal of experimental botany. 2012 May; 63(8):3157-71. doi: 10.1093/jxb/ers034. [PMID: 22345641]
  • Jean-Claude Caissard, Thomas Olivier, Claire Delbecque, Sabine Palle, Pierre-Philippe Garry, Arthur Audran, Nadine Valot, Sandrine Moja, Florence Nicolé, Jean-Louis Magnard, Sylvain Legrand, Sylvie Baudino, Frédéric Jullien. Extracellular localization of the diterpene sclareol in clary sage (Salvia sclarea L., Lamiaceae). PloS one. 2012; 7(10):e48253. doi: 10.1371/journal.pone.0048253. [PMID: 23133579]
  • Michelina Ruocco, Patrizia Ambrosino, Stefania Lanzuise, Sheridan Lois Woo, Matteo Lorito, Felice Scala. Four potato (Solanum tuberosum) ABCG transporters and their expression in response to abiotic factors and Phytophthora infestans infection. Journal of plant physiology. 2011 Dec; 168(18):2225-33. doi: 10.1016/j.jplph.2011.07.008. [PMID: 21908070]
  • Ariana B Souza, Maria G M de Souza, Maísa A Moreira, Monique R Moreira, Niege A J C Furtado, Carlos H G Martins, Jairo K Bastos, Raquel A dos Santos, Vladimir C G Heleno, Sergio Ricardo Ambrosio, Rodrigo C S Veneziani. Antimicrobial evaluation of diterpenes from Copaifera langsdorffii oleoresin against periodontal anaerobic bacteria. Molecules (Basel, Switzerland). 2011 Nov; 16(11):9611-9. doi: 10.3390/molecules16119611. [PMID: 22101836]
  • Codruta Ignea, Ivana Cvetkovic, Sofia Loupassaki, Panagiotis Kefalas, Christopher B Johnson, Sotirios C Kampranis, Antonios M Makris. Improving yeast strains using recyclable integration cassettes, for the production of plant terpenoids. Microbial cell factories. 2011 Jan; 10(?):4. doi: 10.1186/1475-2859-10-4. [PMID: 21276210]
  • Satoru Sawai, Kazuki Saito. Triterpenoid biosynthesis and engineering in plants. Frontiers in plant science. 2011; 2(?):25. doi: 10.3389/fpls.2011.00025. [PMID: 22639586]
  • Andreas Lardos, José Prieto-Garcia, Michael Heinrich. Resins and Gums in Historical Iatrosophia Texts from Cyprus - A Botanical and Medico-pharmacological Approach. Frontiers in pharmacology. 2011; 2(?):32. doi: 10.3389/fphar.2011.00032. [PMID: 21772820]
  • Vasiliki Falara, Eran Pichersky, Angelos K Kanellis. A copal-8-ol diphosphate synthase from the angiosperm Cistus creticus subsp. creticus is a putative key enzyme for the formation of pharmacologically active, oxygen-containing labdane-type diterpenes. Plant physiology. 2010 Sep; 154(1):301-10. doi: 10.1104/pp.110.159566. [PMID: 20595348]
  • Soonok Kim, Jongsun Park, Sook-Young Park, Thomas K Mitchell, Yong-Hwan Lee. Identification and analysis of in planta expressed genes of Magnaporthe oryzae. BMC genomics. 2010 Feb; 11(?):104. doi: 10.1186/1471-2164-11-104. [PMID: 20146797]
  • Shokoofe Noori, Zuhair M Hassan, Mehdi Mohammadi, Zohre Habibi, Nooshin Sohrabi, Saeed Bayanolhagh. Sclareol modulates the Treg intra-tumoral infiltrated cell and inhibits tumor growth in vivo. Cellular immunology. 2010; 263(2):148-53. doi: 10.1016/j.cellimm.2010.02.009. [PMID: 20409537]
  • Anders Vik, Anthony James, Lise-Lotte Gundersen. Screening of terpenes and derivatives for antimycobacterial activity; identification of geranylgeraniol and geranylgeranyl acetate as potent inhibitors of Mycobacterium tuberculosis in vitro. Planta medica. 2007 Oct; 73(13):1410-2. doi: 10.1055/s-2007-990238. [PMID: 17924309]
  • Edziri Hayet, Bannour Fatma, Ibrahim Souhir, Fekih Abdel Waheb, Kenani Abderaouf, Aouni Mahjoub, Mastouri Maha. Antibacterial and cytotoxic activity of the acetone extract of the flowers of Salvia sclarea and some natural products. Pakistan journal of pharmaceutical sciences. 2007 Apr; 20(2):146-8. doi: ". [PMID: 17416571]
  • Christina Matsingou, Costas Demetzos. Calorimetric study on the induction of interdigitated phase in hydrated DPPC bilayers by bioactive labdanes and correlation to their liposome stability: The role of chemical structure. Chemistry and physics of lipids. 2007 Jan; 145(1):45-62. doi: 10.1016/j.chemphyslip.2006.10.004. [PMID: 17116297]
  • Sophia Hatziantoniou, Konstantinos Dimas, Aristidis Georgopoulos, Nektaria Sotiriadou, Costas Demetzos. Cytotoxic and antitumor activity of liposome-incorporated sclareol against cancer cell lines and human colon cancer xenografts. Pharmacological research. 2006 Jan; 53(1):80-7. doi: 10.1016/j.phrs.2005.09.008. [PMID: 16253514]
  • Yvan Stukkens, Alain Bultreys, Sébastien Grec, Tomasz Trombik, Delphine Vanham, Marc Boutry. NpPDR1, a pleiotropic drug resistance-type ATP-binding cassette transporter from Nicotiana plumbaginifolia, plays a major role in plant pathogen defense. Plant physiology. 2005 Sep; 139(1):341-52. doi: 10.1104/pp.105.062372. [PMID: 16126865]
  • I Kyrikou, A Georgopoulos, S Hatziantoniou, T Mavromoustakos, C Demetzos. A comparative study of the effects of cholesterol and sclareol, a bioactive labdane type diterpene, on phospholipid bilayers. Chemistry and physics of lipids. 2005 Feb; 133(2):125-34. doi: 10.1016/j.chemphyslip.2004.09.021. [PMID: 15642582]
  • Lorena Tapia, Janet Torres, Leonora Mendoza, Alejandro Urzúa, Jorge Ferreira, Mario Pavani, Marcela Wilkens. Effect of 13-epi-sclareol on the bacterial respiratory chain. Planta medica. 2004 Nov; 70(11):1058-63. doi: 10.1055/s-2004-832647. [PMID: 15549662]
  • Emma J Campbell, Peer M Schenk, Kemal Kazan, Iris A M A Penninckx, Jonathan P Anderson, Don J Maclean, Bruno P A Cammue, Paul R Ebert, John M Manners. Pathogen-responsive expression of a putative ATP-binding cassette transporter gene conferring resistance to the diterpenoid sclareol is regulated by multiple defense signaling pathways in Arabidopsis. Plant physiology. 2003 Nov; 133(3):1272-84. doi: 10.1104/pp.103.024182. [PMID: 14526118]
  • Sébastien Grec, Delphine Vanham, Jeoffrey Christyn de Ribaucourt, Bénédicte Purnelle, Marc Boutry. Identification of regulatory sequence elements within the transcription promoter region of NpABC1, a gene encoding a plant ABC transporter induced by diterpenes. The Plant journal : for cell and molecular biology. 2003 Jul; 35(2):237-50. doi: 10.1046/j.1365-313x.2003.01792.x. [PMID: 12848828]
  • Amir Reza Jassbi, Simin Zamanizadehnajari, Parviz Aberoomand Azar, Satoshi Tahara. Antibacterial diterpenoids from Astragalus brachystachys. Zeitschrift fur Naturforschung. C, Journal of biosciences. 2002 Nov; 57(11-12):1016-21. doi: 10.1515/znc-2002-11-1211. [PMID: 12562087]
  • Sybille van den Brûle, Cheryl C Smart. The plant PDR family of ABC transporters. Planta. 2002 Nov; 216(1):95-106. doi: 10.1007/s00425-002-0889-z. [PMID: 12430018]
  • Yuji Imaizumi, Kazuho Sakamoto, Aki Yamada, Aya Hotta, Susumu Ohya, Katsuhiko Muraki, Masanobu Uchiyama, Tomohiko Ohwada. Molecular basis of pimarane compounds as novel activators of large-conductance Ca(2+)-activated K(+) channel alpha-subunit. Molecular pharmacology. 2002 Oct; 62(4):836-46. doi: 10.1124/mol.62.4.836. [PMID: 12237330]
  • Sybille van den Brûle, Axel Müller, Andrew J Fleming, Cheryl C Smart. The ABC transporter SpTUR2 confers resistance to the antifungal diterpene sclareol. The Plant journal : for cell and molecular biology. 2002 Jun; 30(6):649-62. doi: 10.1046/j.1365-313x.2002.01321.x. [PMID: 12061897]
  • C L Cantrell, S G Franzblau, N H Fischer. Antimycobacterial plant terpenoids. Planta medica. 2001 Nov; 67(8):685-94. doi: 10.1055/s-2001-18365. [PMID: 11731906]
  • M Jasiński, Y Stukkens, H Degand, B Purnelle, J Marchand-Brynaert, M Boutry. A plant plasma membrane ATP binding cassette-type transporter is involved in antifungal terpenoid secretion. The Plant cell. 2001 May; 13(5):1095-107. doi: NULL. [PMID: 11340184]
  • M Hudaib, M G Bellardi, C Rubies-Autonell, J Fiori, V Cavrini. Chromatographic (GC-MS, HPLC) and virological evaluations of Salvia sclarea infected by BBWV-I. Farmaco (Societa chimica italiana : 1989). 2001 Mar; 56(3):219-27. doi: 10.1016/s0014-827x(01)01038-2. [PMID: 11409330]
  • A Farooq, S Tahara. Biotransformation of two cytotoxic terpenes, alpha-santonin and sclareol by Botrytis cinerea. Zeitschrift fur Naturforschung. C, Journal of biosciences. 2000 Sep; 55(9-10):713-7. doi: 10.1515/znc-2000-9-1008. [PMID: 11098821]
  • G Topçu, R Erenler, O Cakmak, C B Johansson, C Celik, H B Chai, J M Pezzuto. Diterpenes from the berries of Juniperus excelsa. Phytochemistry. 1999 Apr; 50(7):1195-9. doi: 10.1016/s0031-9422(98)00675-x. [PMID: 10234860]
  • S A Kouzi, J D McChesney, L A Walker. Identification of four biliary metabolites of the diterpene sclareol in the laboratory rat. Xenobiotica; the fate of foreign compounds in biological systems. 1993 Jun; 23(6):621-32. doi: 10.3109/00498259309059400. [PMID: 8212736]
  • D L Garver, D M Davis, H Dekirmenjian, S Ericksen, L Gosenfeld, J Haraszti. Dystonic reactions following neuroleptics: time course and proposed mechanisms. Psychopharmacologia. 1976 May; 47(2):199-201. doi: 10.1007/bf00735822. [PMID: 5743]
  • H J NICHOLAS. Biosynthesis of 14C-sclareol and beta-sitosterol from 2-14C-mevalonic acid. Nature. 1961 Jan; 189(?):143-4. doi: 10.1038/189143b0. [PMID: 13728752]