Uridine diphosphate-N-acetylgalactosamine (BioDeep_00000027529)

Main id: BioDeep_00000014571

 

human metabolite PANOMIX_OTCML-2023 Endogenous BioNovoGene_Lab2019


代谢物信息卡片


N-[2-({[({[3,4-dihydroxy-5-(4-hydroxy-2-oxo-1,2-dihydropyrimidin-1-yl)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]ethanimidate

化学式: C17H27N3O17P2 (607.0815672)
中文名称:
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: CC(=O)NC1C(C(C(OC1OP(=O)(O)OP(=O)(O)OCC2C(C(C(O2)N3C=CC(=O)NC3=O)O)O)CO)O)O
InChI: InChI=1S/C17H27N3O17P2/c1-6(22)18-10-13(26)11(24)7(4-21)35-16(10)36-39(31,32)37-38(29,30)33-5-8-12(25)14(27)15(34-8)20-3-2-9(23)19-17(20)28/h2-3,7-8,10-16,21,24-27H,4-5H2,1H3,(H,18,22)(H,29,30)(H,31,32)(H,19,23,28)

描述信息

Uridine diphosphate-N-acetylgalactosamine (UDP-GalNAc) is a sugar donor metabolite, transferring N-acetylgalactosamine (GalNAc, an O-glycan) from UDP-GalNAc to serine and threonine residues, forming an alpha-anomeric linkage in a reaction catalyzed by enzymes known as UDP-N-acetylgalactosamine: polypeptide N-acetylgalactosaminyltransferases. The addition of GalNAc to serine or threonine represents the first committed step in mucin biosynthesis. O-Glycans impart unique structural features to mucin glycoproteins and numerous membrane receptors, and resistance to thermal change and proteolytic attack in a number of diverse proteins. O-Linked carbohydrate side chains function as ligands for receptors, lymphocyte and leukocyte homing, and as signals for protein sorting (PMID: 12634319). Animal studies suggest that overactivity of the hexosamine pathway, resulting in increased UDP-hexosamines (i.e. UDP-GalNAc) is an important mechanism by which hyperglycemia causes insulin resistance. However, to date, human studies concerning the role of the hexosamine pathway in hyperglycemia-induced insulin resistance are scarce and restricted to measurements of glutamine fructose-6-phosphate amidotransferase (GFAT) enzyme activity. Both positive and negative correlations between GFAT activity in human muscle tissue from patients with type 2 DM and glucose disposal rate have been reported (PMID: 12414889).
Uridine diphosphate-N-acetylgalactosamine (UDP-GalNAc) is a sugar donor metabolite, transferring N-acetylgalactosamine (GalNAc, an O-glycan) from UDP-GalNAc to serine and threonine residues, forming an alpha anomeric linkage in a reaction catalyzed by enzymes known as UDP-N-acetylgalactosamine: polypeptide N-acetylgalactosaminyltransferases; addition of GalNAc to serine or threonine represents the first committed step in mucin biosynthesis. O-glycans impart unique structural features to mucin glycoproteins and numerous membrane receptors, and resistance to thermal change and proteolytic attack in a number of diverse proteins. O-linked carbohydrate side chains function as ligands for receptors; lymphocyte and leukocyte homing and as signals for protein sorting. (PMID: 12634319)

同义名列表

40 个代谢物同义名

N-[2-({[({[3,4-dihydroxy-5-(4-hydroxy-2-oxo-1,2-dihydropyrimidin-1-yl)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]ethanimidate; [({[5-(2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy]({[3-acetamido-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy})phosphinic acid; {[5-(2,4-dioxo-3H-pyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy(hydroxy)phosphoryl}oxy([3-acetamido-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy)phosphinic acid; Uridine pyrophosphate 2-acetamido-2-deoxy-alpha-delta-galactopyranosyl ester; Uridine pyrophosphate 2-acetamido-2-deoxy-alpha-D-galactopyranosyl ester; Uridine pyrophosphate 2-acetamido-2-deoxy-a-D-galactopyranosyl ester; Uridine pyrophosphate N-acetyl-alpha-delta-chondrosamine ester; Uridine pyrophosphate N-acetyl-alpha-D-chondrosamine ester; Uridine pyrophosphate N-acetyl-a-D-chondrosamine ester; Uridine diphospho-2-acetamido-2-deoxy-delta-galactose; Uridine diphospho-2-acetamido-2-deoxy-D-galactose; Uridine diphosphate-N-acetyl-delta-galactosamine; Uridine diphosphoric acid-N-acetylgalactosamine; Uridine diphosphate-N-acetyl-D-galactosamine; N-Acetylgalactosamine, uridine diphosphate; Diphosphate N-acetylgalactosamine, uridine; Uridine diphosphate-N-acetylgalactosamine; Uridine diphosphate N-acetylgalactosamine; Uridine diphosphate N acetylgalactosamine; Uridine 5-diphospho-N-acetylgalactosamine; Diphosphate N-acetylglucosamine, uridine; N-Acetylglucosamine, uridine diphosphate; Uridine diphosphate N acetylglucosamine; Uridine diphospho-N-acetylgalactosamine; Uridine diphosphate N-acetylglucosamine; Uridine pyrophosphoacetylgalactosamine; Diphospho-N-acetylglucosamine, uridine; Pyrophosphoacetylglucosamine, uridine; Uridine diphospho N acetylglucosamine; Uridine diphospho-N-acetylglucosamine; Uridine diphosphoacetylgalactosamine; Uridine pyrophosphoacetylglucosamine; UDP-N-Acetyl-delta-galactosamine; UDP-N-Acetyl-D-galactosamine; UDP-N-Acetylgalactosamine; Acetylgalactosamine, UDP; UDP Acetylgalactosamine; Acetylglucosamine, UDP; UDP Acetylglucosamine; UDPGNAc



数据库引用编号

10 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

1 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Matěj Šimek, Kristina Nešporová, Anna Kocurková, Tereza Foglová, Gabriela Ambrožová, Vladimír Velebný, Lukáš Kubala, Martina Hermannová. How the molecular weight affects the in vivo fate of exogenous hyaluronan delivered intravenously: A stable-isotope labelling strategy. Carbohydrate polymers. 2021 Jul; 263(?):117927. doi: 10.1016/j.carbpol.2021.117927. [PMID: 33858586]
  • Ilaria Caon, Arianna Parnigoni, Manuela Viola, Evgenia Karousou, Alberto Passi, Davide Vigetti. Cell Energy Metabolism and Hyaluronan Synthesis. The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society. 2021 01; 69(1):35-47. doi: 10.1369/0022155420929772. [PMID: 32623953]
  • Ashik Jawahar Deen, Uma Thanigai Arasu, Sanna Pasonen-Seppänen, Antti Hassinen, Piia Takabe, Sara Wojciechowski, Riikka Kärnä, Kirsi Rilla, Sakari Kellokumpu, Raija Tammi, Markku Tammi, Sanna Oikari. UDP-sugar substrates of HAS3 regulate its O-GlcNAcylation, intracellular traffic, extracellular shedding and correlate with melanoma progression. Cellular and molecular life sciences : CMLS. 2016 08; 73(16):3183-204. doi: 10.1007/s00018-016-2158-5. [PMID: 26883802]
  • Jakob Engel, Philipp S Schmalhorst, Anke Tina Krüger, Christina Theda Müller, Falk F R Buettner, Françoise H Routier. Characterization of an N-acetylglucosaminyltransferase involved in Aspergillus fumigatus zwitterionic glycoinositolphosphoceramide biosynthesis. Glycobiology. 2015 Dec; 25(12):1423-30. doi: 10.1093/glycob/cwv059. [PMID: 26306635]
  • Davide Vigetti, Manuela Viola, Evgenia Karousou, Giancarlo De Luca, Alberto Passi. Metabolic control of hyaluronan synthases. Matrix biology : journal of the International Society for Matrix Biology. 2014 Apr; 35(?):8-13. doi: 10.1016/j.matbio.2013.10.002. [PMID: 24134926]
  • Vincent C Hascall, Aimin Wang, Markku Tammi, Sanna Oikari, Raija Tammi, Alberto Passi, Davide Vigetti, Richard W Hanson, Gerald W Hart. The dynamic metabolism of hyaluronan regulates the cytosolic concentration of UDP-GlcNAc. Matrix biology : journal of the International Society for Matrix Biology. 2014 Apr; 35(?):14-7. doi: 10.1016/j.matbio.2014.01.014. [PMID: 24486448]
  • Michelle R Bond, John A Hanover. O-GlcNAc cycling: a link between metabolism and chronic disease. Annual review of nutrition. 2013; 33(?):205-29. doi: 10.1146/annurev-nutr-071812-161240. [PMID: 23642195]
  • Davide Vigetti, Sara Deleonibus, Paola Moretto, Eugenia Karousou, Manuela Viola, Barbara Bartolini, Vincent C Hascall, Markku Tammi, Giancarlo De Luca, Alberto Passi. Role of UDP-N-acetylglucosamine (GlcNAc) and O-GlcNAcylation of hyaluronan synthase 2 in the control of chondroitin sulfate and hyaluronan synthesis. The Journal of biological chemistry. 2012 Oct; 287(42):35544-35555. doi: 10.1074/jbc.m112.402347. [PMID: 22887999]
  • Boglárka Laczy, Norbert Fülöp, Arzu Onay-Besikci, Christine Des Rosiers, John C Chatham. Acute regulation of cardiac metabolism by the hexosamine biosynthesis pathway and protein O-GlcNAcylation. PloS one. 2011 Apr; 6(4):e18417. doi: 10.1371/journal.pone.0018417. [PMID: 21494549]
  • Bettina Constanze Buck, Reiner Ulrich, Anne Wöhlke, Heidi Kuiper, Wolfgang Baumgärtner, Ottmar Distl. [Vertebral and multiple organ malformations in a black and white German Holstein calf]. Berliner und Munchener tierarztliche Wochenschrift. 2010 May; 123(5-6):251-5. doi: . [PMID: 20496833]
  • Jan Hajduch, Ghilsoo Nam, Eun Ju Kim, Roland Fröhlich, John A Hanover, Kenneth L Kirk. A convenient synthesis of the C-1-phosphonate analogue of UDP-GlcNAc and its evaluation as an inhibitor of O-linked GlcNAc transferase (OGT). Carbohydrate research. 2008 Feb; 343(2):189-95. doi: 10.1016/j.carres.2007.10.027. [PMID: 18039537]
  • Yu-Hui Zhang, Cynthia Ginsberg, Yanqiu Yuan, Suzanne Walker. Acceptor substrate selectivity and kinetic mechanism of Bacillus subtilis TagA. Biochemistry. 2006 Sep; 45(36):10895-904. doi: 10.1021/bi060872z. [PMID: 16953575]
  • Dona C Love, John A Hanover. The hexosamine signaling pathway: deciphering the "O-GlcNAc code". Science's STKE : signal transduction knowledge environment. 2005 Nov; 2005(312):re13. doi: 10.1126/stke.3122005re13. [PMID: 16317114]
  • Thierry Fontaine, Terry K Smith, Arthur Crossman, John S Brimacombe, Jean-Paul Latgé, Michael A J Ferguson. In vitro biosynthesis of glycosylphosphatidylinositol in Aspergillus fumigatus. Biochemistry. 2004 Dec; 43(48):15267-75. doi: 10.1021/bi0486029. [PMID: 15568819]
  • Dorota A Bulik, Mariusz Olczak, Hector A Lucero, Barbara C Osmond, Phillips W Robbins, Charles A Specht. Chitin synthesis in Saccharomyces cerevisiae in response to supplementation of growth medium with glucosamine and cell wall stress. Eukaryotic cell. 2003 Oct; 2(5):886-900. doi: 10.1128/ec.2.5.886-900.2003. [PMID: 14555471]
  • Marie-Jose J Pouwels, Paul N Span, Cees J Tack, André J Olthaar, C G J Fred Sweep, Baziel G van Engelen, Jan G de Jong, Jos A Lutterman, Ad R Hermus. Muscle uridine diphosphate-hexosamines do not decrease despite correction of hyperglycemia-induced insulin resistance in type 2 diabetes. The Journal of clinical endocrinology and metabolism. 2002 Nov; 87(11):5179-84. doi: 10.1210/jc.2002-020440. [PMID: 12414889]
  • Eun-Young Song, Kyung-Sook Kim, Kyoung-A Kim, Yung-Dai Kim, Dur-Han Kwon, Si-Myung Byun, Hee-Jung Kim, Tae-Wook Chung, Yong-Kyung Choe, Tai-Wha Chung, Cheorl-Ho Kim. Determination of UDP-N-acetylglucosamine: beta-D-mannoside-1,4-N-acetylglucosaminyltransferase-III in patients sera with chronic hepatitis and liver cirrhosis using a monoclonal antibody. Glycoconjugate journal. 2002 Jul; 19(6):415-21. doi: 10.1023/b:glyc.0000004013.36690.78. [PMID: 14707488]
  • Héctor A Lucero, Michael J Kuranda, Dorota A Bulik. A nonradioactive, high throughput assay for chitin synthase activity. Analytical biochemistry. 2002 Jun; 305(1):97-105. doi: 10.1006/abio.2002.5594. [PMID: 12018950]
  • Linda J McKerral, Reggie Y C Lo. Construction and characterization of an acapsular mutant of Mannheimia haemolytica A1. Infection and immunity. 2002 May; 70(5):2622-9. doi: 10.1128/iai.70.5.2622-2629.2002. [PMID: 11953404]
  • T Bülter, T Schumacher, D J Namdjou, R Gutiérrez Gallego, H Clausen, L Elling. Chemoenzymatic synthesis of biotinylated nucleotide sugars as substrates for glycosyltransferases. Chembiochem : a European journal of chemical biology. 2001 Dec; 2(12):884-94. doi: 10.1002/1439-7633(20011203)2:12<884::aid-cbic884>3.0.co;2-2. [PMID: 11948877]
  • J G Leroy, R Seppala, M Huizing, G Dacremont, H De Simpel, R N Van Coster, E Orvisky, D M Krasnewich, W A Gahl. Dominant inheritance of sialuria, an inborn error of feedback inhibition. American journal of human genetics. 2001 Jun; 68(6):1419-27. doi: 10.1086/320598. [PMID: 11326336]
  • G Boehmelt, A Wakeham, A Elia, T Sasaki, S Plyte, J Potter, Y Yang, E Tsang, J Ruland, N N Iscove, J W Dennis, T W Mak. Decreased UDP-GlcNAc levels abrogate proliferation control in EMeg32-deficient cells. The EMBO journal. 2000 Oct; 19(19):5092-104. doi: 10.1093/emboj/19.19.5092. [PMID: 11013212]
  • R V Considine, R C Cooksey, L B Williams, R L Fawcett, P Zhang, W T Ambrosius, R M Whitfield, R Jones, M Inman, J Huse, D A McClain. Hexosamines regulate leptin production in human subcutaneous adipocytes. The Journal of clinical endocrinology and metabolism. 2000 Oct; 85(10):3551-6. doi: 10.1210/jcem.85.10.6916. [PMID: 11061500]
  • R Lehmann, M Huber, A Beck, T Schindera, T Rinkler, B Houdali, C Weigert, H U Häring, W Voelter, E D Schleicher. Simultaneous, quantitative analysis of UDP-N-acetylglucosamine, UDP-N-acetylgalactosamine, UDP-glucose and UDP-galactose in human peripheral blood cells, muscle biopsies and cultured mesangial cells by capillary zone electrophoresis. Electrophoresis. 2000 Aug; 21(14):3010-5. doi: 10.1002/1522-2683(20000801)21:14<3010::aid-elps3010>3.0.co;2-c. [PMID: 11001317]
  • D Sevlever, S Pickett, K J Mann, K Sambamurti, M E Medof, T L Rosenberry. Glycosylphosphatidylinositol-anchor intermediates associate with triton-insoluble membranes in subcellular compartments that include the endoplasmic reticulum. The Biochemical journal. 1999 Nov; 343 Pt 3(?):627-35. doi: 10.1042/bj3430627. [PMID: 10527942]
  • M Hawkins, N Barzilai, W Chen, I Angelov, M Hu, P Cohen, L Rossetti. Increased hexosamine availability similarly impairs the action of insulin and IGF-1 on glucose disposal. Diabetes. 1996 Dec; 45(12):1734-43. doi: 10.2337/diab.45.12.1734. [PMID: 8922359]
  • N Barzilai, M Hawkins, I Angelov, M Hu, L Rossetti. Glucosamine-induced inhibition of liver glucokinase impairs the ability of hyperglycemia to suppress endogenous glucose production. Diabetes. 1996 Oct; 45(10):1329-35. doi: 10.2337/diab.45.10.1329. [PMID: 8826967]
  • N U Bosshard, M Hubler, S Arnold, J Briner, M A Spycher, H J Sommerlade, K von Figura, R Gitzelmann. Spontaneous mucolipidosis in a cat: an animal model of human I-cell disease. Veterinary pathology. 1996 Jan; 33(1):1-13. doi: 10.1177/030098589603300101. [PMID: 8826001]
  • S Merello, A J Parodi, R Couso. Characterization and partial purification of a novel enzymatic activity. UDP-GlcNAc:Ser-protein N-acetylglucosamine-1-phosphotransferase from the cellular slime mold Dictyostelium discoideum. The Journal of biological chemistry. 1995 Mar; 270(13):7281-7. doi: 10.1074/jbc.270.13.7281. [PMID: 7706268]
  • W J Choi, E Cabib. The use of divalent cations and pH for the determination of specific yeast chitin synthetases. Analytical biochemistry. 1994 Jun; 219(2):368-72. doi: 10.1006/abio.1994.1278. [PMID: 8080094]
  • D W Zaharevitz, C A Chisena, K L Duncan, E M August, R L Cysyk. Vanadate inhibition of hyaluronic acid synthesis in Swiss 3T3 fibroblasts. Biochemistry and molecular biology international. 1993 Nov; 31(4):627-33. doi: NULL. [PMID: 7507761]
  • T Linker, S C Crawley, O Hindsgaul. Recognition of the acceptor beta-D-GlcpNAc-(1-->2)-alpha-D-Manp- (1-->6)-beta-D-Glcp-OR by N-acetyl-glucosaminyltransferase-V: none of the hydroxyl groups on the Glc-residue are important. Carbohydrate research. 1993 Jul; 245(2):323-31. doi: 10.1016/0008-6215(93)80081-o. [PMID: 8370029]
  • O Kanie, S C Crawley, M M Palcic, O Hindsgaul. Acceptor-substrate recognition by N-acetylglucosaminyltransferase-V: critical role of the 4'-hydroxyl group in beta-D-GlcpNAc-(1-->2)-alpha-D-Manp(1-->6)-beta-D-Glcp-OR. Carbohydrate research. 1993 Apr; 243(1):139-64. doi: 10.1016/0008-6215(93)84087-m. [PMID: 8324760]
  • L Klewes, E A Turley, P Prehm. The hyaluronate synthase from a eukaryotic cell line. The Biochemical journal. 1993 Mar; 290 ( Pt 3)(?):791-5. doi: 10.1042/bj2900791. [PMID: 8457208]
  • E M August, K L Duncan, N M Malinowski, R L Cysyk. Inhibition of fibroblast hyaluronic acid production by suramin. Oncology research. 1993; 5(10-11):415-22. doi: NULL. [PMID: 8054702]
  • R A Freedland, C A Smith, M L Bruss, C E Cornelius. Kinetic properties of bilirubin UDP-glucuronyltransferase in squirrel monkeys exhibiting fasting hyperbilirubinemia. The International journal of biochemistry. 1991; 23(9):867-73. doi: 10.1016/0020-711x(91)90073-v. [PMID: 1773892]
  • N Murazumi, K Kumita, Y Araki, E Ito. Partial purification and properties of UDP-N-acetylmannosamine:N-acetylglucosaminyl pyrophosphorylundecaprenol N-acetylmannosaminyltransferase from Bacillus subtilis. Journal of biochemistry. 1988 Dec; 104(6):980-4. doi: 10.1093/oxfordjournals.jbchem.a122594. [PMID: 2977387]
  • A W Brändli, G C Hansson, E Rodriguez-Boulan, K Simons. A polarized epithelial cell mutant deficient in translocation of UDP-galactose into the Golgi complex. The Journal of biological chemistry. 1988 Nov; 263(31):16283-90. doi: . [PMID: 3141404]
  • J Arango, M Pierce. Comparison of N-acetylglucosaminyltransferase V activities in Rous sarcoma-transformed baby hamster kidney (RS-BHK) and BHK cells. Journal of cellular biochemistry. 1988 Jun; 37(2):225-31. doi: 10.1002/jcb.240370209. [PMID: 2840447]
  • R Cecchelli, R Cacan, A Verbert. Mechanism of UDP-sugar transport into intracellular vesicles. Occurrence of UDP-GlcNAc/UDP and UDP-Gal/UDP antiports. FEBS letters. 1986 Nov; 208(2):407-12. doi: 10.1016/0014-5793(86)81058-4. [PMID: 3780976]
  • N Mian. Characterization of a high-Mr plasma-membrane-bound protein and assessment of its role as a constituent of hyaluronate synthase complex. The Biochemical journal. 1986 Jul; 237(2):343-57. doi: 10.1042/bj2370343. [PMID: 3099752]
  • R Cecchelli, R Cacan, A Verbert. Accumulation of UDP-GlcNAc into intracellular vesicles and occurrence of a carrier-mediated transport. Study with plasma-membrane-permeabilized mouse thymocytes. European journal of biochemistry. 1985 Nov; 153(1):111-6. doi: 10.1111/j.1432-1033.1985.tb09275.x. [PMID: 2415359]
  • N Tavoloni, M J Jones, L M Isola, P D Berk. Effect of albumin on the in vitro conjugation of bilirubin by rat liver microsomes. Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.). 1984 Sep; 176(4):356-65. doi: 10.3181/00379727-176-41883. [PMID: 6463047]
  • P Prehm. Hyaluronate is synthesized at plasma membranes. The Biochemical journal. 1984 Jun; 220(2):597-600. doi: 10.1042/bj2200597. [PMID: 6743290]
  • O Hosomi, A Takeya, T Kogure. Human serum contains N-acetyllactosamine: beta 1-3 N-acetylglucosaminyltransferase activity. Journal of biochemistry. 1984 Jun; 95(6):1655-9. doi: 10.1093/oxfordjournals.jbchem.a134778. [PMID: 6236210]
  • M J Spiro. Effect of diabetes on the sugar nucleotides in several tissues of the rat. Diabetologia. 1984 Jan; 26(1):70-5. doi: 10.1007/bf00252267. [PMID: 6706047]
  • A D Yates, W M Watkins. Enzymes involved in the biosynthesis of glycoconjugates. A UDP-2-acetamido-2-deoxy-D-glucose: beta-D-galactopyranosyl-(1 leads to 4)-saccharide (1 leads to 3)-2-acetamido-2-deoxy-beta-D- glucopyranosyltransferase in human serum. Carbohydrate research. 1983 Aug; 120(?):251-68. doi: 10.1016/0008-6215(83)88020-3. [PMID: 6226355]
  • M J Morin, C W Porter, P McKernan, R J Bernacki. The biochemical and ultrastructural effects of tunicamycin and D-glucosamine in L1210 leukemic cells. Journal of cellular physiology. 1983 Feb; 114(2):162-72. doi: 10.1002/jcp.1041140204. [PMID: 6822608]
  • H Chelibonova-Lorer, S Ivanov, E Gavazova. Effect of cycloheximide on the incorporation of [14C]glucosamine into UDP-N-acetylglucosamine, cell free and protein-bound N-acetylneuraminic acid, and plasma membrane glycoproteins of chicken liver. Biochemical pharmacology. 1982 Jun; 31(11):2123-5. doi: 10.1016/0006-2952(82)90433-6. [PMID: 7115432]
  • P Cortes, F Dumler, K S Sastry, C P Verghese, N W Levin. Effects of early diabetes on uridine diphosphosugar synthesis in the rat renal cortex. Kidney international. 1982 May; 21(5):676-82. doi: 10.1038/ki.1982.80. [PMID: 7109458]
  • P Levy, J Picard, A Bruel. [Heparan sulfate biosynthesis in swine arterial wall: glycosylation and sulfation]. Paroi arterielle. 1981; 7(3):113-9. doi: NULL. [PMID: 6461835]
  • T Sawicka. [Glycoconjugates biosynthesis of plasma membranes of mammalian cells (author's transl)]. Postepy biochemii. 1981; 27(2):157-79. doi: NULL. [PMID: 6460994]
  • G E Schmidt, A P Martin, J F Townsend, M L Vorbeck. Basement membrane synthesis in spontaneously diabetic Mystromys albicaudatus. Laboratory investigation; a journal of technical methods and pathology. 1980 Sep; 43(3):217-24. doi: NULL. [PMID: 6249972]
  • C Lombart, J Sturgess, H Schachter. The effect of turpentine-induced inflammation on rat liver glycosyltransferases and Golgi complex ultrastructure. Biochimica et biophysica acta. 1980 Apr; 629(1):1-12. doi: 10.1016/0304-4165(80)90259-7. [PMID: 6445210]
  • G W Welten-Verstegen, P Boer, E P Steyn-Parvé. Lipid-mediated glycosylation of endogenous proteins in isolated plasma membrane of Saccharomyces cerevisiae. Journal of bacteriology. 1980 Jan; 141(1):342-9. doi: 10.1128/jb.141.1.342-349.1980. [PMID: 6986363]
  • E Gavazova, S Ivanov, H Chelibonova-Lorer. Isolation and partial characterization of plasma membranes from chicken liver and from Mc-29 virus induced transplantable hepatoma. Neoplasma. 1980; 27(4):399-408. doi: . [PMID: 7453856]
  • A Vardanis. Characteristics of the chitin-synthesizing system of insect tissue. Biochimica et biophysica acta. 1979 Nov; 588(1):142-7. doi: 10.1016/0304-4165(79)90379-9. [PMID: 497242]
  • J E Leakey. An improved assay technique for uridine diphosphate glucuronosyltransferase activity towards 5-hydroxytryptamine and some properties of the enzyme. The Biochemical journal. 1978 Dec; 175(3):1119-24. doi: 10.1042/bj1751119. [PMID: 105726]
  • C V Natraj, P Datta. Uridine diphosphate N-acetylglucosamine stimulates uptake of nutrients by quiescent BALB/C3T3 cells. Proceedings of the National Academy of Sciences of the United States of America. 1978 Aug; 75(8):3859-62. doi: 10.1073/pnas.75.8.3859. [PMID: 279000]
  • A J Parodi, J Martin-Barrientos. Glycosylation of endogenous proteins through dolichol derivatives in reticulocyte plasma membranes. Biochimica et biophysica acta. 1977 Nov; 500(1):80-8. doi: 10.1016/0304-4165(77)90048-4. [PMID: 922041]
  • W D Merritt, D J Morre, W W Franke, T W Keenan. Glycosyltransferases with endogenous acceptor activity in plasma membranes isolated from rat liver. Biochimica et biophysica acta. 1977 May; 497(3):820-4. doi: 10.1016/0304-4165(77)90305-1. [PMID: 889889]
  • H Okubo, K Shibata, H Ishibashi, T Yanase. Developmental studies on glucosamine metabolism. Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.). 1976 Sep; 152(4):626-30. doi: 10.3181/00379727-152-39455. [PMID: 967894]
  • Z Khalkhali, R D Marshall. UDP-N-acetyl-D-glucosamine-asparagine sequon N-acetyl-beta-D-glucosaminyl-transferase-activity in human serum. Carbohydrate research. 1976 Jul; 49(?):455-73. doi: 10.1016/s0008-6215(00)83163-8. [PMID: 986874]
  • T Ishibashi, T Atsuta, A Makita. Effects of uridine nucleotides and nucleotide pyrophosphatase on glycolipid alpha and beta-N-acetylgalactosaminyltransferase activities in guinea pig microsomes. Biochimica et biophysica acta. 1976 May; 429(3):759-67. doi: 10.1016/0005-2744(76)90323-5. [PMID: 817744]
  • K von Figura, M Lögering, H Kresse. Serum alpha-N-acetylglucosaminidase: determination, characterization, and corrective activity in Sanifilippo B fibroblasts. Zeitschrift fur klinische Chemie und klinische Biochemie. 1975 Jul; 13(7):285-9. doi: 10.1515/cclm.1975.13.7.285. [PMID: 242129]