CE(18:2(9Z,12Z)) (BioDeep_00000010713)

 

Secondary id: BioDeep_00000603900, BioDeep_00001871487

human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite


代谢物信息卡片


(2R,5S,15R)-2,15-dimethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-5-yl (9Z,12Z)-octadeca-9,12-dienoate

化学式: C45H76O2 (648.5845)
中文名称: 亚油酸胆固醇酯
谱图信息: 最多检出来源 Homo sapiens(feces) 80.69%

分子结构信息

SMILES: CC(C)CCC[C@@H](C)[C@H]1CC[C@@]2([H])[C@]3([H])CC=C4C[C@@H](OC(CCCCCCC/C=C\C/C=C\CCCCC)=O)CC[C@]4(C)[C@@]3([H])CC[C@]12C
InChI: InChI=1S/C45H76O2/c1-7-8-9-10-11-12-13-14-15-16-17-18-19-20-21-25-43(46)47-38-30-32-44(5)37(34-38)26-27-39-41-29-28-40(36(4)24-22-23-35(2)3)45(41,6)33-31-42(39)44/h11-12,14-15,26,35-36,38-42H,7-10,13,16-25,27-34H2,1-6H3/t36-,38+,39+,40-,41+,42+,44+,45-/m1/s1

描述信息

Cholesteryl linoleic acid is a cholesteryl ester. A cholesteryl ester is an ester of cholesterol. Fatty acid esters of cholesterol constitute about two-thirds of the cholesterol in the plasma. Cholesterol is a sterol (a combination steroid and alcohol) and a lipid found in the cell membranes of all body tissues, and transported in the blood plasma of all animals. The accumulation of cholesterol esters in the arterial intima (the innermost layer of an artery, in direct contact with the flowing blood) is a characteristic feature of atherosclerosis. Atherosclerosis is a disease affecting arterial blood vessels. It is a chronic inflammatory response in the walls of arteries, in large part to the deposition of lipoproteins (plasma proteins that carry cholesterol and triglycerides). Cholesteryl linoleate is contained in low density lipoprotein and atherosclerotic lesions. The oxidation products of cholesteryl linoleate may cause chronic inflammatory processes. (PMID 9684755, 11950694) [HMDB]
Cholesteryl linoleic acid is a cholesteryl ester. A cholesteryl ester is an ester of cholesterol. Fatty acid esters of cholesterol constitute about two-thirds of the cholesterol in the plasma. Cholesterol is a sterol (a combination steroid and alcohol) and a lipid found in the cell membranes of all body tissues, and transported in the blood plasma of all animals. The accumulation of cholesterol esters in the arterial intima (the innermost layer of an artery, in direct contact with the flowing blood) is a characteristic feature of atherosclerosis. Atherosclerosis is a disease affecting arterial blood vessels. It is a chronic inflammatory response in the walls of arteries, in large part to the deposition of lipoproteins (plasma proteins that carry cholesterol and triglycerides). Cholesteryl linoleate is contained in low density lipoprotein and atherosclerotic lesions. The oxidation products of cholesteryl linoleate may cause chronic inflammatory processes. (PMID 9684755, 11950694).
Cholesteryl linoleate is shown to be the major cholesteryl ester contained in LDL and atherosclerotic lesions.

同义名列表

35 个代谢物同义名

(2R,5S,15R)-2,15-dimethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-5-yl (9Z,12Z)-octadeca-9,12-dienoate; (Z,Z)-(3beta)-Cholest-5-en-3-ol 9,12-octadecadienoate; Cholest-5-en-3beta-yl (9Z,12Z-octadecadienoic acid; cholest-5-en-3beta-yl (9Z,12Z-octadecadienoate); Cholest-5-en-3beta-yl (9Z,12Z-octadecadienoate; Cholesterol 1-(9Z,12Z-octadecadienoic acid); Cholesteryl 1-(9Z,12Z-octadecadienoic acid); Cholesterol 1-(9Z,12Z-octadecadienoic acid; Cholesteryl 1-(9Z,12Z-octadecadienoic acid; Cholesterol 1-(9Z,12Z-octadecadienoate); Cholesteryl 1-(9Z,12Z-octadecadienoate); Cholesteryl 1-(9Z,12Z-octadecadienoate; Cholesterol 1-(9Z,12Z-octadecadienoate; 1-(9Z,12Z-Octadecadienoyl)-cholesterol; Linoleic Acid Cholesterol Ester; 18:2(9Z,12Z) Cholesterol ester; Cholesterol ester(18:2W6/0:0); Cholesterol ester(18:2n6/0:0); Cholesteryl 1-linoleoic acid; Cholesterol 1-linoleoic acid; Cholesterol ester(18:2/0:0); Cholesteryl 1-linoleoate; Cholesterol 1-linoleoate; 1-Linoleoyl-cholesterol; Cholesterol ester(18:2); 18:2 Cholesterol ester; 18:2 Cholesteryl ester; CHOLESTERYL LINOLEATE; CE(18:2(9Z,12Z)); CE(18:2W6/0:0); CE(18:2n6/0:0); CE(18:2/0:0); CE(18:2); CE 18:2; Cholesteryl linoleate



数据库引用编号

18 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

2 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 7 ALB, APOB, APOE, KLK8, LPO, PLA2G12A, POMC
Peripheral membrane protein 1 LPL
Endosome membrane 3 APOB, LDLR, TF
Endoplasmic reticulum membrane 3 APOB, HMGCR, SOAT1
Nucleus 2 ALB, APOE
cytosol 4 ALB, APOA1, APOB, LIPE
dendrite 1 APOE
centrosome 1 ALB
Cell membrane 3 LDLR, LIPE, LPL
Multi-pass membrane protein 2 HMGCR, SOAT1
cell surface 3 LDLR, LPL, TF
glutamatergic synapse 1 APOE
Golgi apparatus 3 ALB, APOE, LDLR
Golgi membrane 1 INS
neuronal cell body 2 APOB, APOE
smooth endoplasmic reticulum 1 APOB
Cytoplasm, cytosol 1 LIPE
Lysosome 1 LDLR
plasma membrane 7 APOA1, APOB, APOE, IFNLR1, LDLR, LPL, TF
Membrane 7 APOE, HMGCR, IFNLR1, LCAT, LDLR, LIPE, SOAT1
apical plasma membrane 1 TF
basolateral plasma membrane 2 LDLR, LPO
caveola 1 LIPE
extracellular exosome 8 ALB, APOA1, APOB, APOE, CETP, LCAT, LPO, TF
endoplasmic reticulum 4 ALB, APOE, HMGCR, SOAT1
extracellular space 14 ALB, APOA1, APOB, APOE, CETP, DEFB4B, INS, KLK8, LCAT, LIPC, LPL, LPO, POMC, TF
lysosomal lumen 1 APOB
perinuclear region of cytoplasm 1 TF
protein-containing complex 1 ALB
intracellular membrane-bounded organelle 1 APOB
Single-pass type I membrane protein 2 IFNLR1, LDLR
Secreted 15 ALB, APOA1, APOB, APOE, CETP, DEFB4B, INS, KLK8, LCAT, LIPC, LPL, LPO, PLA2G12A, POMC, TF
extracellular region 15 ALB, APOA1, APOB, APOE, CETP, DEFB4B, INS, KLK8, LCAT, LIPC, LPL, LPO, PLA2G12A, POMC, TF
Single-pass membrane protein 1 LDLR
basal part of cell 1 TF
Extracellular side 1 LPL
anchoring junction 1 ALB
external side of plasma membrane 1 LDLR
Endosome, multivesicular body 1 APOE
Extracellular vesicle 2 APOA1, APOE
Secreted, extracellular space, extracellular matrix 2 APOE, LPL
chylomicron 4 APOA1, APOB, APOE, LPL
high-density lipoprotein particle 5 APOA1, APOE, CETP, LCAT, LIPC
low-density lipoprotein particle 4 APOA1, APOB, APOE, LDLR
multivesicular body 1 APOE
very-low-density lipoprotein particle 4 APOA1, APOB, APOE, LPL
cytoplasmic vesicle 2 APOA1, TF
Early endosome 5 APOA1, APOB, APOE, LDLR, TF
Membrane, clathrin-coated pit 1 LDLR
apical part of cell 1 LDLR
clathrin-coated pit 2 LDLR, TF
recycling endosome 1 TF
vesicle 2 CETP, TF
extracellular matrix 1 APOE
peroxisomal membrane 1 HMGCR
collagen-containing extracellular matrix 2 APOA1, APOE
secretory granule 2 KLK8, POMC
Late endosome 2 LDLR, TF
receptor complex 1 LDLR
ciliary basal body 1 ALB
centriole 1 ALB
Secreted, extracellular space 1 APOE
spindle pole 1 ALB
blood microparticle 4 ALB, APOA1, APOE, TF
Endomembrane system 1 LDLR
endosome lumen 2 APOB, INS
sorting endosome 1 LDLR
Lipid droplet 2 APOB, LIPE
Membrane, caveola 1 LIPE
Melanosome 1 APOE
Peroxisome membrane 1 HMGCR
basal plasma membrane 1 TF
secretory granule lumen 4 APOA1, INS, POMC, TF
HFE-transferrin receptor complex 1 TF
Golgi lumen 2 DEFB4B, INS
endoplasmic reticulum lumen 7 ALB, APOA1, APOB, APOE, INS, LIPC, TF
platelet alpha granule lumen 1 ALB
endocytic vesicle 2 APOA1, TF
transport vesicle 1 INS
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
endoplasmic reticulum exit site 1 APOB
clathrin-coated endocytic vesicle membrane 4 APOB, APOE, LDLR, TF
synaptic cleft 1 APOE
endolysosome membrane 1 LDLR
serine protease inhibitor complex 1 KLK8
somatodendritic compartment 1 LDLR
vesicle coat 1 TF
discoidal high-density lipoprotein particle 1 APOE
spherical high-density lipoprotein particle 1 APOA1
endocytic vesicle lumen 3 APOA1, APOB, APOE
PCSK9-LDLR complex 1 LDLR
chylomicron remnant 2 APOB, APOE
intermediate-density lipoprotein particle 2 APOB, APOE
lipoprotein particle 1 APOE
multivesicular body, internal vesicle 1 APOE
mature chylomicron 1 APOB
catalytic complex 1 LPL
ciliary transition fiber 1 ALB
dense body 1 TF
interleukin-28 receptor complex 1 IFNLR1


文献列表

  • Shanshan Zhong, Luxiao Li, Xia Shen, Qiujing Li, Wenxin Xu, Xiaoping Wang, Yongzhen Tao, Huiyong Yin. An update on lipid oxidation and inflammation in cardiovascular diseases. Free radical biology & medicine. 2019 11; 144(?):266-278. doi: 10.1016/j.freeradbiomed.2019.03.036. [PMID: 30946962]
  • Dorottya Nagy-Szakal, Dinesh K Barupal, Bohyun Lee, Xiaoyu Che, Brent L Williams, Ellie J R Kahn, Joy E Ukaigwe, Lucinda Bateman, Nancy G Klimas, Anthony L Komaroff, Susan Levine, Jose G Montoya, Daniel L Peterson, Bruce Levin, Mady Hornig, Oliver Fiehn, W Ian Lipkin. Insights into myalgic encephalomyelitis/chronic fatigue syndrome phenotypes through comprehensive metabolomics. Scientific reports. 2018 07; 8(1):10056. doi: 10.1038/s41598-018-28477-9. [PMID: 29968805]
  • Jan Peters, Gerald I Byrne. Chlamydia trachomatis growth depends on eukaryotic cholesterol esterification and is affected by Acyl-CoA:cholesterol acyltransferase inhibition. Pathogens and disease. 2015 Aug; 73(6):ftv028. doi: 10.1093/femspd/ftv028. [PMID: 25883118]
  • Yanbo Yang, Takashi Kuwano, William R Lagor, Carolyn J Albert, Siobhan Brenton, Daniel J Rader, David A Ford, Robert J Brown. Lipidomic analyses of female mice lacking hepatic lipase and endothelial lipase indicate selective modulation of plasma lipid species. Lipids. 2014 Jun; 49(6):505-15. doi: 10.1007/s11745-014-3907-6. [PMID: 24777581]
  • Jan Peters, Vijaya Onguri, Satoru K Nishimoto, Tony N Marion, Gerald I Byrne. The Chlamydia trachomatis CT149 protein exhibits esterase activity in vitro and catalyzes cholesteryl ester hydrolysis when expressed in HeLa cells. Microbes and infection. 2012 Nov; 14(13):1196-204. doi: 10.1016/j.micinf.2012.07.020. [PMID: 22940277]
  • Armando Tellez, David S Schuster, Carlos Alviar, Gabriel López-Berenstein, Angela Sanguino, Christie Ballantyne, Xiao-Yuan Dai Perrard, Daryl G Schulz, Serge Rousselle, Greg L Kaluza, Juan F Granada. Intramural coronary lipid injection induces atheromatous lesions expressing proinflammatory chemokines: implications for the development of a porcine model of atherosclerosis. Cardiovascular revascularization medicine : including molecular interventions. 2011 Sep; 12(5):304-11. doi: 10.1016/j.carrev.2011.03.007. [PMID: 21616727]
  • Taichi Ohshiro, Daisuke Matsuda, Kent Sakai, Chiara Degirolamo, Hiroaki Yagyu, Lawrence L Rudel, Satoshi Omura, Shun Ishibashi, Hiroshi Tomoda. Pyripyropene A, an acyl-coenzyme A:cholesterol acyltransferase 2-selective inhibitor, attenuates hypercholesterolemia and atherosclerosis in murine models of hyperlipidemia. Arteriosclerosis, thrombosis, and vascular biology. 2011 May; 31(5):1108-15. doi: 10.1161/atvbaha.111.223552. [PMID: 21393580]
  • Cristina P Almeida, Carolina G Vital, Thais C Contente, Durvanei A Maria, Raul C Maranhão. Modification of composition of a nanoemulsion with different cholesteryl ester molecular species: effects on stability, peroxidation, and cell uptake. International journal of nanomedicine. 2010 Sep; 5(?):679-86. doi: 10.2147/ijn.s12293. [PMID: 20957219]
  • Ana M Ferreira, Mariana I Ferrari, Andrés Trostchansky, Carlos Batthyany, José M Souza, María N Alvarez, Gloria V López, Paul R S Baker, Francisco J Schopfer, Valerie O'Donnell, Bruce A Freeman, Homero Rubbo. Macrophage activation induces formation of the anti-inflammatory lipid cholesteryl-nitrolinoleate. The Biochemical journal. 2009 Jan; 417(1):223-34. doi: 10.1042/bj20080701. [PMID: 18671672]
  • Thai Q Do, Safiehkhatoon Moshkani, Patricia Castillo, Suda Anunta, Adelina Pogosyan, Annie Cheung, Beth Marbois, Kym F Faull, William Ernst, Su Ming Chiang, Gary Fujii, Catherine F Clarke, Krishna Foster, Edith Porter. Lipids including cholesteryl linoleate and cholesteryl arachidonate contribute to the inherent antibacterial activity of human nasal fluid. Journal of immunology (Baltimore, Md. : 1950). 2008 Sep; 181(6):4177-87. doi: 10.4049/jimmunol.181.6.4177. [PMID: 18768875]
  • Shigeki Sugii, Song Lin, Nobutaka Ohgami, Masato Ohashi, Catherine C Y Chang, Ta-Yuan Chang. Roles of endogenously synthesized sterols in the endocytic pathway. The Journal of biological chemistry. 2006 Aug; 281(32):23191-206. doi: 10.1074/jbc.m603215200. [PMID: 16737966]
  • Rataya Luechapudiporn, Noppawan Phumala Morales, Suthat Fucharoen, Udom Chantharaksri. The reduction of cholesteryl linoleate in lipoproteins: an index of clinical severity in beta-thalassemia/Hb E. Clinical chemistry and laboratory medicine. 2006; 44(5):574-81. doi: 10.1515/cclm.2006.093. [PMID: 16681427]
  • Juan F Granada, Pedro R Moreno, Allen P Burke, Daryl G Schulz, Albert E Raizner, Greg L Kaluza. Endovascular needle injection of cholesteryl linoleate into the arterial wall produces complex vascular lesions identifiable by intravascular ultrasound: early development in a porcine model of vulnerable plaque. Coronary artery disease. 2005 Jun; 16(4):217-24. doi: 10.1097/00019501-200506000-00002. [PMID: 15915073]
  • Ginger L Milne, Jennifer R Seal, Christine M Havrilla, Maikel Wijtmans, Ned A Porter. Identification and analysis of products formed from phospholipids in the free radical oxidation of human low density lipoproteins. Journal of lipid research. 2005 Feb; 46(2):307-19. doi: 10.1194/jlr.m400311-jlr200. [PMID: 15547297]
  • Norbert Leitinger. Cholesteryl ester oxidation products in atherosclerosis. Molecular aspects of medicine. 2003 Aug; 24(4-5):239-50. doi: 10.1016/s0098-2997(03)00019-0. [PMID: 12893002]
  • Ryo Yamauchi, Toshifumi Kamatani, Makoto Shimoyamada, Koji Kato. Preparation of the addition products of alpha-tocopherol with cholesteryl linoleate-peroxyl radicals. Bioscience, biotechnology, and biochemistry. 2002 Mar; 66(3):670-3. doi: 10.1271/bbb.66.670. [PMID: 12005069]
  • E E Millard, K Srivastava, L M Traub, J E Schaffer, D S Ory. Niemann-pick type C1 (NPC1) overexpression alters cellular cholesterol homeostasis. The Journal of biological chemistry. 2000 Dec; 275(49):38445-51. doi: 10.1074/jbc.m003180200. [PMID: 10964915]
  • S M Culbertson, N A Porter. Design of unsymmetrical azo initiators to increase radical generation efficiency in low-density lipoproteins. Free radical research. 2000 Dec; 33(6):705-18. doi: 10.1080/10715760000301231. [PMID: 11237093]
  • Y Yamamoto. Fate of lipid hydroperoxides in blood plasma. Free radical research. 2000 Dec; 33(6):795-800. doi: 10.1080/10715760000301311. [PMID: 11237101]
  • R Mashima, K Onodera, Y Yamamoto. Regioisomeric distribution of cholesteryl linoleate hydroperoxides and hydroxides in plasma from healthy humans provides evidence for free radical-mediated lipid peroxidation in vivo. Journal of lipid research. 2000 Jan; 41(1):109-15. doi: . [PMID: 10627508]
  • M Bagnati, C Perugini, C Cau, R Bordone, E Albano, G Bellomo. When and why a water-soluble antioxidant becomes pro-oxidant during copper-induced low-density lipoprotein oxidation: a study using uric acid. The Biochemical journal. 1999 May; 340 ( Pt 1)(?):143-52. doi: 10.1042/bj3400143. [PMID: 10229669]
  • L Kritharides, J Upston, W Jessup, R T Dean. Accumulation and metabolism of low density lipoprotein-derived cholesteryl linoleate hydroperoxide and hydroxide by macrophages. Journal of lipid research. 1998 Dec; 39(12):2394-405. doi: ". [PMID: 9831627]
  • J Belkner, H Stender, H Kühn. The rabbit 15-lipoxygenase preferentially oxygenates LDL cholesterol esters, and this reaction does not require vitamin E. The Journal of biological chemistry. 1998 Sep; 273(36):23225-32. doi: 10.1074/jbc.273.36.23225. [PMID: 9722553]
  • P Weinmann, M Jouan, Q D Nguyen, B Lacroix, C Groiselle, J P Bonte, G Luc. Quantitative analysis of cholesterol and cholesteryl esters in human atherosclerotic plaques using near-infrared Raman spectroscopy. Atherosclerosis. 1998 Sep; 140(1):81-8. doi: 10.1016/s0021-9150(98)00119-1. [PMID: 9733218]
  • R D Shamburek, P G Pentchev, L A Zech, J Blanchette-Mackie, E D Carstea, J M VandenBroek, P S Cooper, E B Neufeld, R D Phair, H B Brewer, R O Brady, C C Schwartz. Intracellular trafficking of the free cholesterol derived from LDL cholesteryl ester is defective in vivo in Niemann-Pick C disease: insights on normal metabolism of HDL and LDL gained from the NP-C mutation. Journal of lipid research. 1997 Dec; 38(12):2422-35. doi: 10.1016/s0022-2275(20)30027-4. [PMID: 9458266]
  • C Suarna, R T Dean, P T Southwell-Keeley, D E Moore, R Stocker. Separation and characterization of cholesteryl oxo- and hydroxy-linoleate isolated from human atherosclerotic plaque. Free radical research. 1997 Oct; 27(4):397-408. doi: 10.3109/10715769709065779. [PMID: 9416468]
  • J M Boer, C Ehnholm, H J Menzel, L M Havekes, M Rosseneu, D S O'Reilly, L Tiret. Interactions between lifestyle-related factors and the ApoE polymorphism on plasma lipids and apolipoproteins. The EARS Study. European Atherosclerosis Research Study. Arteriosclerosis, thrombosis, and vascular biology. 1997 Sep; 17(9):1675-81. doi: 10.1161/01.atv.17.9.1675. [PMID: 9327762]
  • Y Lange, J Ye, J Chin. The fate of cholesterol exiting lysosomes. The Journal of biological chemistry. 1997 Jul; 272(27):17018-22. doi: 10.1074/jbc.272.27.17018. [PMID: 9202016]
  • G Hoppe, A Ravandi, D Herrera, A Kuksis, H F Hoff. Oxidation products of cholesteryl linoleate are resistant to hydrolysis in macrophages, form complexes with proteins, and are present in human atherosclerotic lesions. Journal of lipid research. 1997 Jul; 38(7):1347-60. doi: . [PMID: 9254061]
  • M Kawano, M Shinomiya, T Kanzaki, N Morisaki, K Shirai, Y Saito, S Yoshida. Slow beta-migrating lipoprotein: an atherogenic subclass of low density lipoproteins. Clinical biochemistry. 1996 Jun; 29(3):241-8. doi: 10.1016/0009-9120(96)00009-c. [PMID: 8740510]
  • J A Kenar, C M Havrilla, N A Porter, J R Guyton, S A Brown, K F Klemp, E Selinger. Identification and quantification of regioisomeric cholesteryl linoleate hydroperoxides in oxidized human low density lipoprotein and high density lipoprotein. Chemical research in toxicology. 1996 Jun; 9(4):737-44. doi: 10.1021/tx9600098. [PMID: 8831818]
  • J Christison, A Karjalainen, J Brauman, F Bygrave, R Stocker. Rapid reduction and removal of HDL- but not LDL-associated cholesteryl ester hydroperoxides by rat liver perfused in situ. The Biochemical journal. 1996 Mar; 314 ( Pt 3)(?):739-42. doi: 10.1042/bj3140739. [PMID: 8615764]
  • T Kanazawa, T Osanai, X Z Yin, H Z Yi, K Onodera, H Metoki. Peroxidized low-density lipoprotein with four kinds of hydroperoxidized cholesteryl linoleate estimated in plasma of young heavy smokers. Pathobiology : journal of immunopathology, molecular and cellular biology. 1996; 64(3):115-22. doi: 10.1159/000164024. [PMID: 8910919]
  • T Kanazawa, T Osanai, T Uemura, K Onodera, H Metoki. Chemical characterization of peroxidized low-density lipoprotein in plasma and aortic atheroma. Pathobiology : journal of immunopathology, molecular and cellular biology. 1996; 64(1):18-26. doi: 10.1159/000164001. [PMID: 8856791]
  • D L Sparks, W S Davidson, S Lund-Katz, M C Phillips. Effects of the neutral lipid content of high density lipoprotein on apolipoprotein A-I structure and particle stability. The Journal of biological chemistry. 1995 Nov; 270(45):26910-7. doi: 10.1074/jbc.270.45.26910. [PMID: 7592936]
  • J K Christison, K A Rye, R Stocker. Exchange of oxidized cholesteryl linoleate between LDL and HDL mediated by cholesteryl ester transfer protein. Journal of lipid research. 1995 Sep; 36(9):2017-26. doi: . [PMID: 8558089]
  • W Guo, J A Hamilton. Phase behavior and crystalline structures of cholesteryl ester mixtures: a C-13 MASNMR study. Biophysical journal. 1995 Jun; 68(6):2376-86. doi: 10.1016/s0006-3495(95)80420-0. [PMID: 7647242]
  • L Kritharides, W Jessup, R T Dean. EDTA differentially and incompletely inhibits components of prolonged cell-mediated oxidation of low-density lipoprotein. Free radical research. 1995 May; 22(5):399-417. doi: 10.3109/10715769509147549. [PMID: 7633569]
  • W Sattler, M Maiorino, R Stocker. Reduction of HDL- and LDL-associated cholesterylester and phospholipid hydroperoxides by phospholipid hydroperoxide glutathione peroxidase and Ebselen (PZ 51). Archives of biochemistry and biophysics. 1994 Mar; 309(2):214-21. doi: 10.1006/abbi.1994.1105. [PMID: 8135530]
  • T Kanazawa, T Uemura, T Osanai, Y Fukushi, T Imura, Y Oike, K Onodera, K Akasaka, K Okubo, S Takahashi. Plasma peroxidized low-density lipoprotein with hydroperoxidized cholesteryl linoleates estimated in patients with familial hypercholesterolemia. Pathobiology : journal of immunopathology, molecular and cellular biology. 1994; 62(5-6):269-82. doi: 10.1159/000163920. [PMID: 7598796]
  • Y D Fragoso, E R Skinner. The role of subfractions of high density lipoprotein in the in vivo transport of cholesterol from cholesterol-loaded hepatic and peripheral endothelial cells in the New Zealand white rabbit. Comparative biochemistry and physiology. B, Comparative biochemistry. 1993 Jul; 105(3-4):699-706. doi: 10.1016/0305-0491(93)90108-h. [PMID: 8365119]
  • J V Hunt, M A Bottoms, M J Mitchinson. Oxidative alterations in the experimental glycation model of diabetes mellitus are due to protein-glucose adduct oxidation. Some fundamental differences in proposed mechanisms of glucose oxidation and oxidant production. The Biochemical journal. 1993 Apr; 291 ( Pt 2)(?):529-35. doi: 10.1042/bj2910529. [PMID: 8484733]
  • J V Hunt, K L Carpenter, M A Bottoms, N P Carter, C E Marchant, M J Mitchinson. Flow cytometric measurement of ceroid accumulation in macrophages. Atherosclerosis. 1993 Jan; 98(2):229-39. doi: 10.1016/0021-9150(93)90132-e. [PMID: 8457262]
  • J V Hunt, M A Bottoms, M J Mitchinson. Ascorbic acid oxidation: a potential cause of the elevated severity of atherosclerosis in diabetes mellitus?. FEBS letters. 1992 Oct; 311(2):161-4. doi: 10.1016/0014-5793(92)81389-4. [PMID: 1397304]
  • V C Reid, C E Brabbs, M J Mitchinson. Cellular damage in mouse peritoneal macrophages exposed to cholesteryl linoleate. Atherosclerosis. 1992 Feb; 92(2-3):251-60. doi: 10.1016/0021-9150(92)90285-o. [PMID: 1632853]
  • K L Carpenter, C E Brabbs, M J Mitchinson. Oxygen radicals and atherosclerosis. Klinische Wochenschrift. 1991 Dec; 69(21-23):1039-45. doi: 10.1007/bf01645155. [PMID: 1798277]
  • C E Thomas, R L Jackson. Lipid hydroperoxide involvement in copper-dependent and independent oxidation of low density lipoproteins. The Journal of pharmacology and experimental therapeutics. 1991 Mar; 256(3):1182-8. doi: ". [PMID: 2005580]
  • T Mazzone, L Pustelnikas. Growth-related modulation of human skin fibroblast cholesterol distribution and metabolism. Biochimica et biophysica acta. 1990 Nov; 1047(2):180-6. doi: 10.1016/0005-2760(90)90045-y. [PMID: 2248975]
  • K L Carpenter, J A Ballantine, B Fussell, J H Enright, M J Mitchinson. Oxidation of cholesteryl linoleate by human monocyte-macrophages in vitro. Atherosclerosis. 1990 Aug; 83(2-3):217-29. doi: 10.1016/0021-9150(90)90167-h. [PMID: 2122906]
  • K B Pomerantz, D P Hajjar. High-density-lipoprotein-induced cholesterol efflux from arterial smooth muscle cell derived foam cells: functional relationship of the cholesteryl ester cycle and eicosanoid biosynthesis. Biochemistry. 1990 Feb; 29(7):1892-9. doi: 10.1021/bi00459a033. [PMID: 2331470]
  • D L Brasaemle, A D Attie. Rapid intracellular transport of LDL-derived cholesterol to the plasma membrane in cultured fibroblasts. Journal of lipid research. 1990 Jan; 31(1):103-12. doi: . [PMID: 2313195]
  • Y Yamamoto, E Niki. Presence of cholesteryl ester hydroperoxide in human blood plasma. Biochemical and biophysical research communications. 1989 Dec; 165(3):988-93. doi: 10.1016/0006-291x(89)92700-9. [PMID: 2610703]
  • S R Green, W F Beltz, D I Goldberg, R C Pittman. Cholesteryl oleyl and linoleyl ethers do not trace their ester counterparts in animals with plasma cholesteryl ester transfer activity. Journal of lipid research. 1989 Sep; 30(9):1405-10. doi: NULL. [PMID: 2600543]
  • R Y Ball, K L Carpenter, M J Mitchinson. Ceroid accumulation by murine peritoneal macrophages exposed to artificial lipoproteins: ultrastructural observations. British journal of experimental pathology. 1988 Feb; 69(1):43-56. doi: . [PMID: 3348959]
  • Y Saito, Y Shiki, K Shirai, S Yoshida. Effect of a new synthetic 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor on cholesterol synthesis and low density lipoprotein uptake by primary cultures of rat hepatocytes. Arzneimittel-Forschung. 1988 Feb; 38(2):251-3. doi: . [PMID: 3130840]
  • R Y Ball, K L Carpenter, J H Enright, S L Hartley, M J Mitchinson. Ceroid accumulation by murine peritoneal macrophages exposed to artificial lipoproteins. British journal of experimental pathology. 1987 Jun; 68(3):427-38. doi: NULL. [PMID: 3620335]
  • L G Paavola, J F Strauss, C O Boyd, J E Nestler. Uptake of gold- and [3H]cholesteryl linoleate-labeled human low density lipoprotein by cultured rat granulosa cells: cellular mechanisms involved in lipoprotein metabolism and their importance to steroidogenesis. The Journal of cell biology. 1985 Apr; 100(4):1235-47. doi: 10.1083/jcb.100.4.1235. [PMID: 3920223]
  • N P Odushko, N F Muliar. [Serum cholesterol ester level in patients with ischemic heart disease and liver disease]. Kardiologiia. 1984 Oct; 24(10):90-3. doi: NULL. [PMID: 6521191]
  • T A Santa Coloma, H M Garraffo, O P Pignataro, E H Charreau, E G Gros. Biosynthesis of bufadienolides in toads. V. The origin of the cholesterol used by toad parotid glands for biosynthesis of bufadienolides. Steroids. 1984 Jul; 44(1):11-22. doi: 10.1016/s0039-128x(84)80012-4. [PMID: 6443165]
  • T Rabe, H Kalbfleisch, A M Bierwirth, B Runnebaum. Human low density lipoproteins (LDL) in combination with cholesterol or cholesteryl linoleate as precursors for progesterone synthesis of human placenta in organ culture. Biological research in pregnancy and perinatology. 1984; 5(1):6-10. doi: . [PMID: 6704464]
  • B M Craven, P Sawzik. Conformation and packing of unsaturated chains in cholesteryl linolelaidate at 123 K. Journal of lipid research. 1983 Jun; 24(6):784-9. doi: 10.1016/s0022-2275(20)37952-9. [PMID: 6886566]
  • H Schriewer, H U Jabs, J Schultze, G Assmann. Preparation of high-density lipoproteins labelled exclusively at the cholesteryl ester moiety. Clinica chimica acta; international journal of clinical chemistry. 1982 Aug; 123(1-2):139-44. doi: 10.1016/0009-8981(82)90122-x. [PMID: 7116635]
  • M D Hyman, W Insull, R H Palmer, J O'Brien, L Gordon, B Levine. Assessing methods for measuring compliance with a fat-controlled diet. American journal of public health. 1982 Feb; 72(2):152-60. doi: 10.2105/ajph.72.2.152. [PMID: 7055316]
  • J L Goldstein, H F Hoff, Y K Ho, S K Basu, M S Brown. Stimulation of cholesteryl ester synthesis in macrophages by extracts of atherosclerotic human aortas and complexes of albumin/cholesteryl esters. Arteriosclerosis (Dallas, Tex.). 1981 May; 1(3):210-26. doi: 10.1161/01.atv.1.3.210. [PMID: 7295194]
  • Y Stein, G Halperin, O Stein. The fate of cholesteryl linoleyl ether and cholesteryl linoleate in the intact rat after injection of biologically labeled human low density lipoprotein. Biochimica et biophysica acta. 1981 Feb; 663(2):569-74. doi: 10.1016/0005-2760(81)90184-3. [PMID: 7213787]