2,4-DB (BioDeep_00000009885)

 

Secondary id: BioDeep_00000858492


代谢物信息卡片


4-(2,4-Dichlorophenoxy)butanoic acid

化学式: C10H10Cl2O3 (248.0007)
中文名称: 2,4-二氯苯氧丁酸, 4-(2,4-二氯苯氧基)丁酸
谱图信息: 最多检出来源 Homo sapiens(not specific) 50%

分子结构信息

SMILES: C(CC(=O)O)COc1ccc(cc1Cl)Cl
InChI: InChI=1S/C10H10Cl2O3/c11-7-3-4-9(8(12)6-7)15-5-1-2-10(13)14/h3-4,6H,1-2,5H2,(H,13,14)



数据库引用编号

12 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

0 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 9 ABCD1, ADH4, FTO, HPRT1, PEX5, PEX7, PPM1G, TJP1, TLR4
Peripheral membrane protein 2 HSD17B6, TJP1
Endosome membrane 1 TLR4
Endoplasmic reticulum membrane 1 ABCD1
Mitochondrion membrane 1 ABCD1
Nucleus 3 FTO, PPM1G, TJP1
cytosol 10 ABCD1, ADH4, COMT, FTO, GPT, HPRT1, LIPE, PEX5, PEX7, TJP1
dendrite 1 COMT
mitochondrial membrane 1 ABCD1
nucleoplasm 3 ADH4, FTO, PPM1G
Cell membrane 5 COMT, LIPE, TJP1, TLR4, TNF
Lipid-anchor 1 PPM1G
Cytoplasmic side 1 TJP1
Early endosome membrane 1 HSD17B6
Multi-pass membrane protein 1 ABCD1
Synapse 1 COMT
cell junction 1 TJP1
cell surface 2 TLR4, TNF
Golgi apparatus 1 PEX5
Golgi membrane 1 INS
lysosomal membrane 1 ABCD1
neuronal cell body 1 TNF
Cytoplasm, cytosol 3 LIPE, PEX5, PEX7
plasma membrane 5 COMT, FTO, TJP1, TLR4, TNF
Membrane 6 ABCD1, COMT, LIPE, PEX5, PPM1G, TLR4
apical plasma membrane 1 TJP1
axon 1 COMT
basolateral plasma membrane 1 TJP1
caveola 1 LIPE
extracellular exosome 4 COMT, GPT, HPRT1, TTR
Lysosome membrane 1 ABCD1
Lumenal side 1 HSD17B6
endoplasmic reticulum 1 HSD17B6
extracellular space 6 CXCL8, IL10, INS, PNLIP, TNF, TTR
perinuclear region of cytoplasm 2 ABCD1, TLR4
Cell junction, tight junction 1 TJP1
adherens junction 1 TJP1
apicolateral plasma membrane 1 TJP1
bicellular tight junction 1 TJP1
gap junction 1 TJP1
intercalated disc 1 TJP1
intercellular canaliculus 1 TJP1
mitochondrion 2 PEX5, TJP1
protein-containing complex 2 PEX5, TJP1
intracellular membrane-bounded organelle 3 COMT, FTO, HSD17B6
Microsome membrane 1 HSD17B6
Single-pass type I membrane protein 1 TLR4
Secreted 5 CXCL8, IL10, INS, PNLIP, TTR
extracellular region 6 CXCL8, IL10, INS, PNLIP, TNF, TTR
Extracellular side 1 COMT
external side of plasma membrane 2 TLR4, TNF
Early endosome 1 TLR4
apical part of cell 1 TJP1
recycling endosome 1 TNF
Single-pass type II membrane protein 2 COMT, TNF
Membrane raft 1 TNF
Peroxisome 3 ABCD1, PEX5, PEX7
Peroxisome matrix 2 PEX5, PEX7
peroxisomal matrix 2 PEX5, PEX7
peroxisomal membrane 3 ABCD1, PEX5, PEX7
nuclear speck 1 FTO
Cell projection, ruffle 1 TLR4
ruffle 1 TLR4
receptor complex 1 TLR4
cell projection 1 TJP1
phagocytic cup 2 TLR4, TNF
Cell projection, podosome 1 TJP1
podosome 1 TJP1
endosome lumen 1 INS
Lipid droplet 1 LIPE
Membrane, caveola 1 LIPE
Nucleus speckle 1 FTO
Peroxisome membrane 1 ABCD1
lipopolysaccharide receptor complex 1 TLR4
secretory granule lumen 1 INS
Golgi lumen 1 INS
endoplasmic reticulum lumen 1 INS
transport vesicle 1 INS
tight junction 1 TJP1
azurophil granule lumen 1 TTR
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
apical junction complex 1 TJP1
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
[Isoform Soluble]: Cytoplasm 1 COMT
[Isoform Membrane-bound]: Cell membrane 1 COMT
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Mark J Henderson, Kathleen A Trychta, Shyh-Ming Yang, Susanne Bäck, Adam Yasgar, Emily S Wires, Carina Danchik, Xiaokang Yan, Hideaki Yano, Lei Shi, Kuo-Jen Wu, Amy Q Wang, Dingyin Tao, Gergely Zahoránszky-Kőhalmi, Xin Hu, Xin Xu, David Maloney, Alexey V Zakharov, Ganesha Rai, Fumihiko Urano, Mikko Airavaara, Oksana Gavrilova, Ajit Jadhav, Yun Wang, Anton Simeonov, Brandon K Harvey. A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome. Cell reports. 2021 04; 35(4):109040. doi: 10.1016/j.celrep.2021.109040. [PMID: 33910017]
  • Tobie D Lee, Olivia W Lee, Kyle R Brimacombe, Lu Chen, Rajarshi Guha, Sabrina Lusvarghi, Bethilehem G Tebase, Carleen Klumpp-Thomas, Robert W Robey, Suresh V Ambudkar, Min Shen, Michael M Gottesman, Matthew D Hall. A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein. Molecular pharmacology. 2019 11; 96(5):629-640. doi: 10.1124/mol.119.115964. [PMID: 31515284]
  • Wen-Cheng Liu, Tong-Tong Han, Hong-Mei Yuan, Zhen-Dong Yu, Lin-Yu Zhang, Bing-Lei Zhang, Shuang Zhai, Si-Qiu Zheng, Ying-Tang Lu. CATALASE2 functions for seedling postgerminative growth by scavenging H2 O2 and stimulating ACX2/3 activity in Arabidopsis. Plant, cell & environment. 2017 Nov; 40(11):2720-2728. doi: 10.1111/pce.13031. [PMID: 28722222]
  • Gaëlle Cassin-Ross, Jianping Hu. Systematic phenotypic screen of Arabidopsis peroxisomal mutants identifies proteins involved in β-oxidation. Plant physiology. 2014 Nov; 166(3):1546-59. doi: 10.1104/pp.114.250183. [PMID: 25253886]
  • Nicole Linka, Christian Esser. Transport proteins regulate the flux of metabolites and cofactors across the membrane of plant peroxisomes. Frontiers in plant science. 2012; 3(?):3. doi: 10.3389/fpls.2012.00003. [PMID: 22645564]
  • Kristin Bernhardt, Sabrina Wilkinson, Andreas P M Weber, Nicole Linka. A peroxisomal carrier delivers NAD⁺ and contributes to optimal fatty acid degradation during storage oil mobilization. The Plant journal : for cell and molecular biology. 2012 Jan; 69(1):1-13. doi: 10.1111/j.1365-313x.2011.04775.x. [PMID: 21895810]
  • Eun Yu Kim, Young Sam Seo, Woo Taek Kim. AtDSEL, an Arabidopsis cytosolic DAD1-like acylhydrolase, is involved in negative regulation of storage oil mobilization during seedling establishment. Journal of plant physiology. 2011 Sep; 168(14):1705-9. doi: 10.1016/j.jplph.2011.03.004. [PMID: 21477884]
  • Bibi Rafeiza Khan, Bethany K Zolman. pex5 Mutants that differentially disrupt PTS1 and PTS2 peroxisomal matrix protein import in Arabidopsis. Plant physiology. 2010 Dec; 154(4):1602-15. doi: 10.1104/pp.110.162479. [PMID: 20974890]
  • M C Gazitúa, A W Slater, F Melo, B González. Novel α-ketoglutarate dioxygenase tfdA-related genes are found in soil DNA after exposure to phenoxyalkanoic herbicides. Environmental microbiology. 2010 Sep; 12(9):2411-25. doi: 10.1111/j.1462-2920.2010.02215.x. [PMID: 20406281]
  • Lucia C Strader, Angela Hendrickson Culler, Jerry D Cohen, Bonnie Bartel. Conversion of endogenous indole-3-butyric acid to indole-3-acetic acid drives cell expansion in Arabidopsis seedlings. Plant physiology. 2010 Aug; 153(4):1577-86. doi: 10.1104/pp.110.157461. [PMID: 20562230]
  • Itsara Pracharoenwattana, Wenxu Zhou, Steven M Smith. Fatty acid beta-oxidation in germinating Arabidopsis seeds is supported by peroxisomal hydroxypyruvate reductase when malate dehydrogenase is absent. Plant molecular biology. 2010 Jan; 72(1-2):101-9. doi: 10.1007/s11103-009-9554-2. [PMID: 19812894]
  • Robin C Boro, K Vikas Singh, C Raman Suri. Characterization of hapten-protein conjugates: antibody generation and immunoassay development for chlorophenoxyacetic acid pesticides. Journal of AOAC International. 2009 Nov; 92(6):1773-9. doi: . [PMID: 20166596]
  • Andrew A G Wiszniewski, Wenxu Zhou, Steven M Smith, John D Bussell. Identification of two Arabidopsis genes encoding a peroxisomal oxidoreductase-like protein and an acyl-CoA synthetase-like protein that are required for responses to pro-auxins. Plant molecular biology. 2009 Mar; 69(5):503-15. doi: 10.1007/s11103-008-9431-4. [PMID: 19043666]
  • Holger Schuhmann, Pitter F Huesgen, Christine Gietl, Iwona Adamska. The DEG15 serine protease cleaves peroxisomal targeting signal 2-containing proteins in Arabidopsis. Plant physiology. 2008 Dec; 148(4):1847-56. doi: 10.1104/pp.108.125377. [PMID: 18952862]
  • Grazia Laura Gambino, Pietro Pagano, Monica Scordino, Leonardo Sabatino, Emanuele Scollo, Pasqualino Traulo, Giacomo Gagliano. Determination of plant hormones in fertilizers by high-performance liquid chromatography with photodiode array detection: method development and single-laboratory validation. Journal of AOAC International. 2008 Nov; 91(6):1245-56. doi: . [PMID: 19202783]
  • Kazumasa Nito, Akane Kamigaki, Maki Kondo, Makoto Hayashi, Mikio Nishimura. Functional classification of Arabidopsis peroxisome biogenesis factors proposed from analyses of knockdown mutants. Plant & cell physiology. 2007 Jun; 48(6):763-74. doi: 10.1093/pcp/pcm053. [PMID: 17478547]
  • Itsara Pracharoenwattana, Johanna E Cornah, Steven M Smith. Arabidopsis peroxisomal malate dehydrogenase functions in beta-oxidation but not in the glyoxylate cycle. The Plant journal : for cell and molecular biology. 2007 May; 50(3):381-90. doi: 10.1111/j.1365-313x.2007.03055.x. [PMID: 17376163]
  • Elizabeth L Rylott, Peter J Eastmond, Alison D Gilday, Steve P Slocombe, Tony R Larson, Alison Baker, Ian A Graham. The Arabidopsis thaliana multifunctional protein gene (MFP2) of peroxisomal beta-oxidation is essential for seedling establishment. The Plant journal : for cell and molecular biology. 2006 Mar; 45(6):930-41. doi: 10.1111/j.1365-313x.2005.02650.x. [PMID: 16507084]
  • Itsara Pracharoenwattana, Johanna E Cornah, Steven M Smith. Arabidopsis peroxisomal citrate synthase is required for fatty acid respiration and seed germination. The Plant cell. 2005 Jul; 17(7):2037-48. doi: 10.1105/tpc.105.031856. [PMID: 15923350]
  • Eva Simánová, Tuansheng Shi, Jörg Schönherr, Lukas Schreiber. Sorption in reconstituted waxes of homologous series of alcohol ethoxylates and n-alkyl esters and their effects on the mobility of 2,4-dichlorophenoxybutyric acid. Pest management science. 2005 Apr; 61(4):383-9. doi: 10.1002/ps.979. [PMID: 15751010]
  • Tuansheng Shi, Eva Simanova, Jörg Schönherr, Lukas Schreiber. Effects of accelerators on mobility of 14C-2,4-dichlorophenoxy butyric acid in plant cuticles depends on type and concentration of accelerator. Journal of agricultural and food chemistry. 2005 Mar; 53(6):2207-12. doi: 10.1021/jf048364o. [PMID: 15769158]
  • S Vickery, P F Dodds. Incorporation of xenobiotic carboxylic acids into lipids by cultured 3T3-L1 adipocytes. Xenobiotica; the fate of foreign compounds in biological systems. 2004 Nov; 34(11-12):1025-42. doi: 10.1080/02772240400015248. [PMID: 15801546]
  • Peter R Lange, Peter J Eastmond, Kathryn Madagan, Ian A Graham. An Arabidopsis mutant disrupted in valine catabolism is also compromised in peroxisomal fatty acid beta-oxidation. FEBS letters. 2004 Jul; 571(1-3):147-53. doi: 10.1016/j.febslet.2004.06.071. [PMID: 15280033]
  • J Santrůcek, Eva Simánová, Jana Karbulková, Marie Simková, Lukas Schreiber. A new technique for measurement of water permeability of stomatous cuticular membranes isolated from Hedera helix leaves. Journal of experimental botany. 2004 Jun; 55(401):1411-22. doi: 10.1093/jxb/erh150. [PMID: 15155780]
  • Martin Fulda, Judy Schnurr, Amine Abbadi, Ernst Heinz, John Browse. Peroxisomal Acyl-CoA synthetase activity is essential for seedling development in Arabidopsis thaliana. The Plant cell. 2004 Feb; 16(2):394-405. doi: 10.1105/tpc.019646. [PMID: 14742880]
  • C W Smejkal, F A Seymour, S K Burton, H M Lappin-Scott. Characterisation of bacterial cultures enriched on the chlorophenoxyalkanoic acid herbicides 4-(2,4-dichlorophenoxy) butyric acid and 4-(4-chloro-2-methylphenoxy) butyric acid. Journal of industrial microbiology & biotechnology. 2003 Sep; 30(9):561-7. doi: 10.1007/s10295-003-0086-5. [PMID: 14513383]
  • Elizabeth L Rylott, Caroline A Rogers, Alison D Gilday, Teresa Edgell, Tony R Larson, Ian A Graham. Arabidopsis mutants in short- and medium-chain acyl-CoA oxidase activities accumulate acyl-CoAs and reveal that fatty acid beta-oxidation is essential for embryo development. The Journal of biological chemistry. 2003 Jun; 278(24):21370-7. doi: 10.1074/jbc.m300826200. [PMID: 12682048]
  • M C Gennaro, E Marengo, V Gianotti, S Angioi, G Copeta. Intercalibration of chromatographic methods for auxino phytodrugs in Solanaceae. Journal of chromatography. A. 2003 Apr; 993(1-2):111-9. doi: 10.1016/s0021-9673(03)00332-7. [PMID: 12735443]
  • Salam Lawand, Albert-Jean Dorne, Deborah Long, George Coupland, Régis Mache, Pierre Carol. Arabidopsis A BOUT DE SOUFFLE, which is homologous with mammalian carnitine acyl carrier, is required for postembryonic growth in the light. The Plant cell. 2002 Sep; 14(9):2161-73. doi: 10.1105/tpc.002485. [PMID: 12215513]
  • J Schönherr, L Schreiber, A Buchholz. Effects of temperature and concentration of the accelerators ethoxylated alcohols, diethyl suberate and tributyl phosphate on the mobility of [14C]2,4-dichlorophenoxy butyric acid in plant cuticles. Pest management science. 2001 Jan; 57(1):17-24. doi: 10.1002/1526-4998(200101)57:1<17::aid-ps266>3.0.co;2-8. [PMID: 11455627]
  • P R Lange, I Graham. Arabidopsis thaliana mutants disrupted in lipid mobilization. Biochemical Society transactions. 2000 Dec; 28(6):762-5. doi: . [PMID: 11171199]
  • J M Charles, N M Leeming. Chronic dietary toxicity study on 2,4-dichlorophenoxybutyric acid in the dog. Toxicological sciences : an official journal of the Society of Toxicology. 1998 Nov; 46(1):134-42. doi: 10.1006/toxs.1998.2501. [PMID: 9928676]
  • M Hayashi, K Toriyama, M Kondo, M Nishimura. 2,4-Dichlorophenoxybutyric acid-resistant mutants of Arabidopsis have defects in glyoxysomal fatty acid beta-oxidation. The Plant cell. 1998 Feb; 10(2):183-95. doi: 10.1105/tpc.10.2.183. [PMID: 9490742]
  • R W Mason. Binding of some phenoxyalkanoic acids to bovine serum albumin in vitro. Pharmacology. 1975; 13(2):177-86. doi: 10.1159/000136898. [PMID: 1170578]