Gene Association: ADH4
UniProt Search:
ADH4 (PROTEIN_CODING)
Function Description: alcohol dehydrogenase 4 (class II), pi polypeptide
found 39 associated metabolites with current gene based on the text mining result from the pubmed database.
N-alpha-acetylornithine
N2-Acetylornithine, also known as N(alpha)-acetylornithine, belongs to the class of organic compounds known as N-acyl-L-alpha-amino acids. These are N-acylated alpha-amino acids which have the L-configuration of the alpha-carbon atom. N-Acetylornithine is a minor component of the deproteinized blood plasma of human blood. Human blood plasma contains a variable amount of acetylornithine, averaging 1.1 +/- 0.4 umol/L (range 0.8-0.2 umol/L). Urine contains a very small amount of acetylornithine, approximately 1 nmol/mg creatinine (1 umol/day) (PMID:508804). Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 160 KEIO_ID A032 N-Acetylornithine is an intermediate in the enzymatic biosynthesis of the amino acid L-arginine from L-glutamate.
Fomepizole
Fomepizole is used as an antidote in confirmed or suspected methanol or ethylene glycol poisoning. Fomepizole is a competitive inhibitor of alcohol dehydrogenase, the enzyme that catalyzes the initial steps in the metabolism of ethylene glycol and methanol to their toxic metabolites. V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AB - Antidotes D020011 - Protective Agents > D000931 - Antidotes D004791 - Enzyme Inhibitors C471 - Enzyme Inhibitor KEIO_ID M124
Antimycin A
D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D000890 - Anti-Infective Agents > D000935 - Antifungal Agents
Retinol(Vitamin A)
Vitamin A (retinol) is a yellow fat-soluble, antioxidant vitamin important in vision and bone growth. It belongs to the family of chemical compounds known as retinoids. Retinol is ingested in a precursor form; animal sources (milk and eggs) contain retinyl esters, whereas plants (carrots, spinach) contain pro-vitamin A carotenoids. Hydrolysis of retinyl esters results in retinol while pro-vitamin A carotenoids can be cleaved to produce retinal. Retinal, also known as retinaldehyde, can be reversibly reduced to produce retinol or it can be irreversibly oxidized to produce retinoic acid. Retinol and derivatives of retinol that play an essential role in metabolic functioning of the retina, the growth of and differentiation of epithelial tissue, the growth of bone, reproduction, and the immune response. Dietary vitamin A is derived from a variety of carotenoids found in plants. It is enriched in the liver, egg yolks, and the fat component of dairy products. Retinyl esters from animal-sourced foods (or synthesized for dietary supplements for humans and domesticated animals) are acted upon by retinyl ester hydrolases in the lumen of the small intestine to release free retinol. Retinol enters intestinal absorptive cells by passive diffusion. Absorption efficiency is in the range of 70 to 90\%. Humans are at risk for acute or chronic vitamin A toxicity because there are no mechanisms to suppress absorption or excrete the excess in urine.[5] Within the cell, retinol is there bound to retinol binding protein 2 (RBP2). It is then enzymatically re-esterified by the action of lecithin retinol acyltransferase and incorporated into chylomicrons that are secreted into the lymphatic system. Unlike retinol, β-carotene is taken up by enterocytes by the membrane transporter protein scavenger receptor B1 (SCARB1). The protein is upregulated in times of vitamin A deficiency. If vitamin A status is in the normal range, SCARB1 is downregulated, reducing absorption.[6] Also downregulated is the enzyme beta-carotene 15,15'-dioxygenase (formerly known as beta-carotene 15,15'-monooxygenase) coded for by the BCMO1 gene, responsible for symmetrically cleaving β-carotene into retinal.[8] Absorbed β-carotene is either incorporated as such into chylomicrons or first converted to retinal and then retinol, bound to RBP2. After a meal, roughly two-thirds of the chylomicrons are taken up by the liver with the remainder delivered to peripheral tissues. Peripheral tissues also can convert chylomicron β-carotene to retinol.[6][15] The capacity to store retinol in the liver means that well-nourished humans can go months on a vitamin A deficient diet without manifesting signs and symptoms of deficiency. Two liver cell types are responsible for storage and release: hepatocytes and hepatic stellate cells (HSCs). Hepatocytes take up the lipid-rich chylomicrons, bind retinol to retinol-binding protein 4 (RBP4), and transfer the retinol-RBP4 to HSCs for storage in lipid droplets as retinyl esters. Mobilization reverses the process: retinyl ester hydrolase releases free retinol which is transferred to hepatocytes, bound to RBP4, and put into blood circulation. Other than either after a meal or when consumption of large amounts exceeds liver storage capacity, more than 95\% of retinol in circulation is bound to RBP4.[15] Vitamin A is a fat-soluble vitamin, hence an essential nutrient. The term "vitamin A" encompasses a group of chemically related organic compounds that includes retinol, retinal (also known as retinaldehyde), retinoic acid, and several provitamin (precursor) carotenoids, most notably beta-carotene.[3][4][5][6] Vitamin A has multiple functions: essential in embryo development for growth, maintaining the immune system, and healthy vision, where it combines with the protein opsin to form rhodopsin – the light-absorbing molecule necessary for both low-light (scotopic vision) and color vision.[7] Vitamin A occurs as two principal forms in foods: A) retinol, found in animal-sourced foods, either as retinol or bound to a fatty acid to become a retinyl ester, and B) the carotenoids alpha-carotene, β-carotene, gamma-carotene, and the xanthophyll beta-cryptoxanthin (all of which contain β-ionone rings) that function as provitamin A in herbivore and omnivore animals which possess the enzymes that cleave and convert provitamin carotenoids to retinal and then to retinol.[8] Some carnivore species lack this enzyme. The other carotenoids have no vitamin activity.[6] Dietary retinol is absorbed from the digestive tract via passive diffusion. Unlike retinol, β-carotene is taken up by enterocytes by the membrane transporter protein scavenger receptor B1 (SCARB1), which is upregulated in times of vitamin A deficiency.[6] Storage of retinol is in lipid droplets in the liver. A high capacity for long-term storage of retinol means that well-nourished humans can go months on a vitamin A- and β-carotene-deficient diet, while maintaining blood levels in the normal range.[4] Only when the liver stores are nearly depleted will signs and symptoms of deficiency show.[4] Retinol is reversibly converted to retinal, then irreversibly to retinoic acid, which activates hundreds of genes.[9] Vitamin A deficiency is common in developing countries, especially in Sub-Saharan Africa and Southeast Asia. Deficiency can occur at any age but is most common in pre-school age children and pregnant women, the latter due to a need to transfer retinol to the fetus. Vitamin A deficiency is estimated to affect approximately one-third of children under the age of five around the world, resulting in hundreds of thousands of cases of blindness and deaths from childhood diseases because of immune system failure.[10] Reversible night blindness is an early indicator of low vitamin A status. Plasma retinol is used as a biomarker to confirm vitamin A deficiency. Breast milk retinol can indicate a deficiency in nursing mothers. Neither of these measures indicates the status of liver reserves.[6] The European Union and various countries have set recommendations for dietary intake, and upper limits for safe intake. Vitamin A toxicity also referred to as hypervitaminosis A, occurs when there is too much vitamin A accumulating in the body. Symptoms may include nervous system effects, liver abnormalities, fatigue, muscle weakness, bone and skin changes, and others. The adverse effects of both acute and chronic toxicity are reversed after consumption of high dose supplements is stopped.[6]
4-Oxoretinol
4-oxo-retinol, a metabolite of retinol synthesized in mouse embryonal carcinoma F9 cells,is active in inducing differentiation of these cells. It also functions as a ligand of retinoic acid receptors and a transcriptional activator of reporter. genes.[PMID: 9110564]. 4-Oxoretinol is a metabolite of retinol in the human promyelocytic leukemia cell line NB4 which induces cell growth arrest and granulocytic differentiation.[PMID: 9581846]. 4-oxo-retinol, a metabolite of retinol synthesized in mouse embryonal carcinoma F9 cells,is active in inducing differentiation of these cells. It also functions as a ligand of retinoic acid receptors and a transcriptional activator of reporter D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids
Benzyl alcohol
Benzyl alcohol is a colorless liquid with a sharp burning taste and slight odor. It is used as a local anesthetic and to reduce pain associated with Lidocaine injection. Also, it is used in the manufacture of other benzyl compounds, as a pharmaceutical aid, and in perfumery and flavoring. Benzyl Alcohol is an aromatic alcohol used in a wide variety of cosmetic formulations as a fragrance component, preservative, solvent, and viscosity-decreasing agent. Benzyl alcohol is metabolized to Benzoic Acid, which reacts with glycine and excreted as hippuric acid in the human body. Acceptable daily intakes were established by the World Health Organization at 5 mg/kg for Benzyl alcohol. No adverse effects of benzyl alcohol have been seen in chronic exposure animal studies using rats and mice. Effects of Benzyl Alcohol in chronic exposure animal studies are limited to reduced feed intake and reduced growth. Some differences have been noted in one reproductive toxicity study using mice, but these were limited to lower maternal body weights and decreased mean litter weights. Another study also noted that fetal weight was decreased compared to controls, but a third study showed no differences between control and benzyl alcohol-treated groups. Benzyl alcohol has been associated with an increased number of resorptions and malformations in hamsters, but there have been no reproductive or developmental toxicity findings in studies using mice and rats. Genotoxicity tests for benzyl alcohol are mostly negative, but there were some assays that were positive. Carcinogenicity studies, however, were negative. Clinical data indicates that benzyl alcohol can produce nonimmunologic contact urticaria and nonimmunologic immediate contact reactions, characterized by the appearance of wheals, erythema, and pruritis. 5\\\\% benzyl alcohol can elicit a reaction. Benzyl alcohol is not a sensitizer at 10\\\\%. Benzyl alcohol could be used safely at concentrations up to 5\\\\%, but that manufacturers should consider the nonimmunologic phenomena when using benzyl alcohol in cosmetic formulations designed for infants and children. Additionally, Benzyl alcohol is considered safe up to 10\\\\% for use in hair dyes. The limited body exposure, the duration of use, and the frequency of use are considered in concluding that the nonimmunologic reactions would not be a concern. Because of the wide variety of product types in which benzyl alcohol may be used, it is likely that inhalation may be a route of exposure. The available safety tests are not considered sufficient to support the safety of benzyl alcohol in formulations where inhalation is a route of exposure. Inhalation toxicity data are needed to complete the safety assessment of benzyl alcohol where inhalation can occur. (PMID:11766131). Constituent of jasmine and other ethereal oils, both free and as estersand is also present in cherry, orange juice, mandarin peel oil, guava fruit, feijoa fruit, pineapple, leek, cinnamon, cloves, mustard, fermented tea, basil and red sage. Flavouring ingredient P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03A - Ectoparasiticides, incl. scabicides D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Benzyl alcohol is an aromatic alcohol, a colorless liquid with a mild aromatic odor. Benzyl alcohol is an aromatic alcohol, a colorless liquid with a mild aromatic odor.
Propyl alcohol
Propyl alcohol, also known as 1-propanol, n-propanol, or simply propanol, belongs to the class of organic compounds known as primary alcohols. Primary alcohols are compounds in which a hydroxy group is bonded to a primary carbon, with the general structure RCOH (R=alkyl, aryl). Propyl alcohol is a colourless, volatile liquid that is fully miscible with water. It has a sweet odour and an alcoholic, fermented, fusel taste. Propyl alcohol exists in all living species, ranging from bacteria to plants to humans. Propanol can be produced through fermentation of sugars by bacteria and yeast and small amounts are produced by gut microflora. Propanol has been identified as a fecal biomarker of Clostridium difficile infection (PMID: 30986230). When ingested, 1-propanol is metabolized by alcohol dehydrogenase to propionic acid leading to metabolic acidosis and an elevated anion gap (PMID: 18375643). It can be found in small amounts in alcoholic beverages such as wine. Industrially, the major use of 1-propanol is as a solvent as well as an intermediate in forming other industrially important compounds. It is used as a carrier and extraction solvent for natural products, such as flavourings, vegetable oils, resins, waxes, and gums, and as a solvent for synthetic polymers, such as polyvinyl butyral, cellulose esters, lacquers, and PVC adhesives. Other solvent applications include the use of 1-propanol in the polymerization and spinning of acrylonitrile, in flexographic printing inks, and in the dyeing of wool. 1-Propanol is used for both its solvent and antiseptic properties in drugs and cosmetics, such as lotions, soaps, and nail polishes (IPCS INCHEM, EHC 102). Both 1-propanol and 2-propanol are often used in hand disinfectants as they have excellent bactericidal activity. 1-Propanol is used less in industry than 2-propanol as it is more expensive and it is a toxicant that has a similar taste to ethanol, so 2-propanol is used as its unpleasant smell discourages abuse. Propyl alcohol, also known as propanol or ethylcarbinol, is a member of the class of compounds known as primary alcohols. Primary alcohols are compounds comprising the primary alcohol functional group, with the general structure RCOH (R=alkyl, aryl). Thus, propyl alcohol is considered to be a fatty alcohol lipid molecule. Propyl alcohol is soluble (in water) and an extremely weak acidic compound (based on its pKa). Propyl alcohol can be found in a number of food items such as cashew nut, chinese mustard, greenthread tea, and chayote, which makes propyl alcohol a potential biomarker for the consumption of these food products. Propyl alcohol can be found primarily in blood, feces, and saliva, as well as in human fibroblasts tissue. Propyl alcohol exists in all eukaryotes, ranging from yeast to humans. In humans, propyl alcohol is involved in the sulfate/sulfite metabolism. Propyl alcohol is also involved in sulfite oxidase deficiency, which is a metabolic disorder. 1-Propanol, n-propanol, or propan-1-ol : CH3CH2CH2OH, the most common meaning 2-Propanol, Isopropyl alcohol, isopropanol, or propan-2-ol : (CH3)2CHOH . D - Dermatologicals > D08 - Antiseptics and disinfectants > D08A - Antiseptics and disinfectants C - Cardiovascular system > C10 - Lipid modifying agents > C10A - Lipid modifying agents, plain
Acetaldehyde
Acetaldehyde, also known as ethanal, belongs to the class of organic compounds known as short-chain aldehydes. These are an aldehyde with a chain length containing between 2 and 5 carbon atoms. Acetaldehyde exists in all living species, ranging from bacteria to humans. Within humans, acetaldehyde participates in a number of enzymatic reactions. In particular, acetaldehyde can be biosynthesized from ethanol which is mediated by the enzyme alcohol dehydrogenase 1B. Acetaldehyde can also be converted to acetic acid by the enzyme aldehyde dehydrogenase (mitochondrial) and aldehyde dehydrogenase X (mitochondrial). The main method of production is the oxidation of ethylene by the Wacker process, which involves oxidation of ethylene using a homogeneous palladium/copper system: 2 CH2CH2 + O2 → 2 CH3CHO. In the 1970s, the world capacity of the Wacker-Hoechst direct oxidation process exceeded 2 million tonnes annually. In humans, acetaldehyde is involved in disulfiram action pathway. Acetaldehyde is an aldehydic, ethereal, and fruity tasting compound. Outside of the human body, acetaldehyde is found, on average, in the highest concentration in a few different foods, such as sweet oranges, pineapples, and mandarin orange (clementine, tangerine) and in a lower concentration in . acetaldehyde has also been detected, but not quantified in several different foods, such as malabar plums, malus (crab apple), rose hips, natal plums, and medlars. This could make acetaldehyde a potential biomarker for the consumption of these foods. In condensation reactions, acetaldehyde is prochiral. Acetaldehyde is formally rated as a possible carcinogen (by IARC 2B) and is also a potentially toxic compound. Acetaldehyde has been found to be associated with several diseases such as alcoholism, ulcerative colitis, nonalcoholic fatty liver disease, and crohns disease; also acetaldehyde has been linked to the inborn metabolic disorders including aldehyde dehydrogenase deficiency (III) sulfate is used to reoxidize the mercury back to the mercury. Acetaldehyde was first observed by the Swedish pharmacist/chemist Carl Wilhelm Scheele (1774); it was then investigated by the French chemists Antoine François, comte de Fourcroy and Louis Nicolas Vauquelin (1800), and the German chemists Johann Wolfgang Döbereiner (1821, 1822, 1832) and Justus von Liebig (1835). At room temperature, acetaldehyde (CH3CHO) is more stable than vinyl alcohol (CH2CHOH) by 42.7 kJ/mol: Overall the keto-enol tautomerization occurs slowly but is catalyzed by acids. The level at which an average consumer could detect acetaldehyde is still considerably lower than any toxicity. Pathways of exposure include air, water, land, or groundwater, as well as drink and smoke. Acetaldehyde is also created by thermal degradation or ultraviolet photo-degradation of some thermoplastic polymers during or after manufacture. The water industry generally recognizes 20–40 ppb as the taste/odor threshold for acetaldehyde. The level at which an average consumer could detect acetaldehyde is still considerably lower than any toxicity. Flavouring agent and adjuvant used to impart orange, apple and butter flavours; component of food flavourings added to milk products, baked goods, fruit juices, candy, desserts and soft drinks [DFC]
1-Hexadecanol
Cetyl alcohol, also known as 1-hexadecanol and palmityl alcohol, is a solid organic compound and a member of the alcohol class of compounds. Its chemical formula is CH3(CH2)15OH. At room temperature, cetyl alcohol takes the form of a waxy white solid or flakes. It belongs to the group of fatty alcohols. With the demise of commercial whaling, cetyl alcohol is no longer primarily produced from whale oil, but instead either as an end-product of the petroleum industry, or produced from vegetable oils such as palm oil and coconut oil. Production of cetyl alcohol from palm oil gives rise to one of its alternative names, palmityl alcohol. Flavouring ingredient. Cetyl alcohol is found in many foods, some of which are rocket salad (sspecies), soft-necked garlic, bitter gourd, and kohlrabi. 1-Hexadecanol is a fatty alcohol, a lipophilic substrate. 1-Hexadecanol is a fatty alcohol, a lipophilic substrate.
Allyl alcohol
Allyl alcohol is found in onion-family vegetables. Allyl alcohol is present in garlic (Allium sativum).Allyl alcohol is an organic compound with the structural formula CH2=CHCH2OH. Like many alcohols, it is a water soluble, colourless liquid, but it is more toxic than typical small alcohols. Allyl alcohol is used as a raw material for the production of glycerol, but is used as a precursor to many specialized compounds. Allyl alcohol is the smallest representative of the allylic alcohols. (Wikipedia Present in garlic (Allium sativum)
S-Hydroxymethylglutathione
S-Hydroxymethylglutathione is a critical component of the binding site for activating fatty acids in glutathione-dependent formaldehyde dehydrogenase activity (OMIM: 103710). Formaldehyde dehydrogenase (FDH; EC 1.2.1.1), a widely occurring enzyme, catalyzes the oxidation of S-hydroxymethylglutathione into S-formylglutathione in the presence of NAD (PMID: 2806555). S-Hydroxymethylglutathione is a critical component of the binding site for activating fatty acids in glutathione-dependent formaldehyde dehydrogenase activity. (OMIM 103710)
2-Ethoxyethanol
2-Ethoxyethanol is a diluent in colour additive mixtures for marking food. 2-Ethoxyethanol, also known by the trademark Cellosolve or ethyl cellosolve, is a solvent used widely in commercial and industrial applications. It is a clear, colorless, nearly odorless liquid that is miscible with water, ethanol, diethyl ether, acetone, and ethyl acetate. As with other glycol ethers, 2-ethoxyethanol has the useful property of being able to dissolve chemically diverse compounds. It will dissolve oils, resins, grease, waxes, nitrocellulose, and lacquers. This is an ideal property as a multi-purpose cleaner and therefore 2-ethoxyethanol is used in products such as varnish removers and degreasing solutions
4-Hydroxyretinoic acid
4-Hydroxyretinoic acid is an NADPH-dependent hydroxylation metabolite of retinoic acid in the microsomes, via the cytochrome P-450 system. Retinoic acid is an activated metabolite of retinol that supports the systemic functions of vitamin A in vivo. (PMID: 1538719, 1932598, 2851384) [HMDB] 4-Hydroxyretinoic acid is an NADPH-dependent hydroxylation metabolite of retinoic acid in the microsomes, via the cytochrome P-450 system. Retinoic acid is an activated metabolite of retinol that supports the systemic functions of vitamin A in vivo. (PMID: 1538719, 1932598, 2851384). D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids
4-Ketoretinoic acid
D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids all-trans-4-Oxoretinoic acid, an active metabolite of vitamin A, induces gene transcription via binding to nuclear retinoic acid receptors (RARs).
4-oxo-Retinoic acid
4-oxo-Retinoic acid is a biologically active geometric isomer of retinoic acid (RA). 4-oxo-retinoic acid is generated from its precursor canthaxanthin and enhances gap junctional communication in cells. Metabolic transformation of all-trans RA to 4-hydroxylated RA appears to be primarily catalyzed by the cytochrome P 450 (CYP) 26AI in human skin cells. Cellular levels of all-trans RA are meticulously regulated utilizing an array of systems to balance uptake, biosynthesis, catabolism, and efflux transport. RA is a critical regulator of gene expression during embryonic development and in the maintenance of adult epithelial tissues. (PMID: 8794203, 7893159, 17330217, 16778795, 17460545) [HMDB] 4-oxo-Retinoic acid is a biologically active geometric isomer of retinoic acid (RA). 4-oxo-retinoic acid is generated from its precursor canthaxanthin and enhances gap junctional communication in cells. Metabolic transformation of all-trans RA to 4-hydroxylated RA appears to be primarily catalyzed by the cytochrome P 450 (CYP) 26AI in human skin cells. Cellular levels of all-trans RA are meticulously regulated utilizing an array of systems to balance uptake, biosynthesis, catabolism, and efflux transport. RA is a critical regulator of gene expression during embryonic development and in the maintenance of adult epithelial tissues. (PMID: 8794203, 7893159, 17330217, 16778795, 17460545). D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids all-trans-4-Oxoretinoic acid, an active metabolite of vitamin A, induces gene transcription via binding to nuclear retinoic acid receptors (RARs).
N-Acetylornithine
N-Acetylornithine is an intermediate in the enzymatic biosynthesis of the amino acid L-arginine from L-glutamate.
Animicin A
relative retention time with respect to 9-anthracene Carboxylic Acid is 1.578 D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D000890 - Anti-Infective Agents > D000935 - Antifungal Agents relative retention time with respect to 9-anthracene Carboxylic Acid is 1.579 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.582
1-propanol
D - Dermatologicals > D08 - Antiseptics and disinfectants > D08A - Antiseptics and disinfectants C - Cardiovascular system > C10 - Lipid modifying agents > C10A - Lipid modifying agents, plain
phenylmethanol
P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03A - Ectoparasiticides, incl. scabicides D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics An aromatic alcohol that consists of benzene bearing a single hydroxymethyl substituent. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Benzyl alcohol is an aromatic alcohol, a colorless liquid with a mild aromatic odor. Benzyl alcohol is an aromatic alcohol, a colorless liquid with a mild aromatic odor.
Retinol
A retinoid consisting of 3,7-dimethylnona-2,4,6,8-tetraen-1-ol substituted at position 9 by a 2,6,6-trimethylcyclohex-1-en-1-yl group (geometry of the four exocyclic double bonds is not specified). D - Dermatologicals > D10 - Anti-acne preparations > D10A - Anti-acne preparations for topical use > D10AD - Retinoids for topical use in acne A - Alimentary tract and metabolism > A11 - Vitamins > A11C - Vitamin a and d, incl. combinations of the two > A11CA - Vitamin a, plain R - Respiratory system > R01 - Nasal preparations > R01A - Decongestants and other nasal preparations for topical use COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids D018977 - Micronutrients > D014815 - Vitamins S - Sensory organs > S01 - Ophthalmologicals Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
4-Oxoretinol
D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids
LS-307
P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03A - Ectoparasiticides, incl. scabicides D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Benzyl alcohol is an aromatic alcohol, a colorless liquid with a mild aromatic odor. Benzyl alcohol is an aromatic alcohol, a colorless liquid with a mild aromatic odor.
Avita
D - Dermatologicals > D10 - Anti-acne preparations > D10A - Anti-acne preparations for topical use > D10AD - Retinoids for topical use in acne A - Alimentary tract and metabolism > A11 - Vitamins > A11C - Vitamin a and d, incl. combinations of the two > A11CA - Vitamin a, plain R - Respiratory system > R01 - Nasal preparations > R01A - Decongestants and other nasal preparations for topical use COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids D018977 - Micronutrients > D014815 - Vitamins S - Sensory organs > S01 - Ophthalmologicals Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Cetyl alcohol
A long-chain primary fatty alcohol that is hexadecane substituted by a hydroxy group at position 1. 1-Hexadecanol is a fatty alcohol, a lipophilic substrate. 1-Hexadecanol is a fatty alcohol, a lipophilic substrate.
ALLYL ALCOHOL
A propenol in which the C=C bond connects C-2 and C-3. It is has been found in garlic (Allium sativum). Formerly used as a herbicide for the control of various grass and weed seeds.
Fomepizole
V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AB - Antidotes D020011 - Protective Agents > D000931 - Antidotes D004791 - Enzyme Inhibitors C471 - Enzyme Inhibitor
N-Acetylornithine
N-Acetylornithine is an intermediate in the enzymatic biosynthesis of the amino acid L-arginine from L-glutamate.
S-(Hydroxymethyl)glutathione
An S-substituted glutathione that is glutathione in which the mercapto hydrogen has been replaced by a hydroxymethyl group.
4-Hydroxyretinoic acid
A retinoid that consists of all-trans-retinoic acid bearing a hydroxy substituent at position 4 on the cyclohexenyl ring. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids
all-trans-4-Oxoretinoic acid
A retinoid that consists of all-trans-retinoic acid bearing an oxo substituent at position 4 on the cyclohexenyl ring. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids all-trans-4-Oxoretinoic acid, an active metabolite of vitamin A, induces gene transcription via binding to nuclear retinoic acid receptors (RARs).