Manumycin A (BioDeep_00000009105)

   

Marine Natural Products Antitumor activity


代谢物信息卡片


(2E,4E,6R)-N-[(1S,5S,6R)-5-hydroxy-5-[(1E,3E,5E)-7-[(2-hydroxy-5-oxo-cyclopenten-1-yl)amino]-7-oxo-hepta-1,3,5-trienyl]-2-oxo-7-oxabicyclo[4.1.0]hept-3-en-3-yl]-2,4,6-trimethyl-deca-2,4-dienamide

  化学式: C31H38N2O7 (550.2679)
中文名称: 手霉素A
  谱图信息: 最多检出来源 Pteris henryi Christ(plant) 3.24%

分子结构信息

SMILES: CCCCC(C)C=C(C)C=C(C)C(=O)NC1=CC(C2C(C1=O)O2)(C=CC=CC=CC(=O)NC3=C(CCC3=O)O)O
InChI: InChI=1S/C31H38N2O7/c1-5-6-11-19(2)16-20(3)17-21(4)30(38)32-22-18-31(39,29-28(40-29)27(22)37)15-10-8-7-9-12-25(36)33-26-23(34)13-14-24(26)35/h7-10,12,15-19,28-29,34,39H,5-6,11,13-14H2,1-4H3,(H,32,38)(H,33,36)/b8-7+,12-9+,15-10+,20-16+,21-17+/t19-,28-,29-,31+/m1/s1

描述信息

A polyketide with formula C31H38N2O7 initially isolated from Streptomyces parvulus as a result of a random screening program for farnesyl transferase (FTase) inhibitors. It is a natural product that exhibits anticancer and antibiotic properties.

Manumycin A is a polyketide with formula C31H38N2O7 initially isolated from Streptomyces parvulus as a result of a random screening program for farnesyl transferase (FTase) inhibitors. It is a natural product that exhibits anticancer and antibiotic properties. It has a role as an EC 1.8.1.9 (thioredoxin reductase) inhibitor, an EC 2.5.1.58 (protein farnesyltransferase) inhibitor, an antineoplastic agent, an apoptosis inducer, an antimicrobial agent, a bacterial metabolite, an antiatherosclerotic agent and a marine metabolite. It is a polyketide, an enamide, an epoxide, an organic heterobicyclic compound, a secondary carboxamide and a tertiary alcohol.

Manumycin A is a natural product found in Streptomyces, Streptomyces griseoaurantiacus, and Streptomyces parvulus

D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents
D004791 - Enzyme Inhibitors

同义名列表

6 个代谢物同义名

(2E,4E,6R)-N-[(1S,5S,6R)-5-hydroxy-5-[(1E,3E,5E)-7-[(2-hydroxy-5-oxo-cyclopenten-1-yl)amino]-7-oxo-hepta-1,3,5-trienyl]-2-oxo-7-oxabicyclo[4.1.0]hept-3-en-3-yl]-2,4,6-trimethyl-deca-2,4-dienamide; Manumycin A; manumycin; AC1O5PHE; Ucfi-C; Manumycin A



数据库引用编号

12 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

3 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 16 ANXA5, BCL2, BIRC5, CASP3, CASP8, CASP9, CHUK, FNTA, MAPK1, MAPK14, NFKB1, PIK3CA, PIK3R1, PTGS2, RAF1, TNK1
Peripheral membrane protein 3 ANXA5, PTGS2, TNK1
Endoplasmic reticulum membrane 3 BCL2, NRAS, PTGS2
Nucleus 12 BCL2, BIRC5, CASP3, CASP8, CASP9, CHUK, MAPK1, MAPK14, NFKB1, PARP1, PIK3R1, RAF1
cytosol 17 ANXA5, BCL2, BIRC5, CASP3, CASP8, CASP9, CHUK, FNTA, MAPK1, MAPK14, NFKB1, NRAS, PARP1, PIK3CA, PIK3R1, PRKCQ, RAF1
nuclear body 1 PARP1
centrosome 1 MAPK1
nucleoplasm 8 BIRC5, CASP3, CASP8, CHUK, MAPK1, MAPK14, NFKB1, PARP1
Cell membrane 2 NRAS, RAF1
Lipid-anchor 1 NRAS
Cytoplasmic side 1 NRAS
lamellipodium 2 CASP8, PIK3CA
Golgi apparatus membrane 1 NRAS
Synapse 1 MAPK1
glutamatergic synapse 2 CASP3, MAPK14
Golgi apparatus 3 MAPK1, NRAS, RAF1
Golgi membrane 1 NRAS
neuronal cell body 1 CASP3
sarcolemma 1 ANXA5
Cytoplasm, cytosol 1 PARP1
plasma membrane 8 FNTA, MAPK1, NRAS, PIK3CA, PIK3R1, PRKCQ, RAF1, TNK1
Membrane 6 ANXA5, BCL2, NRAS, PARP1, PIK3R1, TNK1
caveola 2 MAPK1, PTGS2
extracellular exosome 2 ANXA5, NRAS
endoplasmic reticulum 2 BCL2, PTGS2
perinuclear region of cytoplasm 2 PIK3CA, PIK3R1
intercalated disc 1 PIK3CA
mitochondrion 8 BCL2, CASP8, CASP9, MAPK1, MAPK14, NFKB1, PARP1, RAF1
protein-containing complex 6 BCL2, BIRC5, CASP8, CASP9, PARP1, PTGS2
Microsome membrane 1 PTGS2
postsynaptic density 1 CASP3
extracellular region 4 ANXA5, MAPK1, MAPK14, NFKB1
cytoplasmic side of plasma membrane 1 CHUK
Mitochondrion outer membrane 1 BCL2
Single-pass membrane protein 1 BCL2
mitochondrial outer membrane 3 BCL2, CASP8, RAF1
transcription regulator complex 2 NFKB1, PARP1
centriolar satellite 1 PRKCQ
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 MAPK1
Nucleus membrane 1 BCL2
Bcl-2 family protein complex 1 BCL2
nuclear membrane 1 BCL2
CD40 receptor complex 1 CHUK
external side of plasma membrane 1 ANXA5
microtubule cytoskeleton 1 BIRC5
nucleolus 1 PARP1
midbody 1 BIRC5
Early endosome 1 MAPK1
cell-cell junction 1 PIK3R1
Cell projection, lamellipodium 1 CASP8
pore complex 1 BCL2
Cell junction, focal adhesion 1 MAPK1
Cytoplasm, cytoskeleton, spindle 2 BIRC5, MAPK1
focal adhesion 2 ANXA5, MAPK1
microtubule 1 BIRC5
spindle 2 BIRC5, MAPK1
cis-Golgi network 1 PIK3R1
perinuclear endoplasmic reticulum membrane 1 PIK3R1
collagen-containing extracellular matrix 1 ANXA5
nuclear speck 1 MAPK14
interphase microtubule organizing center 1 BIRC5
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
Late endosome 1 MAPK1
Zymogen granule membrane 1 ANXA5
neuron projection 1 PTGS2
chromatin 2 NFKB1, PARP1
microtubule associated complex 1 FNTA
mitotic spindle 1 MAPK1
Chromosome 2 BIRC5, PARP1
cytoskeleton 2 CASP8, MAPK1
centriole 1 BIRC5
Nucleus, nucleolus 1 PARP1
spindle pole 1 MAPK14
nuclear replication fork 1 PARP1
chromosome, telomeric region 1 PARP1
nuclear chromosome 1 BIRC5
site of double-strand break 1 PARP1
nuclear envelope 1 PARP1
Membrane, caveola 1 MAPK1
Chromosome, centromere 1 BIRC5
Chromosome, centromere, kinetochore 1 BIRC5
tertiary granule membrane 1 NRAS
cell body 1 CASP8
myelin sheath 1 BCL2
pseudopodium 2 MAPK1, RAF1
ficolin-1-rich granule lumen 2 MAPK1, MAPK14
secretory granule lumen 2 MAPK14, NFKB1
endoplasmic reticulum lumen 2 MAPK1, PTGS2
phosphatidylinositol 3-kinase complex 2 PIK3CA, PIK3R1
phosphatidylinositol 3-kinase complex, class IA 2 PIK3CA, PIK3R1
specific granule lumen 1 NFKB1
kinetochore 1 BIRC5
azurophil granule lumen 1 MAPK1
immunological synapse 1 PRKCQ
aggresome 1 PRKCQ
apoptosome 1 CASP9
chromosome, centromeric region 1 BIRC5
vesicle membrane 1 ANXA5
IkappaB kinase complex 1 CHUK
chromosome passenger complex 1 BIRC5
cytoplasmic microtubule 1 BIRC5
protein-DNA complex 1 PARP1
spindle microtubule 1 BIRC5
survivin complex 1 BIRC5
CD95 death-inducing signaling complex 1 CASP8
death-inducing signaling complex 2 CASP3, CASP8
ripoptosome 1 CASP8
site of DNA damage 1 PARP1
endothelial microparticle 1 ANXA5
[Poly [ADP-ribose] polymerase 1, processed N-terminus]: Chromosome 1 PARP1
[Poly [ADP-ribose] polymerase 1, processed C-terminus]: Cytoplasm 1 PARP1
BAD-BCL-2 complex 1 BCL2
[Nuclear factor NF-kappa-B p105 subunit]: Cytoplasm 1 NFKB1
[Nuclear factor NF-kappa-B p50 subunit]: Nucleus 1 NFKB1
I-kappaB/NF-kappaB complex 1 NFKB1
NF-kappaB p50/p65 complex 1 NFKB1
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA
CAAX-protein geranylgeranyltransferase complex 1 FNTA
protein farnesyltransferase complex 1 FNTA
caspase complex 1 CASP9


文献列表

  • Mária Macejová, Veronika Sačková, Petra Hradická, Rastislav Jendželovský, Vlasta Demečková, Peter Fedoročko. Combination of photoactive hypericin and Manumycin A exerts multiple anticancer effects on oxaliplatin-resistant colorectal cells. Toxicology in vitro : an international journal published in association with BIBRA. 2020 Aug; 66(?):104860. doi: 10.1016/j.tiv.2020.104860. [PMID: 32298799]
  • Jianjun Qiao, Yan Song, Zongxin Ling, Xia Liu, Hong Fang. ram1 gene, encoding a subunit of farnesyltransferase, contributes to growth, antifungal susceptibility to amphotericin B of Aspergillus fumigatus. Medical mycology. 2017 Nov; 55(8):883-889. doi: 10.1093/mmy/myx002. [PMID: 28159997]
  • Xiangjun Zhou, Wei Zhang, Qisheng Yao, Hao Zhang, Guie Dong, Ming Zhang, Yutao Liu, Jian-Kang Chen, Zheng Dong. Exosome production and its regulation of EGFR during wound healing in renal tubular cells. American journal of physiology. Renal physiology. 2017 06; 312(6):F963-F970. doi: 10.1152/ajprenal.00078.2017. [PMID: 28356285]
  • Shinichi Nishimura, Masato Tokukura, Junko Ochi, Minoru Yoshida, Hideaki Kakeya. Balance between exocytosis and endocytosis determines the efficacy of sterol-targeting antibiotics. Chemistry & biology. 2014 Dec; 21(12):1690-9. doi: 10.1016/j.chembiol.2014.10.014. [PMID: 25500221]
  • Mei-Chi Chang, Yi-Jane Chen, Hsiao-Hua Chang, Chiu-Po Chan, Chien-Yang Yeh, Yin-Lin Wang, Ru-Hsiu Cheng, Liang-Jiunn Hahn, Jiiang-Huei Jeng. Areca nut components affect COX-2, cyclin B1/cdc25C and keratin expression, PGE2 production in keratinocyte is related to reactive oxygen species, CYP1A1, Src, EGFR and Ras signaling. PloS one. 2014; 9(7):e101959. doi: 10.1371/journal.pone.0101959. [PMID: 25051199]
  • Rebecca R Miles, William Perry, Joseph V Haas, Marian K Mosior, Mathias N'Cho, Jian W J Wang, Peng Yu, John Calley, Yong Yue, Quincy Carter, Bomie Han, Patricia Foxworthy, Mark C Kowala, Timothy P Ryan, Patricia J Solenberg, Laura F Michael. Genome-wide screen for modulation of hepatic apolipoprotein A-I (ApoA-I) secretion. The Journal of biological chemistry. 2013 Mar; 288(9):6386-96. doi: 10.1074/jbc.m112.410092. [PMID: 23322769]
  • Bo Liu, Jin-ming Wu, Jing Li, Jun-jie Liu, Wen-wen Li, Chun-yang Li, Huai-long Xu, Jin-ku Bao. Polygonatum cyrtonema lectin induces murine fibrosarcoma L929 cell apoptosis and autophagy via blocking Ras-Raf and PI3K-Akt signaling pathways. Biochimie. 2010 Dec; 92(12):1934-8. doi: 10.1016/j.biochi.2010.08.009. [PMID: 20713122]
  • Su-Jung Yang, Shi-Chuan Chang, Hui-Chin Wen, Ching-Yu Chen, Jyh-Fei Liao, Chung-Ho Chang. Plumbagin activates ERK1/2 and Akt via superoxide, Src and PI3-kinase in 3T3-L1 cells. European journal of pharmacology. 2010 Jul; 638(1-3):21-8. doi: 10.1016/j.ejphar.2010.04.016. [PMID: 20420821]
  • Tao Yu, Hideaki Yamaguchi, Toshiro Noshita, Yumi Kidachi, Hironori Umetsu, Kazuo Ryoyama. Selective cytotoxicity of glycyrrhetinic acid against tumorigenic r/m HM-SFME-1 cells: potential involvement of H-Ras downregulation. Toxicology letters. 2010 Feb; 192(3):425-30. doi: 10.1016/j.toxlet.2009.11.021. [PMID: 19958823]
  • Banishree Saha, Dipankar Nandi. Farnesyltransferase inhibitors reduce Ras activation and ameliorate acetaminophen-induced liver injury in mice. Hepatology (Baltimore, Md.). 2009 Nov; 50(5):1547-57. doi: 10.1002/hep.23180. [PMID: 19739265]
  • Cheng Ho, Pei-Hsien Lee, Wei-Jan Huang, Yen-Chen Hsu, Chun-Liang Lin, Jeng-Yi Wang. Methylglyoxal-induced fibronectin gene expression through Ras-mediated NADPH oxidase activation in renal mesangial cells. Nephrology (Carlton, Vic.). 2007 Aug; 12(4):348-56. doi: 10.1111/j.1440-1797.2007.00809.x. [PMID: 17635749]
  • Michiko Sugita, Hiroki Sugita, Masao Kaneki. Farnesyltransferase inhibitor, manumycin a, prevents atherosclerosis development and reduces oxidative stress in apolipoprotein E-deficient mice. Arteriosclerosis, thrombosis, and vascular biology. 2007 Jun; 27(6):1390-5. doi: 10.1161/atvbaha.107.140673. [PMID: 17363690]
  • C-L Lin, F-S Wang, Y-R Kuo, Y-T Huang, H-C Huang, Y-C Sun, Y-H Kuo. Ras modulation of superoxide activates ERK-dependent fibronectin expression in diabetes-induced renal injuries. Kidney international. 2006 May; 69(9):1593-600. doi: 10.1038/sj.ki.5000329. [PMID: 16572112]
  • M A Frassanito, L Mastromauro, A Cusmai, F Dammacco. Blockade of the Ras pathway by manumycin, a farnesyltransferase inhibitor, overcomes the resistance of myeloma plasma cells to Fas-induced apoptosis. Clinical and experimental medicine. 2005 Mar; 4(4):174-82. doi: 10.1007/s10238-004-0053-0. [PMID: 15750764]
  • Joanne Gonzales, Sai-Ching Jim Yeung, Judith A Smith. High-performance liquid chromatographic assay validation of Manumycin A in mouse plasma. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2002 Sep; 776(2):177-82. doi: 10.1016/s1570-0232(02)00334-3. [PMID: 12137999]
  • J M Xuereb, P Sié, B Boneu, J Constans. Inhibition of tissue factor synthesis by disruption of ERK kinases and PKC signaling pathways in human vascular SMCs. Thrombosis and haemostasis. 2000 Jul; 84(1):129-36. doi: 10.1055/s-0037-1613980. [PMID: 10928483]
  • B R Ali, A Pal, S L Croft, R J Taylor, M C Field. The farnesyltransferase inhibitor manumycin A is a novel trypanocide with a complex mode of action including major effects on mitochondria. Molecular and biochemical parasitology. 1999 Oct; 104(1):67-80. doi: 10.1016/s0166-6851(99)00131-0. [PMID: 10589982]
  • Z M Pei, M Ghassemian, C M Kwak, P McCourt, J I Schroeder. Role of farnesyltransferase in ABA regulation of guard cell anion channels and plant water loss. Science (New York, N.Y.). 1998 Oct; 282(5387):287-90. doi: 10.1126/science.282.5387.287. [PMID: 9765153]
  • O Kainuma, T Asano, M Hasegawa, K Isono. [Growth inhibition of human pancreatic cancer by farnesyl transferase inhibitor]. Gan to kagaku ryoho. Cancer & chemotherapy. 1996 Oct; 23(12):1657-9. doi: . [PMID: 8886038]
  • B G Rao, M W Spence. Sphingomyelinase activity at pH 7.4 in human brain and a comparison to activity at pH 5.0. Journal of lipid research. 1976 Sep; 17(5):506-15. doi: 10.1016/s0022-2275(20)41749-3. [PMID: 9463]