L-Glutamic gamma-semialdehyde (BioDeep_00000004600)
Secondary id: BioDeep_00000897476, BioDeep_00001869366, BioDeep_00001892574
human metabolite Endogenous
代谢物信息卡片
化学式: C5H9NO3 (131.0582404)
中文名称:
谱图信息:
最多检出来源 Viridiplantae(plant) 0.06%
分子结构信息
SMILES: C(CC(C(=O)O)N)C=O
InChI: InChI=1S/C5H9NO3/c6-4(5(8)9)2-1-3-7/h3-4H,1-2,6H2,(H,8,9)/t4-/m0/s1
描述信息
L-glutamic-gamma-semialdehyde, also known as 5-oxo-L-norvaline or glutamic acid gamma-semialdehyde, (L)-isomer, is a member of the class of compounds known as L-alpha-amino acids. L-alpha-amino acids are alpha amino acids which have the L-configuration of the alpha-carbon atom. L-glutamic-gamma-semialdehyde is soluble (in water) and a moderately acidic compound (based on its pKa). L-glutamic-gamma-semialdehyde can be found in a number of food items such as rubus (blackberry, raspberry), jackfruit, loganberry, and plains prickly pear, which makes L-glutamic-gamma-semialdehyde a potential biomarker for the consumption of these food products. L-glutamic-gamma-semialdehyde exists in all living species, ranging from bacteria to humans. In humans, L-glutamic-gamma-semialdehyde is involved in the arginine and proline metabolism. L-glutamic-gamma-semialdehyde is also involved in several metabolic disorders, some of which include hyperornithinemia-hyperammonemia-homocitrullinuria [hhh-syndrome], prolidase deficiency (PD), arginine: glycine amidinotransferase deficiency (AGAT deficiency), and ornithine aminotransferase deficiency (OAT deficiency).
Glutamic gamma-semialdehyde is the metabolic precursor for proline biosynthesis. The conversion from L-Glutamate, an ATP- and NADPH-dependent reaction, is catalyzed by the enzyme Delta-1-pyrroline-5-carboxylate synthetase (P5CS) (OMIM 138250). L-Glutamic-gamma-semialdehyde can also be converted to or be formed from the amino acids L-ornithine (EC 2.6.1.13) and L-proline (EC 1.5.99.8 and EC 1.5.1.2). It is also one of the few metabolites that can be a precursor to other metabolites of both the urea cycle and the citric acid cycle (BioCyc).
同义名列表
26 个代谢物同义名
Glutamic acid gamma-semialdehyde, (L)-isomer; L-Glutamic acid gamma-semialdehyde; L-Glutamate γ-semialdehyde; (2S)-2-amino-5-oxopentanoic acid; Glutamic acid gamma-semialdehyde; L-Glutamate-gamma-semialdehyde; L-Glutamic acid g-semialdehyde; L-Glutamic acid 5-semialdehyde; L-Glutamate gamma-semialdehyde; L-Glutamic acid γ-semialdehyde; L-Glutamic-gamma-semialdehyde; L-Glutamic gamma-semialdehyde; Glutamic acid g-semialdehyde; Glutamate gamma-semialdehyde; Glutamic gamma-semialdehyde; gamma-Glutamyl semialdehyde; 2-Amino-5-oxopentanoic acid; L-Glutamate 5-semialdehyde; L-Glutamate g-semialdehyde; L-Glutamate γ-semialdehyde; L-Glutamate-5-semialdehyde; L-Glutamic γ-semialdehyde; L-Glutamic g-semialdehyde; 4-carboxy-4-aminobutanal; Glutamate-semialdehyde; 5-oxo-L-Norvaline
数据库引用编号
19 个数据库交叉引用编号
- ChEBI: CHEBI:17232
- KEGG: C01165
- PubChem: 193305
- PubChem: 844
- HMDB: HMDB0002104
- Metlin: METLIN63469
- Metlin: METLIN295
- DrugBank: DB04388
- MetaCyc: L-GLUTAMATE_GAMMA-SEMIALDEHYDE
- KNApSAcK: C00007475
- foodb: FDB030963
- chemspider: 167744
- CAS: 2886-91-1
- CAS: 496-92-4
- PMhub: MS000017131
- PubChem: 4392
- 3DMET: B00252
- NIKKAJI: J40.076I
- RefMet: L-Glutamic-gamma-semialdehyde
分类词条
相关代谢途径
Reactome(2)
BioCyc(3)
PlantCyc(0)
代谢反应
635 个相关的代谢反应过程信息。
Reactome(34)
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid synthesis and interconversion (transamination):
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Amino acid synthesis and interconversion (transamination):
H2O + NAA ⟶ CH3COO- + L-Asp
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Amino acid synthesis and interconversion (transamination):
H2O + L-Asn ⟶ L-Asp + ammonia
- Amino acid synthesis and interconversion (transamination):
H2O + NAA ⟶ CH3COO- + L-Asp
- Amino acid synthesis and interconversion (transamination):
H2O + NAA ⟶ CH3COO- + L-Asp
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Amino acid synthesis and interconversion (transamination):
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Amino acid synthesis and interconversion (transamination):
H2O + L-Asn ⟶ L-Asp + ammonia
- Amino acid synthesis and interconversion (transamination):
H2O + NAA ⟶ CH3COO- + L-Asp
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Amino acid synthesis and interconversion (transamination):
H2O + NAA ⟶ CH3COO- + L-Asp
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Amino acid synthesis and interconversion (transamination):
H2O + NAA ⟶ CH3COO- + L-Asp
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid synthesis and interconversion (transamination):
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Amino acid synthesis and interconversion (transamination):
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Amino acid synthesis and interconversion (transamination):
H2O + NAA ⟶ CH3COO- + L-Asp
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Amino acid synthesis and interconversion (transamination):
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Amino acid synthesis and interconversion (transamination):
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Amino acid synthesis and interconversion (transamination):
H2O + NAA ⟶ CH3COO- + L-Asp
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid synthesis and interconversion (transamination):
H2O + NAA ⟶ CH3COO- + L-Asp
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Proline catabolism:
FAD + L-Pro ⟶ 1PYR-5COOH + FADH2 + H+
- Amino acid synthesis and interconversion (transamination):
H2O + NAA ⟶ CH3COO- + L-Asp
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
BioCyc(5)
- proline biosynthesis II:
NAD(P)+ + pro ⟶ (S)-1-pyrroline-5-carboxylate + H+ + NAD(P)H
- arginine degradation VI (arginase 2 pathway):
2-oxoglutarate + L-ornithine ⟶ L-glutamate γ-semialdehyde + glt
- arginine degradation I (arginase pathway):
2-oxoglutarate + L-ornithine ⟶ L-glutamate γ-semialdehyde + glt
- arginine degradation VII:
H2O + NAD(P)+ + glt ⟶ 2-oxoglutarate + NAD(P)H + ammonia
- proline biosynthesis II:
H2O + NAD(P)+ + glt ⟶ 2-oxoglutarate + NAD(P)H + ammonia
WikiPathways(2)
- 22q11.2 copy number variation syndrome:
Dopamine ⟶ 3-Methoxytyramine
- Urea cycle and metabolism of amino groups:
(S)-1-Pyrroline-5-carboxylate ⟶ L-Proline
Plant Reactome(548)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis I:
H+ + L-glutamate-5-phosphate + TPNH ⟶ L-Glu5S + Pi + TPN
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis I:
H+ + L-glutamate-5-phosphate + TPNH ⟶ L-Glu5S + Pi + TPN
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis I:
H+ + L-glutamate-5-phosphate + TPNH ⟶ L-Glu5S + Pi + TPN
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis I:
H+ + L-glutamate-5-phosphate + TPNH ⟶ L-Glu5S + Pi + TPN
- Proline biosynthesis V (from arginine):
H2O + L-Arg ⟶ L-Cit + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis I:
H+ + L-glutamate-5-phosphate + TPNH ⟶ L-Glu5S + Pi + TPN
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis I:
H+ + L-glutamate-5-phosphate + TPNH ⟶ L-Glu5S + Pi + TPN
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis I:
H+ + L-glutamate-5-phosphate + TPNH ⟶ L-Glu5S + Pi + TPN
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis I:
H+ + L-glutamate-5-phosphate + TPNH ⟶ L-Glu5S + Pi + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis I:
H+ + L-glutamate-5-phosphate + TPNH ⟶ L-Glu5S + Pi + TPN
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis I:
H+ + L-glutamate-5-phosphate + TPNH ⟶ L-Glu5S + Pi + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis I:
H+ + L-glutamate-5-phosphate + TPNH ⟶ L-Glu5S + Pi + TPN
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis I:
H+ + L-glutamate-5-phosphate + TPNH ⟶ L-Glu5S + Pi + TPN
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis I:
H+ + L-glutamate-5-phosphate + TPNH ⟶ L-Glu5S + Pi + TPN
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis I:
H+ + L-glutamate-5-phosphate + TPNH ⟶ L-Glu5S + Pi + TPN
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis I:
H+ + L-glutamate-5-phosphate + TPNH ⟶ L-Glu5S + Pi + TPN
- Proline biosynthesis V (from arginine):
H2O + L-Arg ⟶ L-Cit + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis I:
H+ + L-glutamate-5-phosphate + TPNH ⟶ L-Glu5S + Pi + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis I:
H+ + L-glutamate-5-phosphate + TPNH ⟶ L-Glu5S + Pi + TPN
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis I:
H+ + L-glutamate-5-phosphate + TPNH ⟶ L-Glu5S + Pi + TPN
- Proline biosynthesis V (from arginine):
H2O + L-Arg ⟶ L-Cit + ammonia
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid biosynthesis:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis I:
H+ + L-glutamate-5-phosphate + TPNH ⟶ L-Glu5S + Pi + TPN
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis I:
H+ + L-glutamate-5-phosphate + TPNH ⟶ L-Glu5S + Pi + TPN
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis I:
H+ + L-glutamate-5-phosphate + TPNH ⟶ L-Glu5S + Pi + TPN
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis I:
H+ + L-glutamate-5-phosphate + TPNH ⟶ L-Glu5S + Pi + TPN
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis I:
H+ + L-glutamate-5-phosphate + TPNH ⟶ L-Glu5S + Pi + TPN
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis I:
H+ + L-glutamate-5-phosphate + TPNH ⟶ L-Glu5S + Pi + TPN
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis I:
H+ + L-glutamate-5-phosphate + TPNH ⟶ L-Glu5S + Pi + TPN
- Proline biosynthesis V (from arginine):
H2O + L-Arg ⟶ L-Cit + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis I:
H+ + L-glutamate-5-phosphate + TPNH ⟶ L-Glu5S + Pi + TPN
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis I:
H+ + L-glutamate-5-phosphate + TPNH ⟶ L-Glu5S + Pi + TPN
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis I:
H+ + L-glutamate-5-phosphate + TPNH ⟶ L-Glu5S + Pi + TPN
- Proline biosynthesis V (from arginine):
H2O + L-Arg ⟶ L-Cit + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis I:
H+ + L-glutamate-5-phosphate + TPNH ⟶ L-Glu5S + Pi + TPN
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis I:
H+ + L-glutamate-5-phosphate + TPNH ⟶ L-Glu5S + Pi + TPN
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis I:
H+ + L-glutamate-5-phosphate + TPNH ⟶ L-Glu5S + Pi + TPN
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis I:
H+ + L-glutamate-5-phosphate + TPNH ⟶ L-Glu5S + Pi + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis I:
H+ + L-glutamate-5-phosphate + TPNH ⟶ L-Glu5S + Pi + TPN
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis I:
H+ + L-glutamate-5-phosphate + TPNH ⟶ L-Glu5S + Pi + TPN
- Proline biosynthesis V (from arginine):
H2O + L-Arg ⟶ L-Cit + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis I:
H+ + L-glutamate-5-phosphate + TPNH ⟶ L-Glu5S + Pi + TPN
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis I:
H+ + L-glutamate-5-phosphate + TPNH ⟶ L-Glu5S + Pi + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis I:
H+ + L-glutamate-5-phosphate + TPNH ⟶ L-Glu5S + Pi + TPN
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis I:
H+ + L-glutamate-5-phosphate + TPNH ⟶ L-Glu5S + Pi + TPN
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis I:
H+ + L-glutamate-5-phosphate + TPNH ⟶ L-Glu5S + Pi + TPN
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis I:
H+ + L-glutamate-5-phosphate + TPNH ⟶ L-Glu5S + Pi + TPN
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis I:
H+ + L-glutamate-5-phosphate + TPNH ⟶ L-Glu5S + Pi + TPN
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis I:
H+ + L-glutamate-5-phosphate + TPNH ⟶ L-Glu5S + Pi + TPN
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis I:
H+ + L-glutamate-5-phosphate + TPNH ⟶ L-Glu5S + Pi + TPN
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis I:
H+ + L-glutamate-5-phosphate + TPNH ⟶ L-Glu5S + Pi + TPN
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis I:
H+ + L-glutamate-5-phosphate + TPNH ⟶ L-Glu5S + Pi + TPN
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis I:
H+ + L-glutamate-5-phosphate + TPNH ⟶ L-Glu5S + Pi + TPN
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis I:
H+ + L-glutamate-5-phosphate + TPNH ⟶ L-Glu5S + Pi + TPN
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid biosynthesis:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis I:
H+ + L-glutamate-5-phosphate + TPNH ⟶ L-Glu5S + Pi + TPN
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis I:
H+ + L-glutamate-5-phosphate + TPNH ⟶ L-Glu5S + Pi + TPN
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis I:
H+ + L-glutamate-5-phosphate + TPNH ⟶ L-Glu5S + Pi + TPN
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis I:
H+ + L-glutamate-5-phosphate + TPNH ⟶ L-Glu5S + Pi + TPN
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid biosynthesis:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis I:
H+ + L-glutamate-5-phosphate + TPNH ⟶ L-Glu5S + Pi + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis I:
H+ + L-glutamate-5-phosphate + TPNH ⟶ L-Glu5S + Pi + TPN
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis I:
H+ + L-glutamate-5-phosphate + TPNH ⟶ L-Glu5S + Pi + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis I:
H+ + L-glutamate-5-phosphate + TPNH ⟶ L-Glu5S + Pi + TPN
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis I:
H+ + L-glutamate-5-phosphate + TPNH ⟶ L-Glu5S + Pi + TPN
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis I:
H+ + L-glutamate-5-phosphate + TPNH ⟶ L-Glu5S + Pi + TPN
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis I:
H+ + L-glutamate-5-phosphate + TPNH ⟶ L-Glu5S + Pi + TPN
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis I:
H+ + L-glutamate-5-phosphate + TPNH ⟶ L-Glu5S + Pi + TPN
- Proline biosynthesis V (from arginine):
H2O + L-Arg ⟶ L-Cit + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis I:
H+ + L-glutamate-5-phosphate + TPNH ⟶ L-Glu5S + Pi + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis I:
H+ + L-glutamate-5-phosphate + TPNH ⟶ L-Glu5S + Pi + TPN
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis I:
H+ + L-glutamate-5-phosphate + TPNH ⟶ L-Glu5S + Pi + TPN
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis I:
H+ + L-glutamate-5-phosphate + TPNH ⟶ L-Glu5S + Pi + TPN
- Proline biosynthesis V (from arginine):
H2O + L-Arg ⟶ L-Cit + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis I:
H+ + L-glutamate-5-phosphate + TPNH ⟶ L-Glu5S + Pi + TPN
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis I:
H+ + L-glutamate-5-phosphate + TPNH ⟶ L-Glu5S + Pi + TPN
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis I:
H+ + L-glutamate-5-phosphate + TPNH ⟶ L-Glu5S + Pi + TPN
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid biosynthesis:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis I:
H+ + L-glutamate-5-phosphate + TPNH ⟶ L-Glu5S + Pi + TPN
- Proline biosynthesis V (from arginine):
H2O + L-Arg ⟶ L-Cit + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis I:
H+ + L-glutamate-5-phosphate + TPNH ⟶ L-Glu5S + Pi + TPN
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis I:
H+ + L-glutamate-5-phosphate + TPNH ⟶ L-Glu5S + Pi + TPN
- Proline biosynthesis V (from arginine):
H2O + L-Arg ⟶ L-Cit + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis I:
H+ + L-glutamate-5-phosphate + TPNH ⟶ L-Glu5S + Pi + TPN
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis I:
H+ + L-glutamate-5-phosphate + TPNH ⟶ L-Glu5S + Pi + TPN
- Proline biosynthesis V (from arginine):
H2O + L-Arg ⟶ L-Cit + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis I:
H+ + L-glutamate-5-phosphate + TPNH ⟶ L-Glu5S + Pi + TPN
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis I:
H+ + L-glutamate-5-phosphate + TPNH ⟶ L-Glu5S + Pi + TPN
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis I:
H+ + L-glutamate-5-phosphate + TPNH ⟶ L-Glu5S + Pi + TPN
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis I:
H+ + L-glutamate-5-phosphate + TPNH ⟶ L-Glu5S + Pi + TPN
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis I:
H+ + L-glutamate-5-phosphate + TPNH ⟶ L-Glu5S + Pi + TPN
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis I:
H+ + L-glutamate-5-phosphate + TPNH ⟶ L-Glu5S + Pi + TPN
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis I:
H+ + L-glutamate-5-phosphate + TPNH ⟶ L-Glu5S + Pi + TPN
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
INOH(2)
- Arginine and Proline metabolism ( Arginine and Proline metabolism ):
ATP + Creatine ⟶ ADP + N-Phospho-creatine
- 2-Oxo acid + L-Ornithine = L-Amino acid + L-Glutamate 5-semialdehyde ( Arginine and Proline metabolism ):
2-Oxo-glutaric acid + L-Ornithine ⟶ L-Glutamate 5-semialdehyde + L-Glutamic acid
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(44)
- Arginine and Proline Metabolism:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Prolidase Deficiency (PD):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Arginine: Glycine Amidinotransferase Deficiency (AGAT Deficiency):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Hyperprolinemia Type II:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Hyperprolinemia Type I:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Prolinemia Type II:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Guanidinoacetate Methyltransferase Deficiency (GAMT Deficiency):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Ornithine Aminotransferase Deficiency (OAT Deficiency):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Creatine Deficiency, Guanidinoacetate Methyltransferase Deficiency:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Hyperornithinemia with Gyrate Atrophy (HOGA):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Hyperornithinemia-Hyperammonemia-Homocitrullinuria [HHH-syndrome]:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- L-Arginine:Glycine Amidinotransferase Deficiency:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Proline Metabolism:
Adenosine triphosphate + L-Glutamic acid + Water ⟶ Adenosine diphosphate + Hydrogen Ion + L-Glutamic acid + Phosphate
- Proline Metabolism:
Adenosine triphosphate + L-Glutamic acid + Water ⟶ Adenosine diphosphate + Hydrogen Ion + L-Glutamic acid + Phosphate
- Glutamate Metabolism:
Ornithine + Oxoglutaric acid ⟶ L-Glutamic -semialdehyde + L-Glutamic acid
- Arginine Metabolism:
N-Acetylornithine + Water ⟶ Acetic acid + Ornithine
- Proline Metabolism:
N-Acetylornithine + Water ⟶ Acetic acid + Ornithine
- Arginine and Proline Metabolism:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Arginine and Proline Metabolism:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Arginine: Glycine Amidinotransferase Deficiency (AGAT Deficiency):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Guanidinoacetate Methyltransferase Deficiency (GAMT Deficiency):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Hyperprolinemia Type I:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Hyperprolinemia Type II:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Ornithine Aminotransferase Deficiency (OAT Deficiency):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Prolinemia Type II:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Prolidase Deficiency (PD):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Creatine Deficiency, Guanidinoacetate Methyltransferase Deficiency:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Hyperornithinemia with Gyrate Atrophy (HOGA):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Hyperornithinemia-Hyperammonemia-Homocitrullinuria [HHH-syndrome]:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- L-Arginine:Glycine Amidinotransferase Deficiency:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Arginine and Proline Metabolism:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Arginine and Proline Metabolism:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Arginine: Glycine Amidinotransferase Deficiency (AGAT Deficiency):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Guanidinoacetate Methyltransferase Deficiency (GAMT Deficiency):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Hyperprolinemia Type I:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Hyperprolinemia Type II:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Ornithine Aminotransferase Deficiency (OAT Deficiency):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Prolinemia Type II:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Prolidase Deficiency (PD):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Creatine Deficiency, Guanidinoacetate Methyltransferase Deficiency:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Hyperornithinemia with Gyrate Atrophy (HOGA):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Hyperornithinemia-Hyperammonemia-Homocitrullinuria [HHH-syndrome]:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- L-Arginine:Glycine Amidinotransferase Deficiency:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Proline Metabolism:
Adenosine triphosphate + L-Glutamic acid + Water ⟶ Adenosine diphosphate + Hydrogen Ion + L-Glutamic acid + Phosphate
PharmGKB(0)
1 个相关的物种来源信息
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Mariana Utrera, Vita Parra, Mario Estévez. Protein oxidation during frozen storage and subsequent processing of different beef muscles.
Meat science.
2014 Feb; 96(2 Pt A):812-20. doi:
10.1016/j.meatsci.2013.09.006
. [PMID: 24200575] - M Utrera, M Armenteros, S Ventanas, F Solano, M Estévez. Pre-freezing raw hams affects quality traits in cooked hams: potential influence of protein oxidation.
Meat science.
2012 Dec; 92(4):596-603. doi:
10.1016/j.meatsci.2012.06.005
. [PMID: 22748310] - Els Vossen, Mariana Utrera, Stefaan De Smet, David Morcuende, Mario Estévez. Dog rose (Rosa canina L.) as a functional ingredient in porcine frankfurters without added sodium ascorbate and sodium nitrite.
Meat science.
2012 Dec; 92(4):451-7. doi:
10.1016/j.meatsci.2012.05.010
. [PMID: 22698996] - Paulo E C Souza, Samuel S Oliveira, Cristiano R Aguiar-Filho, Ana L B Cunha, Raquel F Albuquerque, Joaquim Evêncio-Neto, Franklin Riet-Correa, Fábio S Mendonça. Primary photosensitization in cattle caused by Froelichia humboldtiana.
Research in veterinary science.
2012 Dec; 93(3):1337-40. doi:
10.1016/j.rvsc.2012.04.005
. [PMID: 22575746] - Nahla S El-Shenawy, Amaal Mohammadden, Zahra Hessenan Al-Fahmie. Using the enzymatic and non-enzymatic antioxidant defense system of the land snail Eobania vermiculata as biomarkers of terrestrial heavy metal pollution.
Ecotoxicology and environmental safety.
2012 Oct; 84(?):347-54. doi:
10.1016/j.ecoenv.2012.08.014
. [PMID: 22921254] - Anna Viitasalo, David E Laaksonen, Virpi Lindi, Aino-Maija Eloranta, Jarmo Jääskeläinen, Tuomo Tompuri, Sari Väisänen, Hanna-Maaria Lakka, Timo A Lakka. Clustering of metabolic risk factors is associated with high-normal levels of liver enzymes among 6- to 8-year-old children: the PANIC study.
Metabolic syndrome and related disorders.
2012 Oct; 10(5):337-43. doi:
10.1089/met.2012.0015
. [PMID: 22731985] - Reggiani V Gonçalves, Rômulo D Novaes, João P V Leite, Emerson F Vilela, Marli C Cupertino, Líria G Nunes, Sérgio L P Matta. Hepatoprotective effect of Bathysa cuspidata in a murine model of severe toxic liver injury.
International journal of experimental pathology.
2012 Oct; 93(5):370-6. doi:
10.1111/j.1365-2613.2012.00835.x
. [PMID: 22974218] - M Burtscher, H Gatterer, T Dünnwald, D Pesta, M Faulhaber, N Netzer, R Koch, K König, H Ulmer. Effects of supervised exercise on gamma-glutamyl transferase levels in patients with isolated impaired fasting glucose and those with impaired fasting glucose plus impaired glucose tolerance.
Experimental and clinical endocrinology & diabetes : official journal, German Society of Endocrinology [and] German Diabetes Association.
2012 Sep; 120(8):445-50. doi:
10.1055/s-0032-1311642
. [PMID: 22639399] - Anthony M Christensen, Jennifer L Pauley, Alejandro R Molinelli, John C Panetta, Deborah A Ward, Clinton F Stewart, James M Hoffman, Scott C Howard, Ching-Hon Pui, Alberto S Pappo, Mary V Relling, Kristine R Crews. Resumption of high-dose methotrexate after acute kidney injury and glucarpidase use in pediatric oncology patients.
Cancer.
2012 Sep; 118(17):4321-30. doi:
10.1002/cncr.27378
. [PMID: 22252903] - Kanagaraj Jyothi, Durai Kalyani, Vasanthi Nachiappan. Effect of acute exposure of N,N-dimethylformamide, an industrial solvent on lipid peroxidation and antioxidants in liver and kidney of rats.
Indian journal of biochemistry & biophysics.
2012 Aug; 49(4):279-84. doi:
. [PMID: 23077790]
- Chad L Cox, Kimber L Stanhope, Jean Marc Schwarz, James L Graham, Bonnie Hatcher, Steven C Griffen, Andrew A Bremer, Lars Berglund, John P McGahan, Nancy L Keim, Peter J Havel. Consumption of fructose- but not glucose-sweetened beverages for 10 weeks increases circulating concentrations of uric acid, retinol binding protein-4, and gamma-glutamyl transferase activity in overweight/obese humans.
Nutrition & metabolism.
2012 Jul; 9(1):68. doi:
10.1186/1743-7075-9-68
. [PMID: 22828276] - M Heidarpour, M Mohri, H Borji, E Moghdass. Oxidative stress and trace elements in camel (Camelus dromedarius) with liver cystic echinococcosis.
Veterinary parasitology.
2012 Jul; 187(3-4):459-63. doi:
10.1016/j.vetpar.2012.01.015
. [PMID: 22293149] - Ibrahim Akpinar, Nurcan Basar, Nihat Sen, Halil Lutfu Kisacik. Evaluation of biochemical, hematological, and thyroid function parameters in nondipper and dipper hypertensive patients.
Wiener klinische Wochenschrift.
2012 Jul; 124(13-14):439-43. doi:
10.1007/s00508-012-0196-z
. [PMID: 22766577] - L Fresno, J E Rodriguez-Gil, T Rigau, J Pastor, M M Rivera del Alamo. Modulation of the biochemical composition of amniotic and allantoic fluids as a control mechanism of feline foetal development.
Placenta.
2012 Jun; 33(6):522-7. doi:
10.1016/j.placenta.2012.03.002
. [PMID: 22465420] - Richa Rawat, Xiao-Hong Yu, Marie Sweet, John Shanklin. Conjugated fatty acid synthesis: residues 111 and 115 influence product partitioning of Momordica charantia conjugase.
The Journal of biological chemistry.
2012 May; 287(20):16230-7. doi:
10.1074/jbc.m111.325316
. [PMID: 22451660] - Zbigniew Waśkiewicz, Barbara Kłapcińska, Ewa Sadowska-Krępa, Milosz Czuba, Katarzyna Kempa, Elżbieta Kimsa, Dagmara Gerasimuk. Acute metabolic responses to a 24-h ultra-marathon race in male amateur runners.
European journal of applied physiology.
2012 May; 112(5):1679-88. doi:
10.1007/s00421-011-2135-5
. [PMID: 21879351] - Nissar Ahmad Wani, Abid Hamid, Jyotdeep Kaur. Alcohol-associated folate disturbances result in altered methylation of folate-regulating genes.
Molecular and cellular biochemistry.
2012 Apr; 363(1-2):157-66. doi:
10.1007/s11010-011-1168-8
. [PMID: 22147198] - Chun-Hsin Chen, Jonathan Walker, Reza Momenan, Robert Rawlings, Markus Heilig, Daniel W Hommer. Relationship between liver function and brain shrinkage in patients with alcohol dependence.
Alcoholism, clinical and experimental research.
2012 Apr; 36(4):625-32. doi:
10.1111/j.1530-0277.2011.01662.x
. [PMID: 21995416] - Enbiya Aksakal, Ibrahim Halil Tanboga, Mustafa Kurt, Mehmet Ali Kaygın, Ahmet Kaya, Turgay Isik, Mehmet Ekinci, Serdar Sevimli, Mahmut Acikel. The relation of serum gamma-glutamyl transferase levels with coronary lesion complexity and long-term outcome in patients with stable coronary artery disease.
Atherosclerosis.
2012 Apr; 221(2):596-601. doi:
10.1016/j.atherosclerosis.2012.01.044
. [PMID: 22369933] - Giovanni Tarantino, Carmine Finelli, Annamaria Colao, Domenico Capone, Marianna Tarantino, Ernesto Grimaldi, Donato Chianese, Saverio Gioia, Fabrizio Pasanisi, Franco Contaldo, Francesco Scopacasa, Silvia Savastano. Are hepatic steatosis and carotid intima media thickness associated in obese patients with normal or slightly elevated gamma-glutamyl-transferase?.
Journal of translational medicine.
2012 Mar; 10(?):50. doi:
10.1186/1479-5876-10-50
. [PMID: 22424154] - NULL. Glucarpidase (Voraxaze) for methotrexate toxicity.
The Medical letter on drugs and therapeutics.
2012 Mar; 54(1385):19-20. doi:
NULL
. [PMID: 22382581] - L F Greca, L C Pinto, D R Rados, L H Canani, J L Gross. Clinical features of patients with type 2 diabetes mellitus and hepatitis C infection.
Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas.
2012 Mar; 45(3):284-90. doi:
10.1590/s0100-879x2012007500013
. [PMID: 22286533] - Zarko Babić, Zoran Bogdanović, Zdravko Dorosulić, Merita Basha, Zeljko Krznarić, Ivo Sjekavica, Milan Kujundzić, Mario Tadić, Marko Banić, Vjekoslav Jagić, Marinko Marusić. Quantitative analysis of troponin I serum values in patients with acute cholecystitis.
Collegium antropologicum.
2012 Mar; 36(1):145-50. doi:
NULL
. [PMID: 22816212] - Guldal Yilmaz, Sinan Sari, Odul Egritas, Buket Dalgic, Gulen Akyol. Hepatoportal sclerosis in childhood: some presenting with cholestatic features (a re-evaluation of 12 children).
Pediatric and developmental pathology : the official journal of the Society for Pediatric Pathology and the Paediatric Pathology Society.
2012 Mar; 15(2):107-13. doi:
10.2350/11-04-1017-oa.1
. [PMID: 22150463] - Nader Shavandi, Abolfazl Samiei, Reza Afshar, Abbas Saremi, Rahman Sheikhhoseini. The effect of exercise on urinary gamma-glutamyltransferase and protein levels in elite female karate athletes.
Asian journal of sports medicine.
2012 Mar; 3(1):41-6. doi:
10.5812/asjsm.34724
. [PMID: 22461964] - Natalia Lampon, J Carlos Tutor. Apparent clearance of valproic acid in elderly epileptic patients: estimation of the confounding effect of albumin concentration.
Upsala journal of medical sciences.
2012 Mar; 117(1):41-6. doi:
10.3109/03009734.2011.640412
. [PMID: 22206465] - Alireza Rezazadeh, Razieh Yazdanparast, Mahsa Molaei. Amelioration of diet-induced nonalcoholic steatohepatitis in rats by Mn-salen complexes via reduction of oxidative stress.
Journal of biomedical science.
2012 Feb; 19(?):26. doi:
10.1186/1423-0127-19-26
. [PMID: 22375551] - Manuela Hische, Abdelhalim Larhlimi, Franziska Schwarz, Antje Fischer-Rosinský, Thomas Bobbert, Anke Assmann, Gareth S Catchpole, Andreas Fh Pfeiffer, Lothar Willmitzer, Joachim Selbig, Joachim Spranger. A distinct metabolic signature predicts development of fasting plasma glucose.
Journal of clinical bioinformatics.
2012 Feb; 2(?):3. doi:
10.1186/2043-9113-2-3
. [PMID: 22300499] - Jae Hyun Kim, Gun Woo Kim, Mi Young Lee, Jang Yel Shin, Young Goo Shin, Sang Baek Koh, Choon Hee Chung. Role of HbA1c in the Screening of Diabetes Mellitus in a Korean Rural Community.
Diabetes & metabolism journal.
2012 Feb; 36(1):37-42. doi:
10.4093/dmj.2012.36.1.37
. [PMID: 22363920] - Rita P Middelberg, Beben Benyamin, Marleen H M de Moor, Nicole M Warrington, Scott Gordon, Anjali K Henders, Sarah E Medland, Dale R Nyholt, Eco J C de Geus, Jouke J Hottenga, Gonneke Willemsen, Lawrence J Beilin, Trevor A Mori, Margaret J Wright, Andrew C Heath, Pamela A F Madden, Dorret I Boomsma, Craig E Pennell, Grant W Montgomery, Nicholas G Martin, John B Whitfield. Loci affecting gamma-glutamyl transferase in adults and adolescents show age × SNP interaction and cardiometabolic disease associations.
Human molecular genetics.
2012 Jan; 21(2):446-55. doi:
10.1093/hmg/ddr478
. [PMID: 22010049] - Cilius E Fonvig, Dorthe S Bille, Elizaveta Chabanova, Tenna R H Nielsen, Henrik S Thomsen, Jens-Christian Holm. Muscle fat content and abdominal adipose tissue distribution investigated by magnetic resonance spectroscopy and imaging in obese children and youths.
Pediatric reports.
2012 Jan; 4(1):e11. doi:
10.4081/pr.2012.e11
. [PMID: 22690303] - Chong Shen, Guoliang Zhang, Qin Meng. Regulation of epithelial cell morphology and functions approaching to more in vivo-like by modifying polyethylene glycol on polysulfone membranes.
PloS one.
2012; 7(4):e36110. doi:
10.1371/journal.pone.0036110
. [PMID: 22558349] - Martin-Walter Welker, David Reichert, Simone Susser, Christoph Sarrazin, Yolanda Martinez, Eva Herrmann, Stefan Zeuzem, Albrecht Piiper, Bernd Kronenberger. Soluble serum CD81 is elevated in patients with chronic hepatitis C and correlates with alanine aminotransferase serum activity.
PloS one.
2012; 7(2):e30796. doi:
10.1371/journal.pone.0030796
. [PMID: 22355327] - Yu-Wen Su, Xi Chen, Zhen-Zhou Jiang, Tao Wang, Cheng Wang, Yun Zhang, Jing Wen, Mei Xue, Dan Zhu, Yue Zhang, Yi-Jing Su, Tong-Yue Xing, Chen-Yu Zhang, Lu-Yong Zhang. A panel of serum microRNAs as specific biomarkers for diagnosis of compound- and herb-induced liver injury in rats.
PloS one.
2012; 7(5):e37395. doi:
10.1371/journal.pone.0037395
. [PMID: 22624025] - Zahra A Amin, Mehmet Bilgen, Mohammed A Alshawsh, Hapipah M Ali, A Hamid A Hadi, Mahmood A Abdulla. Protective Role of Phyllanthus niruri Extract against Thioacetamide-Induced Liver Cirrhosis in Rat Model.
Evidence-based complementary and alternative medicine : eCAM.
2012; 2012(?):241583. doi:
10.1155/2012/241583
. [PMID: 22649471] - Serap Cuhadar, Ayşenur Atay, Mehmet Koseoglu, Ahmet Dirican, Aysel Hur. Stability studies of common biochemical analytes in serum separator tubes with or without gel barrier subjected to various storage conditions.
Biochemia medica.
2012; 22(2):202-14. doi:
10.11613/bm.2012.023
. [PMID: 22838186] - M Al Abdan. Alfa-lipoic acid controls tumor growth and modulates hepatic redox state in Ehrlich-ascites-carcinoma-bearing mice.
TheScientificWorldJournal.
2012; 2012(?):509838. doi:
10.1100/2012/509838
. [PMID: 23002387] - Alessandro Corti, Maria Franzini, Silvana Cianchetti, Gabriella Bergamini, Evelina Lorenzini, Paola Melotti, Aldo Paolicchi, Pierluigi Paggiaro, Alfonso Pompella. Contribution by polymorphonucleate granulocytes to elevated gamma-glutamyltransferase in cystic fibrosis sputum.
PloS one.
2012; 7(4):e34772. doi:
10.1371/journal.pone.0034772
. [PMID: 22496859] - Nan Hee Kim, Jung Kwon Huh, Byung Jin Kim, Min Woong Kim, Bum Soo Kim, Jin Ho Kang. Serum gamma-glutamyl transferase level is an independent predictor of incident hypertension in Korean adults.
Clinical and experimental hypertension (New York, N.Y. : 1993).
2012; 34(6):402-9. doi:
10.3109/10641963.2012.665539
. [PMID: 22471622] - Benjamin Longo-Mbenza, Moïse Mvitu Muaka, Etienne Mokondjimobe, Dalida Kibokela Ndembe, Doris Tulomba Mona, Baudouin Buassabu-Bu-Tsumbu. Oxidative stress-elevated high gamma glutamyl transferase levels, and aging, intake of tropical food plants, migration and visual disability in Central Africans.
International journal of ophthalmology.
2012; 5(4):493-8. doi:
10.3980/j.issn.2222-3959.2012.04.17
. [PMID: 22937512] - Radu Vasile Bagiu, Brigitha Vlaicu, Monica Butnariu. Chemical composition and in vitro antifungal activity screening of the Allium ursinum L. (Liliaceae).
International journal of molecular sciences.
2012; 13(2):1426-1436. doi:
10.3390/ijms13021426
. [PMID: 22408399] - José R Santos, José Moltó, Josep M Llibre, Eugenia Negredo, Isabel Bravo, Arelly Ornelas, Bonaventura Clotet, Roger Paredes. Antiretroviral simplification with darunavir/ritonavir monotherapy in routine clinical practice: safety, effectiveness, and impact on lipid profile.
PloS one.
2012; 7(5):e37442. doi:
10.1371/journal.pone.0037442
. [PMID: 22666357] - Marco Nuti, Paolo Spontoni, Chrysanthos Grigoratos, Giulia Dell'Omo, Alberto Balbarini, Roberto Pedrinelli. Lack of a relationship between circulating gamma-glutamyltransferase levels and carotid intima media thickness in hypertensive and diabetic patients.
Vascular health and risk management.
2012; 8(?):275-81. doi:
10.2147/vhrm.s30747
. [PMID: 22661894] - Ahmed S Alrashdi, Suzy M Salama, Salim S Alkiyumi, Mahmood A Abdulla, A Hamid A Hadi, Siddig I Abdelwahab, Manal M Taha, Jamal Hussiani, Nur Asykin. Mechanisms of Gastroprotective Effects of Ethanolic Leaf Extract of Jasminum sambac against HCl/Ethanol-Induced Gastric Mucosal Injury in Rats.
Evidence-based complementary and alternative medicine : eCAM.
2012; 2012(?):786426. doi:
10.1155/2012/786426
. [PMID: 22550543] - Isabella Ramos de Oliveira Liberato, Edmundo Pessoa de Almeida Lopes, Maria Alina Gomes de Mattos Cavalcante, Tiago Costa Pinto, Izolda Fernades Moura, Luiz Loureiro Júnior. Liver enzymes in patients with chronic kidney disease undergoing peritoneal dialysis and hemodialysis.
Clinics (Sao Paulo, Brazil).
2012; 67(2):131-4. doi:
10.6061/clinics/2012(02)07
. [PMID: 22358237] - Necip Ermis, Julide Yagmur, Nusret Acikgoz, Mehmet Cansel, Bilal Cuglan, Hasan Pekdemir, Ramazan Ozdemir. Serum gamma-glutamyl transferase (GGT) levels and inflammatory activity in patients with non-dipper hypertension.
Clinical and experimental hypertension (New York, N.Y. : 1993).
2012; 34(5):311-5. doi:
10.3109/10641963.2011.577485
. [PMID: 21797800] - R A Laven. Effect of use of teat sealants at drying off on the uptake of colostral antibodies by calves, as estimated by measuring gamma-glutamyl transferase activity.
New Zealand veterinary journal.
2012 Jan; 60(1):47-9. doi:
10.1080/00480169.2011.621171
. [PMID: 22175429] - Sarah J Oppeneer, Julie A Ross, Woon-Puay Koh, Jian-Min Yuan, Kim Robien. Genetic variation in folylpolyglutamate synthase and gamma-glutamyl hydrolase and plasma homocysteine levels in the Singapore Chinese Health Study.
Molecular genetics and metabolism.
2012 Jan; 105(1):73-8. doi:
10.1016/j.ymgme.2011.09.035
. [PMID: 22018726] - Tara Behne, M Sitki Copur. Biomarkers for hepatocellular carcinoma.
International journal of hepatology.
2012; 2012(?):859076. doi:
10.1155/2012/859076
. [PMID: 22655201] - Atef M Al-Attar. Attenuating effect of Ginkgo biloba leaves extract on liver fibrosis induced by thioacetamide in mice.
Journal of biomedicine & biotechnology.
2012; 2012(?):761450. doi:
10.1155/2012/761450
. [PMID: 23091357] - A Iu Zharikov, Ia F Zverev, V M Briukhanov, V V Lampatov. [Anti-lithogenic effect of meloxicam in experimental nephrolithiasis].
Eksperimental'naia i klinicheskaia farmakologiia.
2012; 75(3):14-7. doi:
. [PMID: 22679747]
- Jonghwa Jin, Yun Hyi Ku, Yikwon Kim, Yeonjung Kim, Kyunggon Kim, Ji Yoon Lee, Young Min Cho, Hong Kyu Lee, Kyong Soo Park, Youngsoo Kim. Differential proteome profiling using iTRAQ in microalbuminuric and normoalbuminuric type 2 diabetic patients.
Experimental diabetes research.
2012; 2012(?):168602. doi:
10.1155/2012/168602
. [PMID: 22536212] - Latife Bozkurt, Christian S Göbl, Andrea Tura, Marek Chmelik, Thomas Prikoszovich, Lana Kosi, Oswald Wagner, Michael Roden, Giovanni Pacini, Amalia Gastaldelli, Alexandra Kautzky-Willer. Fatty liver index predicts further metabolic deteriorations in women with previous gestational diabetes.
PloS one.
2012; 7(2):e32710. doi:
10.1371/journal.pone.0032710
. [PMID: 22393439] - Xuefeng B Ling, Kenneth Lau, John T Kanegaye, Zheng Pan, Sihua Peng, Jun Ji, Gigi Liu, Yuichiro Sato, Tom T S Yu, John C Whitin, James Schilling, Jane C Burns, Harvey J Cohen. A diagnostic algorithm combining clinical and molecular data distinguishes Kawasaki disease from other febrile illnesses.
BMC medicine.
2011 Dec; 9(?):130. doi:
10.1186/1741-7015-9-130
. [PMID: 22145762] - Arturo Gonzalez-Quintela, Santiago Tomé, Carmen Fernandez-Merino, Jesus Rey, Luis Meijide, Francisco Gude. Synergistic effect of alcohol consumption and body mass on serum concentrations of cytokeratin-18.
Alcoholism, clinical and experimental research.
2011 Dec; 35(12):2202-8. doi:
10.1111/j.1530-0277.2011.01570.x
. [PMID: 21682752] - Susan M Wernimont, Andrew G Clark, Patrick J Stover, Martin T Wells, Augusto A Litonjua, Scott T Weiss, J Michael Gaziano, Katherine L Tucker, Andrea Baccarelli, Joel Schwartz, Valentina Bollati, Patricia A Cassano. Folate network genetic variation, plasma homocysteine, and global genomic methylation content: a genetic association study.
BMC medical genetics.
2011 Nov; 12(?):150. doi:
10.1186/1471-2350-12-150
. [PMID: 22103680] - Maryam Tohidi, Asghar Ghasemi, Farzad Hadaegh, Shamsi Arbabi, Firoozeh Hosseini Isfahani. Intra-erythrocyte magnesium is associated with gamma-glutamyl transferase in obese children and adolescents.
Biological trace element research.
2011 Nov; 143(2):835-43. doi:
10.1007/s12011-010-8949-x
. [PMID: 21221836] - S Vandeputte, J Detilleux, F Rollin. Comparison of four refractometers for the investigation of the passive transfer in beef calves.
Journal of veterinary internal medicine.
2011 Nov; 25(6):1465-9. doi:
10.1111/j.1939-1676.2011.00816.x
. [PMID: 22092645] - Mansour S Al-Said, Ramzi A Mothana, Mohammed O Al-Sohaibani, Syed Rafatullah. Ameliorative effect of Grewia tenax (Forssk) fiori fruit extract on CCl(4)-induced oxidative stress and hepatotoxicity in rats.
Journal of food science.
2011 Nov; 76(9):T200-6. doi:
10.1111/j.1750-3841.2011.02381.x
. [PMID: 22416728] - Adam M Schaefer, Hui-Chen W Stavros, Gregory D Bossart, Patricia A Fair, Juli D Goldstein, John S Reif. Associations between mercury and hepatic, renal, endocrine, and hematological parameters in Atlantic bottlenose dolphins (Tursiops truncatus) along the eastern coast of Florida and South Carolina.
Archives of environmental contamination and toxicology.
2011 Nov; 61(4):688-95. doi:
10.1007/s00244-011-9651-5
. [PMID: 21340575] - Michelle Mendenhall, Andrew Russell, Donald F Smee, Jeffery O Hall, Ramona Skirpstunas, Yousuke Furuta, Brian B Gowen. Effective oral favipiravir (T-705) therapy initiated after the onset of clinical disease in a model of arenavirus hemorrhagic Fever.
PLoS neglected tropical diseases.
2011 Oct; 5(10):e1342. doi:
10.1371/journal.pntd.0001342
. [PMID: 22022624] - Merja R Leinonen, Marja R Raekallio, Outi M Vainio, Satu Sankari, Robert T O'Brien. The effect of contrast-enhanced ultrasound on the kidneys in eight cats.
Veterinary journal (London, England : 1997).
2011 Oct; 190(1):109-12. doi:
10.1016/j.tvjl.2010.09.007
. [PMID: 20947395] - M Mutluhan Döger, Bahar B Sokmen, Refiye Yanardag. Combined effects of niacin and chromium treatment on heart of hyperlipidemic rats.
Human & experimental toxicology.
2011 Oct; 30(10):1561-6. doi:
10.1177/0960327110392404
. [PMID: 21177731] - Kyu-Nam Kim, Kwang-Min Kim, Duck-Joo Lee, Nam-Seok Joo. Serum gamma-glutamyltransferase concentration correlates with Framingham risk score in Koreans.
Journal of Korean medical science.
2011 Oct; 26(10):1305-9. doi:
10.3346/jkms.2011.26.10.1305
. [PMID: 22022182] - Christine E Metzner, Anke Folberth-Vögele, Norman Bitterlich, Martin Lemperle, Sandy Schäfer, Birgit Alteheld, Peter Stehle, Roswitha Siener. Effect of a conventional energy-restricted modified diet with or without meal replacement on weight loss and cardiometabolic risk profile in overweight women.
Nutrition & metabolism.
2011 Sep; 8(1):64. doi:
10.1186/1743-7075-8-64
. [PMID: 21939523] - Ju-Bo Zhang, Yi Chen, Boheng Zhang, Xiaoying Xie, Lan Zhang, Ninling Ge, Zhenggang Ren, Sheng-Long Ye. Prognostic significance of serum gamma-glutamyl transferase in patients with intermediate hepatocellular carcinoma treated with transcatheter arterial chemoembolization.
European journal of gastroenterology & hepatology.
2011 Sep; 23(9):787-93. doi:
10.1097/meg.0b013e32834902dd
. [PMID: 21730869] - Thawee Songpatanasilp, La-or Chailurkit, Suwannee Chantprasertyothin, Boonsong Ongphiphadhanakul, Nimit Taechakraichana. Effect of GGCX gene polymorphism on the responses of serum undercarboxylated osteocalcin and bone turnover markers after treatment with vitamin K2 (menatetrenone) among postmenopausal Thai women.
Journal of bone and mineral metabolism.
2011 Sep; 29(5):606-14. doi:
10.1007/s00774-011-0263-y
. [PMID: 21344298] - Felix Diaz González, Rodrigo Muiño, Víctor Pereira, Rómulo Campos, José Luis Benedito. Relationship among blood indicators of lipomobilization and hepatic function during early lactation in high-yielding dairy cows.
Journal of veterinary science.
2011 Sep; 12(3):251-5. doi:
10.4142/jvs.2011.12.3.251
. [PMID: 21897097] - Erika R F Siqueira, Cláudia P M S Oliveira, Maria T C Muniz, Filipe Silva, Leila M M B Pereira, Flair J Carrilho. Methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism and high plasma homocysteine in chronic hepatitis C (CHC) infected patients from the Northeast of Brazil.
Nutrition journal.
2011 Aug; 10(?):86. doi:
10.1186/1475-2891-10-86
. [PMID: 21854603] - Qin Li, Zhen Yang, Bin Lu, Jie Wen, Zi Ye, Lili Chen, Min He, Xiaoming Tao, Weiwei Zhang, Ying Huang, Zhaoyun Zhang, Shen Qu, Renming Hu. Serum uric acid level and its association with metabolic syndrome and carotid atherosclerosis in patients with type 2 diabetes.
Cardiovascular diabetology.
2011 Aug; 10(?):72. doi:
10.1186/1475-2840-10-72
. [PMID: 21816063] - Osman Evliyaoğlu, Erkan Kibrisli, Yaşar Yildirim, Osman Gökalp, Leyla Colpan. Routine enzymes in the monitoring of type 2 diabetes mellitus.
Cell biochemistry and function.
2011 Aug; 29(6):506-12. doi:
10.1002/cbf.1779
. [PMID: 21735456] - Eva K F Chan, Heather C Rowe, Jason A Corwin, Bindu Joseph, Daniel J Kliebenstein. Combining genome-wide association mapping and transcriptional networks to identify novel genes controlling glucosinolates in Arabidopsis thaliana.
PLoS biology.
2011 Aug; 9(8):e1001125. doi:
10.1371/journal.pbio.1001125
. [PMID: 21857804] - Margit Kaldmäe, Mihkel Zilmer, Margus Viigimaa, Galina Zemtsovskaja, Karel Tomberg, Tanel Kaart, Margus Annuk. Cardiovascular disease risk factors in homeless people.
Upsala journal of medical sciences.
2011 Aug; 116(3):200-7. doi:
10.3109/03009734.2011.586737
. [PMID: 21692678] - Bernard M Y Cheung, Kwok-Leung Ong, Annette W K Tso, Stacey S Cherny, Pak-Chung Sham, Tai-Hing Lam, Karen S L Lam. Gamma-glutamyl transferase level predicts the development of hypertension in Hong Kong Chinese.
Clinica chimica acta; international journal of clinical chemistry.
2011 Jul; 412(15-16):1326-31. doi:
10.1016/j.cca.2011.03.030
. [PMID: 21466796] - Khalid S Aljabri, Samia A Bokhari, Sanaa M Fageeh, Abdullah M Alharbi, Mohamad A Abaza. Glycogen hepatopathy in a 13-year-old male with type 1 diabetes.
Annals of Saudi medicine.
2011 Jul; 31(4):424-7. doi:
10.4103/0256-4947.81803
. [PMID: 21727748] - R A Laven, P R Wilson. Possible subclinical hepatopathy after copper supplementation in farmed red deer.
New Zealand veterinary journal.
2011 Jul; 59(4):197-200. doi:
10.1080/00480169.2011.579555
. [PMID: 21660850] - Gisela Irmisch, Jacqueline Hoeppner, Johannes Thome, Joerg Richter, Anja Fernow, Emil C Reisinger, Michael Lafrenz, Micha Loebermann. Serum fatty acids, antioxidants, and treatment response in hepatitis C infection: greater polyunsaturated fatty acid and antioxidant levels in hepatitis C responders.
Journal of clinical lipidology.
2011 Jul; 5(4):288-93. doi:
10.1016/j.jacl.2011.04.005
. [PMID: 21784374] - Emna Behija Saafi, Mouna Louedi, Abdelfattah Elfeki, Abdelfattah Zakhama, Mohamed Fadhel Najjar, Mohamed Hammami, Lotfi Achour. Protective effect of date palm fruit extract (Phoenix dactylifera L.) on dimethoate induced-oxidative stress in rat liver.
Experimental and toxicologic pathology : official journal of the Gesellschaft fur Toxikologische Pathologie.
2011 Jul; 63(5):433-41. doi:
10.1016/j.etp.2010.03.002
. [PMID: 20359872] - Sazan Rasul, Marie Helene Reiter, Aysegul Ilhan, Katharina Lampichler, Ludwig Wagner, Alexandra Kautzky-Willer. Circulating angiopoietin-2 and soluble Tie-2 in type 2 diabetes mellitus: a cross-sectional study.
Cardiovascular diabetology.
2011 Jun; 10(?):55. doi:
10.1186/1475-2840-10-55
. [PMID: 21699724] - Berthold Hocher, S Heiden, K von Websky, J Rahnenführe, P Kalk, T Pfab. Dual endothelin-converting enzyme/neutral endopeptidase blockade in rats with D-galactosamine-induced liver failure.
European journal of medical research.
2011 Jun; 16(6):275-9. doi:
10.1186/2047-783x-16-6-275
. [PMID: 21810562] - Ryuichi Kawamoto, Yasuharu Tabara, Katsuhiko Kohara, Tetsuro Miki, Tomo Kusunoki, Shuzo Takayama, Masanori Abe, Tateaki Katoh, Nobuyuki Ohtsuka. Association between fasting plasma glucose and high-sensitivity C-reactive protein: gender differences in a Japanese community-dwelling population.
Cardiovascular diabetology.
2011 Jun; 10(?):51. doi:
10.1186/1475-2840-10-51
. [PMID: 21663637] - Naglaa Abdel Megid Gomaa, Gábor Köller, Gerald Fritz Schusser. Clinical evaluation of serum alcohol dehydrogenase activity in horses with acute intestinal obstruction.
Journal of veterinary emergency and critical care (San Antonio, Tex. : 2001).
2011 Jun; 21(3):242-52. doi:
10.1111/j.1476-4431.2011.00641.x
. [PMID: 21631710] - Haitham W Tuffaha, Suha Al Omar. Glucarpidase rescue in a patient with high-dose methotrexate-induced nephrotoxicity.
Journal of oncology pharmacy practice : official publication of the International Society of Oncology Pharmacy Practitioners.
2011 Jun; 17(2):136-40. doi:
10.1177/1078155209348720
. [PMID: 19833686] - Xingwang Ye, Chao-Qiang Lai, Jimmy W Crott, Aron M Troen, Jose M Ordovas, Katherine L Tucker. The folate hydrolase 1561C>T polymorphism is associated with depressive symptoms in Puerto Rican adults.
Psychosomatic medicine.
2011 Jun; 73(5):385-92. doi:
10.1097/psy.0b013e31821a1ab4
. [PMID: 21597034] - Juberlan S Garcia, Cleber S Hooper, Raquel O Simões, Marcos Antônio J Dos Santos, Arnaldo Maldonado, Jairo Pinheiro. Biochemical and histological responses of Rattus novergicus (Wistar) infected by Echinostoma paraensei (Trematoda: Echinostomatidae).
Veterinary parasitology.
2011 May; 178(1-2):86-92. doi:
10.1016/j.vetpar.2010.12.040
. [PMID: 21255935] - Bo Zhu, Miao-Miao Lou, Guan-Lin Xie, Guo-Qing Zhang, Xue-Ping Zhou, Bin Li, Gu-Lei Jin. Horizontal gene transfer in silkworm, Bombyx mori.
BMC genomics.
2011 May; 12(?):248. doi:
10.1186/1471-2164-12-248
. [PMID: 21595916] - Jinyan Zhao, Yunpeng Zhao, Hao Wang, Xing Gu, Jun Ji, Chunfang Gao. Association between metabolic abnormalities and HBV related hepatocelluar carcinoma in Chinese: a cross-sectional study.
Nutrition journal.
2011 May; 10(?):49. doi:
10.1186/1475-2891-10-49
. [PMID: 21569630] - Kamal A Amin, Hamdy H Kamel, Mohamed A Abd Eltawab. The relation of high fat diet, metabolic disturbances and brain oxidative dysfunction: modulation by hydroxy citric acid.
Lipids in health and disease.
2011 May; 10(?):74. doi:
10.1186/1476-511x-10-74
. [PMID: 21569551] - Anca Trifan, Catalin Sfarti, Camelia Cojocariu, Mihaela Dimache, Maria Cretu, Catalin Hutanasu, Carol Stanciu. Increased liver stiffness in extrahepatic cholestasis caused by choledocholithiasis.
Hepatitis monthly.
2011 May; 11(5):372-5. doi:
NULL
. [PMID: 22087164] - Idris Guessous, Olivier Bonny, Fred Paccaud, Vincent Mooser, Gérard Waeber, Peter Vollenweider, Murielle Bochud. Serum calcium levels are associated with novel cardiometabolic risk factors in the population-based CoLaus study.
PloS one.
2011 Apr; 6(4):e18865. doi:
10.1371/journal.pone.0018865
. [PMID: 21533040] - Karin S Engström, Maria Wennberg, Ulf Strömberg, Ingvar A Bergdahl, Göran Hallmans, Jan-Håkan Jansson, Thomas Lundh, Margareta Norberg, Gerda Rentschler, Bengt Vessby, Staffan Skerfving, Karin Broberg. Evaluation of the impact of genetic polymorphisms in glutathione-related genes on the association between methylmercury or n-3 polyunsaturated long chain fatty acids and risk of myocardial infarction: a case-control study.
Environmental health : a global access science source.
2011 Apr; 10(?):33. doi:
10.1186/1476-069x-10-33
. [PMID: 21504558] - Yesong Lee, Misung Kim, Kyungsuk Choi, Juyong Kim, Wookyung Bae, Sohye Kim, Cheongmin Sohn. Relationship between inflammation biomarkers, antioxidant vitamins, and bone mineral density in patients with metabolic syndrome.
Nutrition research and practice.
2011 Apr; 5(2):150-6. doi:
10.4162/nrp.2011.5.2.150
. [PMID: 21556229] - Asiye Kanbay, Elif Kaya, Hakan Buyukoglan, Nezihe Ozdogan, Mehmet Gungor Kaya, Fatma Sema Oymak, Inci Gulmez, Ramazan Demir, Oguz Kokturk. Serum gamma-glutamyl transferase activity is an independent predictor for cardiovascular disease in obstructive sleep apnea syndrome.
Respiratory medicine.
2011 Apr; 105(4):637-42. doi:
10.1016/j.rmed.2010.12.003
. [PMID: 21183328] - David J Hoffman, Collin A Eagles-Smith, Joshua T Ackerman, Terrence L Adelsbach, Katherine R Stebbins. Oxidative stress response of Forster's terns (Sterna forsteri) and Caspian terns (Hydroprogne caspia) to mercury and selenium bioaccumulation in liver, kidney, and brain.
Environmental toxicology and chemistry.
2011 Apr; 30(4):920-9. doi:
10.1002/etc.459
. [PMID: 21194179] - Stela Z Berisha, David Serre, Philip Schauer, Sangeeta R Kashyap, Jonathan D Smith. Changes in whole blood gene expression in obese subjects with type 2 diabetes following bariatric surgery: a pilot study.
PloS one.
2011 Mar; 6(3):e16729. doi:
10.1371/journal.pone.0016729
. [PMID: 21423737] - Katarína Bauerová, Silvester Poništ, Danica Mihalová, František Dráfi, Viera Kuncírová. Utilization of adjuvant arthritis model for evaluation of new approaches in rheumatoid arthritis therapy focused on regulation of immune processes and oxidative stress.
Interdisciplinary toxicology.
2011 Mar; 4(1):33-9. doi:
10.2478/v10102-011-0007-9
. [PMID: 21577282] - Sun-A Kim, So-Yeong Lee, Junpei Kimura, Nam-Shik Shin. Effects of alprazolam on capture stress-related serum cortisol responses in Korean raccoon dogs (Nyctereutes procyonoides koreensis).
Journal of veterinary science.
2011 Mar; 12(1):103-5. doi:
10.4142/jvs.2011.12.1.103
. [PMID: 21368571] - Hyo Jeong Oh, Tae Hyeon Kim, Young Woo Sohn, Yong Sung Kim, Yong Reol Oh, Eun Young Cho, So Yeon Shim, Sae Ron Shin, A Lum Han, Seok Jin Yoon, Haak Cheoul Kim. Association of serum alanine aminotransferase and γ-glutamyltransferase levels within the reference range with metabolic syndrome and nonalcoholic fatty liver disease.
The Korean journal of hepatology.
2011 Mar; 17(1):27-36. doi:
10.3350/kjhep.2011.17.1.27
. [PMID: 21494075] - Paul A Meyers, Carlos Flombaum. High-dose methotrexate-induced renal dysfunction: is glucarpidase necessary for rescue?.
Journal of clinical oncology : official journal of the American Society of Clinical Oncology.
2011 Mar; 29(7):e180; author reply e181. doi:
10.1200/jco.2010.32.8245
. [PMID: 21220601]