Chloride ion (BioDeep_00000004470)
Secondary id: BioDeep_00001868180
human metabolite Endogenous blood metabolite
代谢物信息卡片
化学式: Cl- (34.968853)
中文名称: 氯离子
谱图信息:
最多检出来源 Mus musculus(blood) 83.33%
分子结构信息
SMILES: [Cl-]
InChI: InChI=1S/ClH/h1H/p-1
描述信息
Under standard conditions, chlorine exists as a diatomic molecule. Chlorine is a highly toxic, pale yellow-green gas that has a specific strong smell. In nature, chlorine is most abundant as a chloride ion. Physiologically, it exists as an ion in the body. The chloride ion is an essential anion that the body needs for many critical functions. It also helps keep the bodys acid-base balance. The amount of chloride in the blood is carefully controlled by the kidneys. Chloride ions have important physiological roles. For instance, in the central nervous system, the inhibitory action of glycine and some of the action of GABA relies on the entry of Cl- into specific neurons. Also, the chloride-bicarbonate exchanger biological transport protein relies on the chloride ion to increase the bloods capacity of carbon dioxide, in the form of the bicarbonate ion. Chloride-transporting proteins (CLC) play fundamental roles in many tissues in the plasma membrane as well as in intracellular membranes. CLC proteins form a gene family that comprises nine members in mammals, at least four of which are involved in human genetic diseases. GABA(A) receptors are pentameric complexes that function as ligand-gated chloride ion channels. WNK kinases are a family of serine-threonine kinases that have been shown to play an essential role in the regulation of electrolyte homeostasis, and they are found in diverse epithelia throughout the body that are involved in chloride ion flux. Cystic fibrosis (CF) is caused by alterations in the CF transmembrane conductance regulator (CFTCR) gene that result in deranged sodium and chloride ion transport channels. (PMID: 17539703, 17729441, 17562499, 15300163) (For a complete review see Evans, Richard B. Chlorine: state of the art. Lung (2005), 183(3), 151-167. PMID: 16078037).
The chloride ion is formed when the element chlorine picks up one electron to form the Cl- anion. The chloride ion is one of the most common anions in nature and is necessary to most forms of life. It is an essential electrolyte responsible for maintaining acid/base balance and regulating fluid in and out of cells. [Wikipedia]. Chloride is found in many foods, some of which are jute, grapefruit, lentils, and lime.
同义名列表
23 个代谢物同义名
PLS216 Protein, nicotiana plumbaginifolia; MSR-1 Protein, nicotiana plumbaginifolia; Ion level, chloride; Level, chloride ion; Chloride ion level; Molecular chlorine; chloride standard; Diatomic chlorine; Chlorine anion; Chloride ion; Chloride(1-); Chlorine gas; Dichlorine; Bertholite; Chlorides; Chloride; Chlorine; Chloor; Chlore; Chlor; CL(-); Cl2; Cl
数据库引用编号
22 个数据库交叉引用编号
- ChEBI: CHEBI:23114
- ChEBI: CHEBI:17996
- KEGG: C00698
- PubChem: 312
- HMDB: HMDB0000492
- DrugBank: DB14547
- ChEMBL: CHEMBL19429
- Wikipedia: Chloride
- MeSH: Chlorides
- MetaCyc: CL-
- foodb: FDB006557
- chemspider: 4514529
- CAS: 147258-25-1
- CAS: 139512-37-1
- CAS: 131500-00-0
- CAS: 155522-09-1
- CAS: 16887-00-6
- CAS: 62770-30-3
- CAS: 54071-91-9
- PubChem: 3966
- PDB-CCD: CL
- NIKKAJI: J202.845J
分类词条
相关代谢途径
Reactome(28)
- Metabolism
- Biological oxidations
- Phase I - Functionalization of compounds
- Sensory Perception
- Metabolism of proteins
- Disease
- Drug ADME
- Transport of small molecules
- SLC-mediated transmembrane transport
- Transport of bile salts and organic acids, metal ions and amine compounds
- Cytochrome P450 - arranged by substrate type
- Xenobiotics
- Immune System
- Innate Immune System
- ROS and RNS production in phagocytes
- Events associated with phagocytolytic activity of PMN cells
- Ion channel transport
- Stimuli-sensing channels
- Disorders of transmembrane transporters
- SLC transporter disorders
- Transport of inorganic cations/anions and amino acids/oligopeptides
- CYP2E1 reactions
- Neuronal System
- Transmission across Chemical Synapses
- Neurotransmitter release cycle
- Neurotransmitter clearance
- Clearance of seratonin
- Olfactory Signaling Pathway
BioCyc(37)
- alkylnitronates degradation
- superpathway of L-phenylalanine biosynthesis
- superpathway of aromatic amino acid biosynthesis
- chorismate biosynthesis I
- chorismate biosynthesis from 3-dehydroquinate
- superpathway of L-tyrosine biosynthesis
- superpathway of chorismate metabolism
- superpathway of L-tryptophan biosynthesis
- gallate biosynthesis
- superpathway of tryptophan utilization
- 12-epi-fischerindole biosynthesis
- pentachlorophenol degradation
- superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass
- formate oxidation to CO2
- superpathway of microbial D-galacturonate and D-glucuronate degradation
- 2-hydroxybiphenyl degradation
- superpathway of glyoxylate bypass and TCA
- γ-hexachlorocyclohexane degradation
- N10-formyl-tetrahydrofolate biosynthesis
- 1,2-dichloroethane degradation
- 3,4,6-trichlorocatechol degradation
- 2,4,6-trichlorophenol degradation
- superpathway of adenosine nucleotides de novo biosynthesis I
- superpathway of purine nucleotides de novo biosynthesis I
- 4-hydroxymandelate degradation
- D-glucarate degradation I
- superpathway of aromatic compound degradation via 2-hydroxypentadienoate
- superpathway of aromatic compound degradation via 3-oxoadipate
- aromatic compounds degradation via β-ketoadipate
- superpathway of D-glucarate and D-galactarate degradation
- 3-chlorocatechol degradation I (ortho)
- 3-chlorocatechol degradation II (ortho)
- adenosine nucleotides de novo biosynthesis
- pyrrolnitrin biosynthesis
- 2,4,5-trichlorophenoxyacetate degradation
- butachlor degradation
- rebeccamycin biosynthesis
PlantCyc(0)
代谢反应
433 个相关的代谢反应过程信息。
Reactome(250)
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Xenobiotics:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- CYP2E1 reactions:
EtOH + H+ + Oxygen + TPNH ⟶ CH3CHO + H2O + TPN
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase I - Functionalization of compounds:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Cytochrome P450 - arranged by substrate type:
ANDST + H+ + Oxygen + TPNH ⟶ H2O + HCOOH + TPN + estrone
- Xenobiotics:
EtOH + H+ + Oxygen + TPNH ⟶ CH3CHO + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Xenobiotics:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- CYP2E1 reactions:
EtOH + H+ + Oxygen + TPNH ⟶ CH3CHO + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Xenobiotics:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- CYP2E1 reactions:
EtOH + H+ + Oxygen + TPNH ⟶ CH3CHO + H2O + TPN
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase I - Functionalization of compounds:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Cytochrome P450 - arranged by substrate type:
EtOH + H+ + Oxygen + TPNH ⟶ CH3CHO + H2O + TPN
- Xenobiotics:
EtOH + H+ + Oxygen + TPNH ⟶ CH3CHO + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Phase I - Functionalization of compounds:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Cytochrome P450 - arranged by substrate type:
ANDST + H+ + Oxygen + TPNH ⟶ H2O + HCOOH + TPN + estrone
- Xenobiotics:
DEXM + H+ + Oxygen + TPNH ⟶ CH2O + DEXT + H2O + TPN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Biological oxidations:
H+ + Oxygen + TPNH + progesterone ⟶ 11DCORST + H2O + TPN
- Phase I - Functionalization of compounds:
H+ + Oxygen + TPNH + progesterone ⟶ 11DCORST + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
H+ + Oxygen + TPNH + progesterone ⟶ 11DCORST + H2O + TPN
- Xenobiotics:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- CYP2E1 reactions:
EtOH + H+ + Oxygen + TPNH ⟶ CH3CHO + H2O + TPN
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Xenobiotics:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- CYP2E1 reactions:
EtOH + H+ + Oxygen + TPNH ⟶ CH3CHO + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Xenobiotics:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- CYP2E1 reactions:
EtOH + H+ + Oxygen + TPNH ⟶ CH3CHO + H2O + TPN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Xenobiotics:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- CYP2E1 reactions:
EtOH + H+ + Oxygen + TPNH ⟶ CH3CHO + H2O + TPN
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Xenobiotics:
CAF + H+ + Oxygen + TPNH ⟶ CH2O + H2O + Paraxanthine + TPN
- CYP2E1 reactions:
EtOH + H+ + Oxygen + TPNH ⟶ CH3CHO + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase I - Functionalization of compounds:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Xenobiotics:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- CYP2E1 reactions:
EtOH + H+ + Oxygen + TPNH ⟶ CH3CHO + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Xenobiotics:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- CYP2E1 reactions:
EtOH + H+ + Oxygen + TPNH ⟶ CH3CHO + H2O + TPN
- CYP2E1 reactions:
EtOH + H+ + Oxygen + TPNH ⟶ CH3CHO + H2O + TPN
- CYP2E1 reactions:
EtOH + H+ + Oxygen + TPNH ⟶ CH3CHO + H2O + TPN
- CYP2E1 reactions:
tetrachloromethane ⟶ Cl-
- Drug ADME:
AMP + abacavir ⟶ Ade-Rib + xenobiotic
- Ciprofloxacin ADME:
Cipro HCl ⟶ Cipro(1+) + Cl-
- Disease:
ADORA2B + Ade-Rib ⟶ ADORA2B:Ade-Rib
- Disorders of transmembrane transporters:
ATP + Cl- + H2O ⟶ ADP + Cl- + Pi
- ABC transporter disorders:
ATP + Cl- + H2O ⟶ ADP + Cl- + Pi
- Defective CFTR causes cystic fibrosis:
ATP + Cl- + H2O ⟶ ADP + Cl- + Pi
- Immune System:
Rap1 cAMP-GEFs + cAMP ⟶ Rap1 cAMP-GEFs:cAMP
- Innate Immune System:
Cl- + H+ + H2O2 ⟶ H2O + HOCl
- ROS and RNS production in phagocytes:
Cl- + H+ + H2O2 ⟶ H2O + HOCl
- Immune System:
cAMP + epac-1 ⟶ RAPGEF3:cAMP complex
- Innate Immune System:
Cl- + H+ + H2O2 ⟶ H2O + HOCl
- ROS and RNS production in phagocytes:
Cl- + H+ + H2O2 ⟶ H2O + HOCl
- Immune System:
Rap1 cAMP-GEFs + cAMP ⟶ Rap1 cAMP-GEFs:cAMP
- Innate Immune System:
TLR4:TLR6 + oxLDL:CD36 ⟶ TLR4:TLR6:CD36:oxLDL
- ROS and RNS production in phagocytes:
Cl- + H+ + H2O2 ⟶ H2O + HOCl
- Immune System:
cAMP ⟶ Rap1 cAMP-GEFs:cAMP
- Innate Immune System:
Cl- + H+ + H2O2 ⟶ H2O + HOCl
- ROS and RNS production in phagocytes:
Cl- + H+ + H2O2 ⟶ H2O + HOCl
- Immune System:
Epac + cAMP ⟶ RAPGEF3:cAMP complex
- Innate Immune System:
Cl- + H+ + H2O2 ⟶ H2O + HOCl
- ROS and RNS production in phagocytes:
Cl- + H+ + H2O2 ⟶ H2O + HOCl
- Immune System:
Rap1 cAMP-GEFs + cAMP ⟶ Rap1 cAMP-GEFs:cAMP
- Innate Immune System:
Cl- + H+ + H2O2 ⟶ H2O + HOCl
- ROS and RNS production in phagocytes:
Cl- + H+ + H2O2 ⟶ H2O + HOCl
- Immune System:
Rap1 cAMP-GEFs + cAMP ⟶ Rap1 cAMP-GEFs:cAMP
- Innate Immune System:
TLR4:TLR6 + oxLDL:CD36 ⟶ TLR4:TLR6:CD36:oxLDL
- ROS and RNS production in phagocytes:
H+ + O2.- ⟶ H2O2
- Immune System:
Rap1 cAMP-GEFs + cAMP ⟶ Rap1 cAMP-GEFs:cAMP
- Innate Immune System:
TLR4:TLR6 + oxLDL:CD36 ⟶ TLR4:TLR6:CD36:oxLDL
- ROS and RNS production in phagocytes:
Cl- + H+ + H2O2 ⟶ H2O + HOCl
- Immune System:
Rap1 cAMP-GEFs + cAMP ⟶ Rap1 cAMP-GEFs:cAMP
- Innate Immune System:
TLR4:TLR6 + oxLDL:CD36 ⟶ TLR4:TLR6:CD36:oxLDL
- ROS and RNS production in phagocytes:
Cl- + H+ + H2O2 ⟶ H2O + HOCl
- Immune System:
Rap1 cAMP-GEFs + cAMP ⟶ Rap1 cAMP-GEFs:cAMP
- Innate Immune System:
TLR4:TLR6 + oxLDL:CD36 ⟶ TLR4:TLR6:CD36:oxLDL
- ROS and RNS production in phagocytes:
Cl- + H+ + H2O2 ⟶ H2O + HOCl
- Events associated with phagocytolytic activity of PMN cells:
Cl- + H+ + H2O2 ⟶ H2O + HOCl
- Events associated with phagocytolytic activity of PMN cells:
Cl- + H+ + H2O2 ⟶ H2O + HOCl
- Events associated with phagocytolytic activity of PMN cells:
Cl- + H+ + H2O2 ⟶ H2O + HOCl
- Events associated with phagocytolytic activity of PMN cells:
Cl- + H+ + H2O2 ⟶ H2O + HOCl
- Events associated with phagocytolytic activity of PMN cells:
Cl- + H+ + H2O2 ⟶ H2O + HOCl
- Events associated with phagocytolytic activity of PMN cells:
Cl- + H+ + H2O2 ⟶ H2O + HOCl
- Events associated with phagocytolytic activity of PMN cells:
Cl- + H+ + H2O2 ⟶ H2O + HOCl
- Events associated with phagocytolytic activity of PMN cells:
Cl- + H+ + H2O2 ⟶ H2O + HOCl
- Events associated with phagocytolytic activity of PMN cells:
Cl- + H+ + H2O2 ⟶ H2O + HOCl
- Events associated with phagocytolytic activity of PMN cells:
Cl- + H+ + H2O2 ⟶ H2O + HOCl
- Events associated with phagocytolytic activity of PMN cells:
Cl- + H+ + H2O2 ⟶ H2O + HOCl
- Events associated with phagocytolytic activity of PMN cells:
Cl- + H+ + H2O2 ⟶ H2O + HOCl
- Transport of small molecules:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- ABC-family proteins mediated transport:
ATP + CHOL + H2O ⟶ ADP + CHOL + Pi
- Transport of small molecules:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- ABC-family proteins mediated transport:
ATP + CHOL + H2O ⟶ ADP + CHOL + Pi
- Transport of small molecules:
CHOL + NPC2 ⟶ NPC2:CHOL
- ABC-family proteins mediated transport:
ATP + Cl- + H2O ⟶ ADP + Cl- + Pi
- Transport of small molecules:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- ABC-family proteins mediated transport:
ATP + CHOL + H2O ⟶ ADP + CHOL + Pi
- Transport of small molecules:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- ABC-family proteins mediated transport:
ATP + CHOL + H2O ⟶ ADP + CHOL + Pi
- Transport of small molecules:
ATP + CHOL + H2O ⟶ ADP + CHOL + Pi
- ABC-family proteins mediated transport:
ATP + CHOL + H2O ⟶ ADP + CHOL + Pi
- Transport of small molecules:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- ABC-family proteins mediated transport:
ATP + CHOL + H2O ⟶ ADP + CHOL + Pi
- Transport of small molecules:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- ABC-family proteins mediated transport:
ATP + CHOL + H2O ⟶ ADP + CHOL + Pi
- Transport of small molecules:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- ABC-family proteins mediated transport:
ATP + CHOL + H2O ⟶ ADP + CHOL + Pi
- Transport of small molecules:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- ABC-family proteins mediated transport:
ATP + CHOL + H2O ⟶ ADP + CHOL + Pi
- Transport of small molecules:
CHOL + phosphatidylcholines ⟶ 1-acyl LPC + CHEST
- ABC-family proteins mediated transport:
ATP + Cl- + H2O ⟶ ADP + Cl- + Pi
- Transport of small molecules:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- ABC-family proteins mediated transport:
ATP + CHOL + H2O ⟶ ADP + CHOL + Pi
- Transport of small molecules:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- ABC-family proteins mediated transport:
ATP + CHOL + H2O ⟶ ADP + CHOL + Pi
- Transport of small molecules:
ATP + CHOL + H2O ⟶ ADP + CHOL + Pi
- ABC-family proteins mediated transport:
ATP + CHOL + H2O ⟶ ADP + CHOL + Pi
- Neuronal System:
DA + SAM ⟶ 3MT + SAH
- Transmission across Chemical Synapses:
DA + SAM ⟶ 3MT + SAH
- Neurotransmitter receptors and postsynaptic signal transmission:
Kainate Receptors + L-Glu ⟶ Kainate receptor-glutamate complex
- Activation of kainate receptors upon glutamate binding:
Kainate Receptors + L-Glu ⟶ Kainate receptor-glutamate complex
- Ionotropic activity of kainate receptors:
Kainate Receptors + L-Glu ⟶ Kainate receptor-glutamate complex
- Activation of Na-permeable kainate receptors:
Edited Kainate receptors + L-Glu ⟶ Edited Kainate Receptor-glutamate complex
- Activation of Ca-permeable Kainate Receptor:
Kainate Receptors + L-Glu ⟶ Kainate receptor-glutamate complex
- Presynaptic function of Kainate receptors:
GRIK 3 homomer + L-Glu ⟶ GRIK3 homomer glutamate complex
- Neuronal System:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Transmission across Chemical Synapses:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Neurotransmitter receptors and postsynaptic signal transmission:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Activation of kainate receptors upon glutamate binding:
Kainate Receptors + L-Glu ⟶ Kainate receptor-glutamate complex
- Ionotropic activity of kainate receptors:
Kainate Receptors + L-Glu ⟶ Kainate receptor-glutamate complex
- Activation of Na-permeable kainate receptors:
Edited Kainate receptors + L-Glu ⟶ Edited Kainate Receptor-glutamate complex
- Activation of Ca-permeable Kainate Receptor:
Kainate Receptors + L-Glu ⟶ Kainate receptor-glutamate complex
- Presynaptic function of Kainate receptors:
GRIK 3 homomer + L-Glu ⟶ GRIK3 homomer glutamate complex
- Neuronal System:
DA + SAM ⟶ 3MT + SAH
- Transmission across Chemical Synapses:
DA + SAM ⟶ 3MT + SAH
- Neurotransmitter receptors and postsynaptic signal transmission:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Activation of kainate receptors upon glutamate binding:
Edited Kainate receptors + L-Glu ⟶ Edited Kainate Receptor-glutamate complex
- Ionotropic activity of kainate receptors:
Edited Kainate receptors + L-Glu ⟶ Edited Kainate Receptor-glutamate complex
- Activation of Na-permeable kainate receptors:
Edited Kainate receptors + L-Glu ⟶ Edited Kainate Receptor-glutamate complex
- Activation of Ca-permeable Kainate Receptor:
Kainate Receptors + L-Glu ⟶ Kainate receptor-glutamate complex
- Presynaptic function of Kainate receptors:
GRIK 3 homomer + L-Glu ⟶ GRIK3 homomer glutamate complex
- Activation of kainate receptors upon glutamate binding:
Edited Kainate receptors + L-Glu ⟶ Edited Kainate Receptor-glutamate complex
- Ionotropic activity of kainate receptors:
Edited Kainate receptors + L-Glu ⟶ Edited Kainate Receptor-glutamate complex
- Activation of Na-permeable kainate receptors:
Edited Kainate receptors + L-Glu ⟶ Edited Kainate Receptor-glutamate complex
- Activation of Ca-permeable Kainate Receptor:
Kainate Receptors + L-Glu ⟶ Kainate receptor-glutamate complex
- Presynaptic function of Kainate receptors:
GRIK 3 homomer + L-Glu ⟶ GRIK3 homomer glutamate complex
- Neuronal System:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Transmission across Chemical Synapses:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Neurotransmitter receptors and postsynaptic signal transmission:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Activation of kainate receptors upon glutamate binding:
Edited Kainate receptors + L-Glu ⟶ Edited Kainate Receptor-glutamate complex
- Ionotropic activity of kainate receptors:
Edited Kainate receptors + L-Glu ⟶ Edited Kainate Receptor-glutamate complex
- Activation of Na-permeable kainate receptors:
Edited Kainate receptors + L-Glu ⟶ Edited Kainate Receptor-glutamate complex
- Presynaptic function of Kainate receptors:
GRIK 3 homomer + L-Glu ⟶ GRIK3 homomer glutamate complex
- Neuronal System:
DA + SAM ⟶ 3MT + SAH
- Transmission across Chemical Synapses:
DA + SAM ⟶ 3MT + SAH
- Neurotransmitter receptors and postsynaptic signal transmission:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Activation of kainate receptors upon glutamate binding:
Edited Kainate receptors + L-Glu ⟶ Edited Kainate Receptor-glutamate complex
- Ionotropic activity of kainate receptors:
Edited Kainate receptors + L-Glu ⟶ Edited Kainate Receptor-glutamate complex
- Activation of Na-permeable kainate receptors:
Edited Kainate receptors + L-Glu ⟶ Edited Kainate Receptor-glutamate complex
- Activation of Ca-permeable Kainate Receptor:
Kainate Receptors + L-Glu ⟶ Kainate receptor-glutamate complex
- Presynaptic function of Kainate receptors:
GRIK 3 homomer + L-Glu ⟶ GRIK3 homomer glutamate complex
- Neuronal System:
DA + SAM ⟶ 3MT + SAH
- Transmission across Chemical Synapses:
DA + SAM ⟶ 3MT + SAH
- Neurotransmitter receptors and postsynaptic signal transmission:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Activation of kainate receptors upon glutamate binding:
Edited Kainate receptors + L-Glu ⟶ Edited Kainate Receptor-glutamate complex
- Ionotropic activity of kainate receptors:
Edited Kainate receptors + L-Glu ⟶ Edited Kainate Receptor-glutamate complex
- Activation of Na-permeable kainate receptors:
Edited Kainate receptors + L-Glu ⟶ Edited Kainate Receptor-glutamate complex
- Activation of Ca-permeable Kainate Receptor:
Kainate Receptors + L-Glu ⟶ Kainate receptor-glutamate complex
- Presynaptic function of Kainate receptors:
GRIK 3 homomer + L-Glu ⟶ GRIK3 homomer glutamate complex
- Neuronal System:
DA + SAM ⟶ 3MT + SAH
- Transmission across Chemical Synapses:
DA + SAM ⟶ 3MT + SAH
- Neurotransmitter receptors and postsynaptic signal transmission:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Activation of kainate receptors upon glutamate binding:
Edited Kainate receptors + L-Glu ⟶ Edited Kainate Receptor-glutamate complex
- Ionotropic activity of kainate receptors:
Edited Kainate receptors + L-Glu ⟶ Edited Kainate Receptor-glutamate complex
- Activation of Na-permeable kainate receptors:
Edited Kainate receptors + L-Glu ⟶ Edited Kainate Receptor-glutamate complex
- Activation of Ca-permeable Kainate Receptor:
Kainate Receptors + L-Glu ⟶ Kainate receptor-glutamate complex
- Presynaptic function of Kainate receptors:
GRIK 3 homomer + L-Glu ⟶ GRIK3 homomer glutamate complex
- Neuronal System:
DA + SAM ⟶ 3MT + SAH
- Transmission across Chemical Synapses:
DA + SAM ⟶ 3MT + SAH
- Neurotransmitter receptors and postsynaptic signal transmission:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Activation of kainate receptors upon glutamate binding:
Edited Kainate receptors + L-Glu ⟶ Edited Kainate Receptor-glutamate complex
- Ionotropic activity of kainate receptors:
Edited Kainate receptors + L-Glu ⟶ Edited Kainate Receptor-glutamate complex
- Activation of Na-permeable kainate receptors:
Edited Kainate receptors + L-Glu ⟶ Edited Kainate Receptor-glutamate complex
- Activation of Ca-permeable Kainate Receptor:
Kainate Receptors + L-Glu ⟶ Kainate receptor-glutamate complex
- Presynaptic function of Kainate receptors:
GRIK 3 homomer + L-Glu ⟶ GRIK3 homomer glutamate complex
- Activation of kainate receptors upon glutamate binding:
GRIK 2 homomer + L-Glu ⟶ Kainate receptor-glutamate complex
- Ionotropic activity of kainate receptors:
GRIK 2 homomer + L-Glu ⟶ Kainate receptor-glutamate complex
- Activation of Ca-permeable Kainate Receptor:
GRIK 2 homomer + L-Glu ⟶ Kainate receptor-glutamate complex
- Neuronal System:
DA + SAM ⟶ 3MT + SAH
- Transmission across Chemical Synapses:
DA + SAM ⟶ 3MT + SAH
- Neurotransmitter receptors and postsynaptic signal transmission:
Edited Kainate receptors + L-Glu ⟶ Edited Kainate Receptor-glutamate complex
- Activation of kainate receptors upon glutamate binding:
Edited Kainate receptors + L-Glu ⟶ Edited Kainate Receptor-glutamate complex
- Ionotropic activity of kainate receptors:
Edited Kainate receptors + L-Glu ⟶ Edited Kainate Receptor-glutamate complex
- Activation of Na-permeable kainate receptors:
Edited Kainate receptors + L-Glu ⟶ Edited Kainate Receptor-glutamate complex
- Activation of Ca-permeable Kainate Receptor:
Kainate Receptors + L-Glu ⟶ Kainate receptor-glutamate complex
- Presynaptic function of Kainate receptors:
GRIK 3 homomer + L-Glu ⟶ GRIK3 homomer glutamate complex
- Neuronal System:
DA + SAM ⟶ 3MT + SAH
- Transmission across Chemical Synapses:
DA + SAM ⟶ 3MT + SAH
- Neurotransmitter receptors and postsynaptic signal transmission:
ATP + Ca2+ ⟶ Ca2+ + PPi + cAMP
- Activation of kainate receptors upon glutamate binding:
Edited Kainate receptors + L-Glu ⟶ Edited Kainate Receptor-glutamate complex
- Ionotropic activity of kainate receptors:
Edited Kainate receptors + L-Glu ⟶ Edited Kainate Receptor-glutamate complex
- Activation of Na-permeable kainate receptors:
Edited Kainate receptors + L-Glu ⟶ Edited Kainate Receptor-glutamate complex
- Activation of Ca-permeable Kainate Receptor:
Kainate Receptors + L-Glu ⟶ Kainate receptor-glutamate complex
- Presynaptic function of Kainate receptors:
GRIK 3 homomer + L-Glu ⟶ GRIK3 homomer glutamate complex
- Neuronal System:
DA + SAM ⟶ 3MT + SAH
- Transmission across Chemical Synapses:
DA + SAM ⟶ 3MT + SAH
- Neurotransmitter receptors and postsynaptic signal transmission:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Activation of kainate receptors upon glutamate binding:
GRIK 3 homomer + L-Glu ⟶ GRIK3 homomer glutamate complex
- Ionotropic activity of kainate receptors:
Edited Kainate receptors + L-Glu ⟶ Edited Kainate Receptor-glutamate complex
- Activation of Na-permeable kainate receptors:
Edited Kainate receptors + L-Glu ⟶ Edited Kainate Receptor-glutamate complex
- Activation of Ca-permeable Kainate Receptor:
Kainate Receptors + L-Glu ⟶ Kainate receptor-glutamate complex
- Presynaptic function of Kainate receptors:
GRIK 3 homomer + L-Glu ⟶ GRIK3 homomer glutamate complex
- Activation of Ca-permeable Kainate Receptor:
Kainate Receptors + L-Glu ⟶ Kainate receptor-glutamate complex
BioCyc(64)
- tetrachloroethene degradation:
A + H+ + chloride + ethene ⟶ A(H2) + chloroethene
- γ-hexachlorocyclohexane degradation:
(3R,6R)-1,3,4,6-tetrachlorocyclohexa-1,4-diene ⟶ 1,2,4-trichlorobenzene + H+ + chloride
- 2-chlorobenzoate degradation:
2-chlorobenzoate + H+ + NADH + O2 ⟶ CO2 + NAD+ + catechol + chloride
- carbon tetrachloride degradation II:
A(H2) + carbon tetrachloride ⟶ A + H+ + chloride + trichloromethyl radical
- pyrrolnitrin biosynthesis:
7-chloro-L-tryptophan + A(H2) + O2 ⟶ A + CO2 + H2O + monodechloroaminopyrrolnitrin
- 3,4,6-trichlorocatechol degradation:
2,3,5-trichloro-cis,cis-muconate + H+ ⟶ 2-chloro-2-(2,4-dichloro-5-oxofuran-2-yl)acetate
- 5-chloro-3-methyl-catechol degradation:
2-(2-chloro-4-methyl-5-oxofuran-2-yl)acetate ⟶ 4-chloro-2-methyl-cis,cis-muconate + H+
- 5-chloro-3-methyl-catechol degradation:
2-(2-chloro-4-methyl-5-oxofuran-2-yl)acetate ⟶ 2-methyl-trans-dienelactone + H+ + chloride
- atrazine degradation III:
H+ + H2O + hydroxyatrazine ⟶ N-ethylammelide + isopropylamine
- atrazine degradation I (aerobic):
H2O + atrazine ⟶ H+ + chloride + hydroxyatrazine
- superpathway of atrazine degradation:
H2O + atrazine ⟶ H+ + chloride + hydroxyatrazine
- 2,4,6-trichlorophenol degradation:
2,6-dichlorohydroquinone + FADH2 + O2 ⟶ 6-chlorohydroxyquinol + FAD + H+ + H2O + chloride
- pentachlorophenol degradation:
2,3,5,6-tetrachlorohydroquinone + H+ + NAD+ ⟶ 2,3,5,6-tetrachloro-1,4-benzoquinone + NADH
- 1,2-dichloroethane degradation:
1,2-dichloroethane + H2O ⟶ 2-chloroethanol + H+ + chloride
- 1,2-dichloroethane degradation:
H2O + chloroacetate ⟶ H+ + chloride + glycolate
- 1,2-dichloroethane degradation:
H2O + chloroacetate ⟶ H+ + chloride + glycolate
- 1,2-dichloroethane degradation:
1,2-dichloroethane + H2O ⟶ 2-chloroethanol + H+ + chloride
- 1,2-dichloroethane degradation:
1,2-dichloroethane + H2O ⟶ 2-chloroethanol + H+ + chloride
- 1,2-dichloroethane degradation:
H2O + chloroacetate ⟶ H+ + chloride + glycolate
- deethylsimazine degradation:
H2O + deethylsimazine ⟶ N-ethylammeline + H+ + chloride
- deethylsimazine degradation:
H2O + deethylsimazine ⟶ N-ethylammeline + H+ + chloride
- 2,4,5-trichlorophenoxyacetate degradation:
5-chlorohydroxyquinol + FAD ⟶ 5-chlorohydroxyquinone + FADH2
- chlorosalicylate degradation:
(2R)-2-chloro-2,5-dihydro-5-oxofuran-2-acetate + H2O ⟶ 2-maleylacetate + H+ + chloride
- 6'-dechloromelleolide F biosynthesis:
(2E,6E)-farnesyl diphosphate ⟶ Δ2,4-protoilludene + diphosphate
- chlorosalicylate degradation:
(2R)-2-chloro-2,5-dihydro-5-oxofuran-2-acetate ⟶ CO2 + chloride + protoanemonin
- methylhalides biosynthesis (plants):
SAM + iodide ⟶ SAH + methyl iodide
- methylhalides biosynthesis (plants):
SAM + iodide ⟶ SAH + methyl iodide
- 2,4-dichlorotoluene degradation:
2-(2,4-dichloro-5-oxofuran-2-yl)propanoate ⟶ 3,5-dichloro-2-methyl-muconate + H+
- trichloroethene degradation:
O2 + trichloroethanol ⟶ 2,2,2-trichloroacetate + H+ + H2O
- 3,5,6-trichloro-2-pyridinol degradation:
3,5,6-trichloro-2-pyridinol + FADH2 + H2O + O2 ⟶ 3,6-dihydroxypyridine-2,5-dione + FAD + H+ + chloride
- 4,5-dichlorocatechol degradation:
2-chloro-2-(2-chloro-5-oxofuran-2-yl)acetate ⟶ 2,3-dichloro-cis,cis-muconate + H+
- 3,4-dichlorotoluene degradation:
2-chloro-2-(2-chloro-4-methyl-5-oxofuran-2-yl)acetate ⟶ 2,3-dichloro-5-methyl-muconate + H+
- salinosporamide A biosynthesis:
5'-chloro-5'-deoxyadenosine + phosphate ⟶ 5-chloro-5-deoxyribose 1-phosphate + adenine
- salinosporamide A biosynthesis:
5'-deoxy-5'-chloroadenosine + phosphate ⟶ 5-chloro-5-deoxyribose 1-phosphate + adenine
- salinosporamide A biosynthesis:
5'-deoxy-5'-chloroadenosine + phosphate ⟶ 5-chloro-5-deoxyribose 1-phosphate + adenine
- geodin biosynthesis:
H+ + chloride + hydrogen peroxide + sulochrin ⟶ H2O + dihydrogeodin
- 1,4-dichlorobenzene degradation:
1,4-dichlorobenzene + H+ + NADH + O2 ⟶ (1R,2S)-3,6-dichlorocyclohexa-3,5-diene-1,2-diol + NAD+
- 3,5-dichlorocatechol degradation:
3,5-dichlorocatechol + O2 ⟶ 2,4-dichloro-cis,cis-muconate + H+
- 3,5-dichlorocatechol degradation:
3,5-dichlorocatechol + O2 ⟶ 2,4-dichloro-cis,cis-muconate + H+
- perchlorate reduction:
O2 + chloride ⟶ chlorite
- 2-chloroacrylate degradation I:
(R)-lactate + UQ ⟶ UQH2 + pyruvate
- 2-chloroacrylate degradation II:
2-chloro-2-hydroxypropanoate ⟶ H+ + chloride + pyruvate
- 1,2,4,5-tetrachlorobenzene degradation:
(1R,2S)-1,3,4,6-tetrachlorocyclohexa-3,5-diene-1,2-diol ⟶ 3,4,6-trichlorocatechol + H+ + chloride
- 12-epi-fischerindole biosynthesis:
D-ribulose 5-phosphate + trp ⟶ (2S)-3-(1H-indol-3-yl)-2-isocyanopropanoate + H+ + H2O + acetol + formaldehyde + phosphate
- 3-chlorobenzoate degradation II (via protocatechuate):
6-chloro-2-hydroxy-4-carboxymuconate-6-semialdehyde ⟶ 2-pyrone-4,6-dicarboxylate + H+ + chloride
- 3-chlorobenzoate degradation III (via gentisate):
3-chlorobenzoate + H2O ⟶ 3-hydroxybenzoate + H+ + chloride
- 3,4-dichlorobenzoate degradation:
3,4-dichlorobenzoate-cis-4,5-diol ⟶ 5-chloroprotocatechuate + H+ + chloride
- 4-chlorobenzoate degradation:
4-chlorobenzoyl-coA + H2O ⟶ 4-hydroxybenzoyl-CoA + H+ + chloride
- rebeccamycin biosynthesis:
4'-O-demethylrebeccamycin + SAM ⟶ H+ + SAH + rebeccamycin
- pyoluteorin biosynthesis:
FADH2 + O2 + a 5-chloro-1H-pyrrole-2-carbonyl-[PltL prolyl-carrier protein] + chloride ⟶ FAD + H2O + a 4,5-dichloro-1H-pyrrole-2-carbonyl-[PltL prolyl-carrier protein]
- chlorotetracycline biosynthesis:
FADH2 + O2 + chloride + tetracycline ⟶ 7-chlorotetracycline + FAD + H+ + H2O
- 2,5-dichlorotoluene degradation:
3,6-dichloro-3a-methyl-dihydro-3H-furo[3,2-b]furan-2,5-dione ⟶ 2-chloro-3-methyl-dienelactone + H+ + chloride
- 3-chlorocatechol degradation I (ortho):
3-chlorocatechol + O2 ⟶ 2-chloro-cis,cis-muconate + H+
- 3-chlorocatechol degradation II (ortho):
3-chlorocatechol + O2 ⟶ 2-chloro-cis,cis-muconate + H+
- 3-chlorocatechol degradation III (meta pathway):
3-chlorocatechol + O2 ⟶ 5-chlorocarbonyl-2-hydroxy-penta-2,4-dienate + H+
- 4-chlorocatechol degradation:
4-chlorocatechol + O2 ⟶ 3-chloro-cis,cis-muconate + H+
- butachlor degradation:
2,6-diethylaniline ⟶ aniline
- chlorate reduction:
A(H2) + chlorate ⟶ A + H+ + H2O + chlorite
- 4-chlorocatechol degradation:
4-chlorocatechol + O2 ⟶ 3-chloro-cis,cis-muconate + H+
- 3-chlorocatechol degradation II (ortho):
cis-dienelactone + H+ + chloride ⟶ (+)-5-chloromuconolactone
- 4-chlorocatechol degradation:
cis-dienelactone + chloride ⟶ 3-chloro-cis,cis-muconate
- 2,4-dichlorotoluene degradation:
2,4-dichlorotoluene + H+ + NADH + O2 ⟶ 4,6-dichloro-3-methyl-cis-1,2-dihydro-1,2-dihydroxycyclohexa-3,5-diene + NAD+
- 4,5-dichlorocatechol degradation:
2-chloro-2-(2-chloro-5-oxofuran-2-yl)acetate ⟶ 5-chloro-trans-dienelactone + H+ + chloride
- 5-chloro-3-methyl-catechol degradation:
2-(2-chloro-4-methyl-5-oxofuran-2-yl)acetate ⟶ 2-methyl-cis-dienelactone + H+ + chloride
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(115)
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + iodide ⟶ SAH + methyl iodide
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + iodide ⟶ SAH + methyl iodide
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + iodide ⟶ SAH + methyl iodide
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + iodide ⟶ SAH + methyl iodide
- trichloroethene degradation:
2,2,2-trichloroacetate + NADPH + O2 ⟶ H+ + NADP+ + chloride + oxalate
- trichloroethene degradation:
O2 + trichloroethene ⟶ 2,2,2-trichloroacetate + H+
- trichloroethene degradation:
2,2,2-trichloroacetate + NADPH + O2 ⟶ H+ + NADP+ + chloride + oxalate
COVID-19 Disease Map(0)
PathBank(4)
- Ifosfamide Action Pathway:
Ifosfamide + Oxygen + Water ⟶ 2-Dechloroethylifosfamide + 3-Dechloroethylifosfamide + Chloroacetaldehyde + Hydrogen peroxide
- Ifosfamide Metabolism Pathway:
Ifosfamide + Oxygen + Water ⟶ 2-Dechloroethylifosfamide + 3-Dechloroethylifosfamide + Chloroacetaldehyde + Hydrogen peroxide
- Cyclophosphamide Action Pathway:
Aldophosphamide + Glutathione ⟶ 4-Glutathionyl cyclophosphamide + Water
- Cyclophosphamide Metabolism Pathway:
Aldophosphamide + Glutathione ⟶ 4-Glutathionyl cyclophosphamide + Water
PharmGKB(0)
1 个相关的物种来源信息
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Yujia Ye, Min Leng, Shengjie Chai, Lihong Yang, Longcheng Ren, Wen Wan, Huawei Wang, Longjun Li, Chaozhong Li, Zhaohui Meng. Antiplatelet effects of the CEACAM1-derived peptide QDTT.
Platelets.
2024 Dec; 35(1):2308635. doi:
10.1080/09537104.2024.2308635
. [PMID: 38345065] - Jingxia Guo, Chenghao Ge, Guo Wang, Dongmei Zhou. Mechanisms of chloride to promote the uptake and accumulation of cadmium in rice (Oryza sativa L.).
The Science of the total environment.
2024 May; 926(?):172046. doi:
10.1016/j.scitotenv.2024.172046
. [PMID: 38552983] - S Satheesh, M M El-Sherbiny. Toxicity assays and in silico approach to assess the impacts of chlorine dioxide on survival, respiration and some biochemical markers of marine zooplankton.
Marine environmental research.
2024 May; 197(?):106469. doi:
10.1016/j.marenvres.2024.106469
. [PMID: 38531260] - Li Yang, Jiashi Peng, Ting Tang. [Transcriptional analysis of the molecular response of Arabidopsis to manganese stress and recovery].
Sheng wu gong cheng xue bao = Chinese journal of biotechnology.
2024 Apr; 40(4):1138-1156. doi:
10.13345/j.cjb.230516
. [PMID: 38658154] - Xiaoyin Zhang, Zhanbo Xiong, Yue He, Nan Zheng, Shengguo Zhao, Jiaqi Wang. Epiberberine: a potential rumen microbial urease inhibitor to reduce ammonia release screened by targeting UreG.
Applied microbiology and biotechnology.
2024 Apr; 108(1):289. doi:
10.1007/s00253-024-13131-4
. [PMID: 38587649] - Agnieszka Tomczyk-Warunek, Karolina Turżańska, Agnieszka Posturzyńska, Filip Kowal, Tomasz Blicharski, Inés Torné Pano, Anna Winiarska-Mieczan, Anna Nikodem, Sławomir Dresler, Ireneusz Sowa, Magdalena Wójciak, Piotr Dobrowolski. Influence of Various Strontium Formulations (Ranelate, Citrate, and Chloride) on Bone Mineral Density, Morphology, and Microarchitecture: A Comparative Study in an Ovariectomized Female Mouse Model of Osteoporosis.
International journal of molecular sciences.
2024 Apr; 25(7):. doi:
10.3390/ijms25074075
. [PMID: 38612883] - Dongmei Wei, Shaojun Chen, Di Xiao, Rongtao Chen, Yuanting Meng. Positive association between sodium-to-chloride ratio and in-hospital mortality of acute heart failure.
Scientific reports.
2024 04; 14(1):7846. doi:
10.1038/s41598-024-58632-4
. [PMID: 38570623] - Yajun Cai, Jianwei Yang, Zhonglyu Ran, Fantong Bu, Xu Chen, Muhammad Shaaban, Qi-An Peng. Optimizing Typha biochar with phosphoric acid modification and ferric chloride impregnation for hexavalent chromium remediation in water and soil.
Chemosphere.
2024 Apr; 354(?):141739. doi:
10.1016/j.chemosphere.2024.141739
. [PMID: 38503383] - Hatice Merve Güven, Havva Ateş. A holistic approach to the recovery of valuable substances from the treatment sludge formed from chemical precipitation of fruit processing industry wastewater.
The Science of the total environment.
2024 Mar; 917(?):170372. doi:
10.1016/j.scitotenv.2024.170372
. [PMID: 38280603] - Jinzhen Wei, Gang Wang, Min Lai, Yipin Zhang, Fengru Li, Yongwang Wang, Yongxing Tan. Faecal Microbiota Transplantation Alleviates Ferroptosis after Ischaemic Stroke.
Neuroscience.
2024 Mar; 541(?):91-100. doi:
10.1016/j.neuroscience.2024.01.021
. [PMID: 38296019] - Bar Manori, Alisa Vaknin, Pavla Vaňková, Anat Nitzan, Ronen Zaidel-Bar, Petr Man, Moshe Giladi, Yoni Haitin. Chloride intracellular channel (CLIC) proteins function as fusogens.
Nature communications.
2024 Mar; 15(1):2085. doi:
10.1038/s41467-024-46301-z
. [PMID: 38453905] - Yeshan Zhang, Xue Han, Jun Zhao, Menglan Gan, Yaya Chen, Jinxia Zhang, Yu He, Mingkai Wu, Hai Liu. Process optimization and character evaluation of Bletilla striata polysaccharide (BSP) and chitosan (CS) composite hemostatic sponge (BSP-CS).
Biointerphases.
2024 Mar; 19(2):. doi:
10.1116/6.0003369
. [PMID: 38526056] - Neha Yadav, Ajay Kumar, Mamta Sawariya, Naveen Kumar, Himanshu Mehra, Sunil Kumar, Vikender Kaur, Sunder Singh Arya. Effect of GA3 and calcium on growth, biochemical, and fatty acid composition of linseed under chloride-dominated salinity.
Environmental science and pollution research international.
2024 Mar; 31(11):16958-16971. doi:
10.1007/s11356-024-32325-x
. [PMID: 38326686] - Jesper Levring, Jue Chen. Structural identification of a selectivity filter in CFTR.
Proceedings of the National Academy of Sciences of the United States of America.
2024 Feb; 121(9):e2316673121. doi:
10.1073/pnas.2316673121
. [PMID: 38381791] - Cesc Múrria, Alberto Maceda-Veiga, Carlos Barata, Joan Gomà, Melissa Faria, Adrià Antich, Miquel A Arnedo, Núria Bonada, Narcís Prat. From biomarkers to community composition: Negative effects of UV/chlorine-treated reclaimed urban wastewater on freshwater biota.
The Science of the total environment.
2024 Feb; 912(?):169561. doi:
10.1016/j.scitotenv.2023.169561
. [PMID: 38142994] - Aleksandra Koźmińska, Iwona Kamińska, Ewa Hanus-Fajerska. Sulfur-Oxidizing Bacteria Alleviate Salt and Cadmium Stress in Halophyte Tripolium pannonicum (Jacq.) Dobrocz.
International journal of molecular sciences.
2024 Feb; 25(5):. doi:
10.3390/ijms25052455
. [PMID: 38473702] - Eunyoung Lee, Kyung Jin Min, Hanna Choi, Ki Young Park. Impact of dewatering inorganic coagulants on anaerobic digestion treating food waste leachate.
Bioresource technology.
2024 Feb; 393(?):130136. doi:
10.1016/j.biortech.2023.130136
. [PMID: 38040303] - Shizheng Jiang, Juxian Guo, Imran Khan, Mohammad Shah Jahan, Kang Tang, Guihua Li, Xian Yang, Mei Fu. Comparative Metabolome and Transcriptome Analyses Reveal the Regulatory Mechanism of Purple Leafstalk Production in Taro (Colocasia esculenta L. Schott).
Genes.
2024 Jan; 15(1):. doi:
10.3390/genes15010138
. [PMID: 38275619] - Mahsa Afzali, Seyed Ataollah Sadat Shandiz, Zahra Keshtmand. Preparation of biogenic silver chloride nanoparticles from microalgae Spirulina Platensis extract: anticancer properties in MDA-MB231 breast cancer cells.
Molecular biology reports.
2024 Jan; 51(1):62. doi:
10.1007/s11033-023-08970-9
. [PMID: 38170277] - L M Ruiz, A Checa, J I Perez, J M Torre-Marín, A Muñoz-Ubiña, M A Gómez. Effect of FeCl3 concentration in chemically enhanced primary treatment on the performance of a conventional wastewater treatment plant. A case study.
Journal of environmental science and health. Part A, Toxic/hazardous substances & environmental engineering.
2024; 59(1):33-39. doi:
10.1080/10934529.2024.2328449
. [PMID: 38475980] - Arwa Abdulkreem Al-Huqail, Suliman Mohammed Suliman Alghanem, Haifa Abdulaziz Sakit Alhaithloul, Muhammad Hamzah Saleem, Amany H A Abeed. Combined exposure of PVC-microplastic and mercury chloride (HgCl2) in sorghum (Pennisetum glaucum L.) when its seeds are primed titanium dioxide nanoparticles (TiO2-NPs).
Environmental science and pollution research international.
2024 Jan; 31(5):7837-7852. doi:
10.1007/s11356-023-31733-9
. [PMID: 38170361] - Boris P Gladkikh, Dmitry V Danilov, Vladimir S D'yachenko, Gennady M Butov. 1,3-Dichloroadamantyl-Containing Ureas as Potential Triple Inhibitors of Soluble Epoxide Hydrolase, p38 MAPK and c-Raf.
International journal of molecular sciences.
2023 Dec; 25(1):. doi:
10.3390/ijms25010338
. [PMID: 38203510] - Yanqing Wu, Jiao Liu, Hao Wu, Yiming Zhu, Irshad Ahmad, Guisheng Zhou. The Roles of Mepiquate Chloride and Melatonin in the Morpho-Physiological Activity of Cotton under Abiotic Stress.
International journal of molecular sciences.
2023 Dec; 25(1):. doi:
10.3390/ijms25010235
. [PMID: 38203405] - Sribash Das, Rama Karn, Mohit Kumar, Soumya Srimayee, Debasis Manna. A chloride-responsive molecular switch: driving ion transport and empowering antibacterial properties.
Organic & biomolecular chemistry.
2023 12; 22(1):114-119. doi:
10.1039/d3ob01826a
. [PMID: 38050426] - Lulu Liu, Xiaofei Li, Chao Wang, Yuxin Ni, Xunyan Liu. The Role of Chloride Channels in Plant Responses to NaCl.
International journal of molecular sciences.
2023 Dec; 25(1):. doi:
10.3390/ijms25010019
. [PMID: 38203189] - Yen Li Yung, Shyam Lakshmanan, Chi Ming Chu, Heng Jin Tham, Sivakumar Kumaresan. Optimization of water washing for mitigation of 3-monochloropropane 1,2 diol ester in palm oil physical refining process.
Food additives & contaminants. Part A, Chemistry, analysis, control, exposure & risk assessment.
2023 Dec; 40(12):1541-1550. doi:
10.1080/19440049.2023.2283873
. [PMID: 38011619] - Muhammad Rizwan Haider, Wen-Li Jiang, Jing-Long Han, Ayyaz Mahmood, Ridha Djellabi, Huiling Liu, Muhammad Bilal Asif, Ai-Jie Wang. Boosting Hydroxyl Radical Yield via Synergistic Activation of Electrogenerated HOCl/H2O2 in Electro-Fenton-like Degradation of Contaminants under Chloride Conditions.
Environmental science & technology.
2023 Nov; 57(47):18668-18679. doi:
10.1021/acs.est.2c07752
. [PMID: 36730709] - Songxiong Zhong, Liping Fang, Xiaomin Li, Tongxu Liu, Pei Wang, Ruichuan Gao, Guojun Chen, Haoming Yin, Yang Yang, Fang Huang, Fangbai Li. Roles of Chloride and Sulfate Ions in Controlling Cadmium Transport in a Soil-Rice System as Evidenced by the Cd Isotope Fingerprint.
Environmental science & technology.
2023 Nov; 57(46):17920-17929. doi:
10.1021/acs.est.3c04132
. [PMID: 37755710] - Muhammad Sajid Aqeel Ahmad, Mansoor Hameed, Muhammad Kaleem, Sana Fatima, Farooq Ahmad, Muhammad Farooq, Mehtab Maratib, Iqra Aziz. Foliar architecture differentially restrains metal sequestration capacity in wheat grains (Triticum aestivum L.) grown in hyper-chloride-contaminated soils.
Environmental science and pollution research international.
2023 Nov; 30(53):113457-113480. doi:
10.1007/s11356-023-30340-y
. [PMID: 37851260] - Deo-Gratias Sourabie, Didier Hebert, Lucilla Benedetti, Elsa Vitorge, Beatriz Lourino-Cabana, Valery Guillou, Denis Maro. First quantitative constraints on chlorine 36 dry deposition velocities on grassland: Comparing measurements and modelling results.
Journal of environmental radioactivity.
2023 Nov; 268-269(?):107264. doi:
10.1016/j.jenvrad.2023.107264
. [PMID: 37572511] - Konrad Wołowski, Joanna Lenarczyk, Joanna Augustynowicz, Ewa Sitek. Exploring a unique water ecosystem under long-term exposure to hexavalent chromium - An in situ study of natural diatom (Bacillariophyceae) communities.
Chemosphere.
2023 Nov; 340(?):139941. doi:
10.1016/j.chemosphere.2023.139941
. [PMID: 37634594] - Yong-Qiang Gao, Hugo Morin, Laurence Marcourt, Tsu-Hao Yang, Jean-Luc Wolfender, Edward E Farmer. Chloride, glutathiones, and insect-derived elicitors introduced into the xylem trigger electrical signaling.
Plant physiology.
2023 Oct; ?(?):. doi:
10.1093/plphys/kiad584
. [PMID: 37925642] - Qianwen Guo, Ziyue Yin, Junfei Cheng, Xiaojing Zhang, Rong Wang, Wenbin Li. Protective effect of heme chloride on hypoxia-induced tissue injury in mice.
Zhong nan da xue xue bao. Yi xue ban = Journal of Central South University. Medical sciences.
2023 Oct; 48(10):1437-1444. doi:
10.11817/j.issn.1672-7347.2023.230204
. [PMID: 38432874] - Khadega Khamis Moh Alazoumi, Pradakshina Sharma, Asimul Islam, Humaira Farooqi. Mitigation of the Deleterious Effect of Heavy Metals on the Conformational Stability of Ubiquitin through Osmoprotectants.
Cell biochemistry and biophysics.
2023 Oct; ?(?):. doi:
10.1007/s12013-023-01188-3
. [PMID: 37843791] - Yoshiyuki Hattori, Min Tang, Aya Aoki, Momoka Ezaki, Hana Sakai, Kei-Ichi Ozaki. Effect of the combination of cationic lipid and phospholipid on gene-knockdown using siRNA lipoplexes in breast tumor cells and mouse lungs.
Molecular medicine reports.
2023 Oct; 28(4):. doi:
10.3892/mmr.2023.13067
. [PMID: 37594053] - Qi-Lin Lu, Jiayin Wu, Hanchen Wang, Biao Huang, Hongbo Zeng. Plant-inspired multifunctional fluorescent cellulose nanocrystals intelligent nanocomposite hydrogel.
International journal of biological macromolecules.
2023 Sep; 249(?):126019. doi:
10.1016/j.ijbiomac.2023.126019
. [PMID: 37542759] - Leon M Espira, Brook Gessese, Bayable A Kassa, Chia-Chen Wu, Joshua Riley, Seifedin Bedru, Geremew Sahilu, Adey Desta, Kaleab Baye, Andrew D Jones, Nancy G Love, Joseph N S Eisenberg. Multiscalar Evaluation of the Water Distribution System and Diarrheal Disease Risk in Addis Ababa, Ethiopia.
Environmental science & technology.
2023 09; 57(36):13313-13324. doi:
10.1021/acs.est.2c08976
. [PMID: 37642551] - Antonio Hrvat, Mathias Schmidt, Bernd Wagner, Denise Zwanziger, Rainer Kimmig, Lothar Volbracht, Sven Brandau, Nina Mallmann-Gottschalk. Electrolyte imbalance causes suppression of NK and T cell effector function in malignant ascites.
Journal of experimental & clinical cancer research : CR.
2023 Sep; 42(1):235. doi:
10.1186/s13046-023-02798-8
. [PMID: 37684704] - Mushui Shu, Ding Ding, Yeerlin Asihaer, Zhizhen Xu, Yan Dou, Ling Guo, Mo Dan, Yu Wang, Yifei Hu. Determination of 25 quaternary ammonium compounds in sludge by liquid chromatography-mass spectrometry.
Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.
2023 Sep; 39(9):1435-1444. doi:
10.1007/s44211-023-00354-0
. [PMID: 37204629] - Hanan A Abd Elmonem, Reham M Morsi, Doaa S Mansour, El-Sayed R El-Sayed. Myco-fabricated ZnO nanoparticles ameliorate neurotoxicity in mice model of Alzheimer's disease via acetylcholinesterase inhibition and oxidative stress reduction.
Biometals : an international journal on the role of metal ions in biology, biochemistry, and medicine.
2023 Aug; ?(?):. doi:
10.1007/s10534-023-00525-6
. [PMID: 37556014] - Teresia Svensson, Anders Löfgren, Peter Saetre, Ulrik Kautsky, David Bastviken. Chlorine Distribution in Soil and Vegetation in Boreal Habitats along a Moisture Gradient from Upland Forest to Lake Margin Wetlands.
Environmental science & technology.
2023 08; 57(30):11067-11074. doi:
10.1021/acs.est.2c09571
. [PMID: 37469326] - Sivapriya Jothilingam, Naveenkumar Manickam, Ravichandran Paramasivam. Kinetic study for removal of cationic hexamethyl pararosaniline chloride dye using phytoremediation.
Environmental science and pollution research international.
2023 Aug; 30(39):91292-91299. doi:
10.1007/s11356-023-28774-5
. [PMID: 37474863] - Ana Carolina Fujimori de Oliveira, Victor Gustavo Balera Brito, Guilherme Henrique Alves Dos Santos Ramos, Matheus Lima Cypriano Werlang, Gabriela Alice Fiais, Rita Cássia Menegati Dornelles, Cristina Antoniali, Ana Cláudiade Melo Stevanato Nakamune, Walid D Fakhouri, Antonio Hernandes Chaves-Neto. Analysis of salivary flow rate, biochemical composition, and redox status in orchiectomized spontaneously hypertensive rats.
Archives of oral biology.
2023 Aug; 152(?):105732. doi:
10.1016/j.archoralbio.2023.105732
. [PMID: 37257259] - James Farnan, John P Vanden Heuvel, Frank L Dorman, Nathaniel R Warner, William D Burgos. Toxicity and chemical composition of commercial road palliatives versus oil and gas produced waters.
Environmental pollution (Barking, Essex : 1987).
2023 Jul; ?(?):122184. doi:
10.1016/j.envpol.2023.122184
. [PMID: 37453689] - Chuan Ouyang, Xuan Ma, Jiali Zhao, Siqi Li, Chen Liu, Yunfeng Tang, Jian Zhou, Junhao Chen, Xiaohong Li, Wanwei Li. Oleanolic acid inhibits mercury chloride induced-liver ferroptosis by regulating ROS/iron overload.
Ecotoxicology and environmental safety.
2023 Jun; 258(?):114973. doi:
10.1016/j.ecoenv.2023.114973
. [PMID: 37163906] - Jianfei Song, Mengyuan Han, Xiaoyue Zhu, Huan Li, Yuansheng Ning, Weiwei Zhang, Hongqiang Yang. MhCLC-c1, a Cl channel c homolog from Malus hupehensis, alleviates NaCl-induced cell death by inhibiting intracellular Cl- accumulation.
BMC plant biology.
2023 Jun; 23(1):306. doi:
10.1186/s12870-023-04270-3
. [PMID: 37286968] - Pan Yin, Xiaoyan Liang, Hanshu Zhao, Zhipeng Xu, Limei Chen, Xiaohong Yang, Feng Qin, Jingbo Zhang, Caifu Jiang. Cytokinin signaling promotes salt tolerance by modulating shoot chloride exclusion in maize.
Molecular plant.
2023 06; 16(6):1031-1047. doi:
10.1016/j.molp.2023.04.011
. [PMID: 37101396] - B Haridevamuthu, David Raj, D Kesavan, Subramani Muthuraman, Rajendran Saravana Kumar, Shahid Mahboob, Khalid Abdullah Al-Ghanim, Bader O Almutairi, Selvaraj Arokiyaraj, Pushparathinam Gopinath, Jesu Arockiaraj. Trihydroxy piperlongumine protects aluminium induced neurotoxicity in zebrafish: Behavioral and biochemical approach.
Comparative biochemistry and physiology. Toxicology & pharmacology : CBP.
2023 Jun; 268(?):109600. doi:
10.1016/j.cbpc.2023.109600
. [PMID: 36889534] - Xu Cao, Guy M Lenk, Vedrana Mikusevic, Joseph A Mindell, Miriam H Meisler. The chloride antiporter CLCN7 is a modifier of lysosome dysfunction in FIG4 and VAC14 mutants.
PLoS genetics.
2023 06; 19(6):e1010800. doi:
10.1371/journal.pgen.1010800
. [PMID: 37363915] - Yunxiang Bai, Beibei Liu, Jiachen Li, Minghui Li, Zheng Yao, Liangliang Dong, Dewei Rao, Peng Zhang, Xingzhong Cao, Luis Francisco Villalobos, Chunfang Zhang, Quan-Fu An, Menachem Elimelech. Microstructure optimization of bioderived polyester nanofilms for antibiotic desalination via nanofiltration.
Science advances.
2023 May; 9(18):eadg6134. doi:
10.1126/sciadv.adg6134
. [PMID: 37146143] - Parniya Arooj, David V Morrissy, Yvonne McCarthy, Tamara Vagg, Mairead McCarthy, Claire Fleming, Mary Daly, Joseph A Eustace, Desmond M Murphy, B J Plant. ROCK STUDY in CF: sustained anti-inflammatory effects of lumacaftor-ivacaftor in sputum and peripheral blood samples of adult patients with cystic fibrosis-an observational study.
BMJ open respiratory research.
2023 May; 10(1):. doi:
10.1136/bmjresp-2022-001590
. [PMID: 37130650] - Maria Schück, Maria Greger. Salinity and temperature influence removal levels of heavy metals and chloride from water by wetland plants.
Environmental science and pollution research international.
2023 Apr; 30(20):58030-58040. doi:
10.1007/s11356-023-26490-8
. [PMID: 36977875] - Aditya Velidandi, Mounika Sarvepalli, Prasad Aramanda, Maha Lakshmi Amudala, Rama Raju Baadhe. Effect of size on physicochemical, antibacterial, and catalytic properties of Neolamarckia cadamba (burflower-tree) synthesized silver/silver chloride nanoparticles.
Environmental science and pollution research international.
2023 Mar; ?(?):. doi:
10.1007/s11356-023-26427-1
. [PMID: 36959403] - Ismet Burcu Turkyilmaz. Oxidative Brain Injury Induced by Amiodarone in Rats: Protective Effect of S-methyl Methionine Sulfonium Chloride.
Acta chimica Slovenica.
2023 Mar; 70(1):131-138. doi:
10.17344/acsi.2022.7899
. [PMID: 37005613] - Yingxia Hu, Haijie Wu, Chenying Lu, Hanqing Xu, Boyang Li, Wanchun Guan, Mingjiang Wu, Yitian Gao, Haibin Tong. Cadmium chloride exposure impairs the growth and behavior of Drosophila via ferroptosis.
The Science of the total environment.
2023 Mar; 865(?):161183. doi:
10.1016/j.scitotenv.2022.161183
. [PMID: 36581278] - Shazia Dilbar, Hassan Sher, Dalal Nasser Binjawhar, Ahmad Ali, Iftikhar Ali. A Novel Based Synthesis of Silver/Silver Chloride Nanoparticles from Stachys emodi Efficiently Controls Erwinia carotovora, the Causal Agent of Blackleg and Soft Rot of Potato.
Molecules (Basel, Switzerland).
2023 Mar; 28(6):. doi:
10.3390/molecules28062500
. [PMID: 36985472] - Mingzhi Zhang, Jun Hou, Zijun Yang, Miao Wu, Jun Wu, Lingzhan Miao. A new efficient tannin-based flocculant made by a new modification idea: multiple rounds of Mannich reaction with aminated tannins as ammonia chloride.
Environmental science and pollution research international.
2023 Mar; 30(12):34996-35008. doi:
10.1007/s11356-022-24583-4
. [PMID: 36525193] - Md Reyad-Ul Ferdous, Mohnad Abdalla, Mengjiao Yang, Li Xiaoling, Yongfeng Song. Berberine chloride (dual topoisomerase I and II inhibitor) modulate mitochondrial uncoupling protein (UCP1) in molecular docking and dynamic with in-vitro cytotoxic and mitochondrial ATP production.
Journal of biomolecular structure & dynamics.
2023 Mar; 41(5):1704-1714. doi:
10.1080/07391102.2021.2024255
. [PMID: 35612892] - Takuma Okuda, Ryutaro Jo, Kota Tsutsumi, Daisuke Watai, Chikako Ishihara, Kazuma Yama, Yuto Aita, Takuya Inokuchi, Mitsuo Kimura, Takashi Chikazawa, Eiji Nishinaga, Koji Yamamoto. An in vitro study of the effects of Phellodendron bark extract and berberine chloride on periodontal pathogenic bacteria in the oral microbiome.
Journal of oral biosciences.
2023 03; 65(1):72-79. doi:
10.1016/j.job.2022.11.003
. [PMID: 36473619] - Monica Mura, Ben Humphreys, Jennifer Gilbert, Andrea Salis, Tommy Nylander. Cation and buffer specific effects on the DNA-lipid interaction.
Colloids and surfaces. B, Biointerfaces.
2023 Mar; 223(?):113187. doi:
10.1016/j.colsurfb.2023.113187
. [PMID: 36739672] - Marília Christian Gomes Morais Nascimento, Maria Carolina Robaina Vieira, Fábio R P Rocha, Tiago Almeida Silva, Willian Toito Suarez. Flow-based green ceramics microdevice with smartphone image colorimetric detection for free chlorine determination in drinking water.
Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.
2023 Feb; 287(Pt 2):122096. doi:
10.1016/j.saa.2022.122096
. [PMID: 36371811] - Sujeet Kumar, Aurelio Mollo, Frederick A Rubino, Daniel Kahne, Natividad Ruiz. Chloride Ions Are Required for Thermosipho africanus MurJ Function.
mBio.
2023 Feb; ?(?):e0008923. doi:
10.1128/mbio.00089-23
. [PMID: 36752629] - Jie Li, Shaoqin Ru, Chenwei Yuan, Bo Wu, Yiwen Ji, Zijun Dai, Zhongfang Lei, Zhenya Zhang, Tian Yuan, Fengting Li, Misha Liu. An all-organic conditioning method to achieve deep dewatering of waste activated sludge and the underlying mechanism.
Journal of environmental management.
2023 Feb; 327(?):116923. doi:
10.1016/j.jenvman.2022.116923
. [PMID: 36470188] - Jin He, Mingxing Wang, Shanshan Li, Long Chen, Kaiming Zhang, Ji She. Cryo-EM structure of the plant nitrate transporter AtCLCa reveals characteristics of the anion-binding site and the ATP-binding pocket.
The Journal of biological chemistry.
2023 02; 299(2):102833. doi:
10.1016/j.jbc.2022.102833
. [PMID: 36581207] - Shana Wuken, Junjun Li, Xiaoli Gao, Shungang Jiao, Xiaojing Ma, Suyile Chen, Pengfei Tu, Luqi Huang, Xingyun Chai. Zerumbone, a major sesquiterpene from Syringa pinnatifolia Hemsl., exerts the sedative effect by regulating GABAergic nervous system.
Journal of ethnopharmacology.
2023 Jan; 301(?):115813. doi:
10.1016/j.jep.2022.115813
. [PMID: 36220513] - Hesham S M Soliman, Eslam M Korany, Elsayed K El-Sayed, Ahmed M Aboelyazed, Haitham A Ibrahim. Nephroprotective effect of Physalis peruviana L. calyx extract and its butanolic fraction against cadmium chloride toxicity in rats and molecular docking of isolated compounds.
BMC complementary medicine and therapies.
2023 Jan; 23(1):21. doi:
10.1186/s12906-023-03845-9
. [PMID: 36707799] - Zhi Wei Zeng, Paul Linsdell, Régis Pomès. Molecular dynamics study of Cl- permeation through cystic fibrosis transmembrane conductance regulator (CFTR).
Cellular and molecular life sciences : CMLS.
2023 Jan; 80(2):51. doi:
10.1007/s00018-022-04621-7
. [PMID: 36694009] - Hongrui Zhang, Xinyi Wang, Weiwei Chen, Yixuan Yang, Yu Wang, Haitong Wan, Zhenhong Zhu. Danhong injection alleviates cerebral ischemia-reperfusion injury by inhibiting autophagy through miRNA-132-3p/ATG12 signal axis.
Journal of ethnopharmacology.
2023 Jan; 300(?):115724. doi:
10.1016/j.jep.2022.115724
. [PMID: 36115599] - Olga I Nedelyaeva, Larissa G Popova, Dmitrii E Khramov, Vadim S Volkov, Yurii V Balnokin. Chloride Channel Family in the Euhalophyte Suaeda altissima (L.) Pall: Cloning of Novel Members SaCLCa2 and SaCLCc2, General Characterization of the Family.
International journal of molecular sciences.
2023 Jan; 24(2):. doi:
10.3390/ijms24020941
. [PMID: 36674457] - Zhen Chen, Jiang-Shan Li, Dongxing Xuan, Chi Sun Poon, Xiao Huang. Effect of alkaline washing treatment on leaching behavior of municipal solid waste incineration bottom ash.
Environmental science and pollution research international.
2023 Jan; 30(1):1966-1978. doi:
10.1007/s11356-022-22073-1
. [PMID: 35925460] - Folake Olubukola Asejeje, Olalekan Bukunmi Ogunro, Gbolahan Iyiola Asejeje, Olumuyiwa Sunday Adewumi, Amos Olalekan Abolaji. An assessment of the ameliorative role of hesperidin in Drosophila melanogaster model of cadmium chloride-induced toxicity.
Comparative biochemistry and physiology. Toxicology & pharmacology : CBP.
2023 Jan; 263(?):109500. doi:
10.1016/j.cbpc.2022.109500
. [PMID: 36347494] - Tyler P Barnum, John D Coates. Chlorine redox chemistry is widespread in microbiology.
The ISME journal.
2023 01; 17(1):70-83. doi:
10.1038/s41396-022-01317-5
. [PMID: 36202926] - Courage Sedem Dzah. Optimized pressurized hot water extraction, HPLC/LC-MS characterization, and bioactivity of Tetrapleura tetraptera L. dry fruit polyphenols.
Journal of food science.
2023 Jan; 88(1):175-192. doi:
10.1111/1750-3841.16422
. [PMID: 36524784] - Faez Ahmmed, Anis Ul Islam, Yousef E Mukhrish, Youness El Bakri, Sajjad Ahmad, Yasuhiro Ozeki, Sarkar M A Kawsar. Efficient Antibacterial/Antifungal Activities: Synthesis, Molecular Docking, Molecular Dynamics, Pharmacokinetic, and Binding Free Energy of Galactopyranoside Derivatives.
Molecules (Basel, Switzerland).
2022 Dec; 28(1):. doi:
10.3390/molecules28010219
. [PMID: 36615413] - Jing Chen, Hangdao Qin, Lu Xu, Senlin Leng, Jun Chang. Tetrabutylammonium-chloride-glycerol of deep eutectic solvent functionalized MnO2: a novel mimic enzyme for the quantitative and qualitative colorimetric detection of L-cysteine.
The Analyst.
2022 Dec; 148(1):182-190. doi:
10.1039/d2an01771g
. [PMID: 36477518] - Zhenjuan Xu, Peipei Li, Haoyu Chen, Xiaohua Zhu, Youyu Zhang, Meiling Liu, Shouzhuo Yao. Picomolar glutathione detection based on the dual-signal self-calibration electrochemical sensor of ferrocene-functionalized copper metal-organic framework via solid-state electrochemistry of cuprous chloride.
Journal of colloid and interface science.
2022 Dec; 628(Pt B):798-806. doi:
10.1016/j.jcis.2022.08.107
. [PMID: 36029594] - Graziele Zandominegue Ronchetti, Maylla Ronacher Simões, Ingridy Reinholz Grafites Schereider, Marcos André Soares Leal, Giulia Alessandra Wiggers Peçanha, Alessandra Simão Padilha, Dalton Valentim Vassallo. Oxidative Stress Induced by 30 Days of Mercury Exposure Accelerates Hypertension Development in Prehypertensive Young SHRs.
Cardiovascular toxicology.
2022 12; 22(12):929-939. doi:
10.1007/s12012-022-09769-z
. [PMID: 36324000] - Yijie Wang, Zhenxing Huang, Mingxing Zhao, Hengfeng Miao, Wansheng Shi, Wenquan Ruan. Enhanced chloride-free snow-melting agent generation from organic wastewater by integrating bioconversion and synthesis.
Bioresource technology.
2022 Dec; 366(?):128200. doi:
10.1016/j.biortech.2022.128200
. [PMID: 36309178] - Yaniv Lupo, Alon Schlisser, Shuo Dong, Shimon Rachmilevitch, Aaron Fait, Naftali Lazarovitch. Root system response to salt stress in grapevines (Vitis spp.): A link between root structure and salt exclusion.
Plant science : an international journal of experimental plant biology.
2022 Dec; 325(?):111460. doi:
10.1016/j.plantsci.2022.111460
. [PMID: 36122813] - Jie Zhou, Jiahui Guo, Qingsheng Chen, Baosong Wang, Xudong He, Qiang Zhuge, Pu Wang. Different color regulation mechanism in willow barks determined using integrated metabolomics and transcriptomics analyses.
BMC plant biology.
2022 Nov; 22(1):530. doi:
10.1186/s12870-022-03909-x
. [PMID: 36380271] - Yue Zhang, Jun-Liang Zeng, Zhen Chen, Ren Wang. Base-Promoted (3 + 2) Cycloaddition of Trifluoroacetohydrazonoyl Chlorides with Imidates En Route to Trifluoromethyl-1,2,4-Triazoles.
The Journal of organic chemistry.
2022 11; 87(21):14514-14522. doi:
10.1021/acs.joc.2c01926
. [PMID: 36264227] - Steven Kildea, Pierre Hellin, Thies M Heick, Fiona Hutton. Baseline sensitivity of European Zymoseptoria tritici populations to the complex III respiration inhibitor fenpicoxamid.
Pest management science.
2022 Nov; 78(11):4488-4496. doi:
10.1002/ps.7067
. [PMID: 35797347] - Ludovica Gaiaschi, Elisa Roda, Cristina Favaron, Federica Gola, Elisabetta Gabano, Mauro Ravera, Paola Rossi, Maria Grazia Bottone. The power of a novel combined anticancer therapy: challenge and opportunity of micotherapy in the treatment of Glioblastoma Multiforme.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2022 Nov; 155(?):113729. doi:
10.1016/j.biopha.2022.113729
. [PMID: 36166961] - Farah Naz, Mukesh Kumar, Tirthankar Koley, Priyanka Sharma, Muhammad Anzarul Haque, Arti Kapil, Manoj Kumar, Punit Kaur, Abdul Samath Ethayathulla. Screening of plant-based natural compounds as an inhibitor of FtsZ from Salmonella Typhi using the computational, biochemical and in vitro cell-based studies.
International journal of biological macromolecules.
2022 Oct; 219(?):428-437. doi:
10.1016/j.ijbiomac.2022.07.241
. [PMID: 35932806] - Debashis Mondal, Manzoor Ahmad, Bijoy Dey, Abhishek Mondal, Pinaki Talukdar. Formation of supramolecular channels by reversible unwinding-rewinding of bis(indole) double helix via ion coordination.
Nature communications.
2022 10; 13(1):6507. doi:
10.1038/s41467-022-34159-y
. [PMID: 36316309] - Anita Yovas, W A Manjusha, Stanely Mainzen Prince Ponnian. β-caryophyllene modulates B-cell lymphoma gene-2 family genes and inhibits the intrinsic pathway of apoptosis in isoproterenol-induced myocardial infarcted rats; A molecular mechanism.
European journal of pharmacology.
2022 Oct; 932(?):175181. doi:
10.1016/j.ejphar.2022.175181
. [PMID: 35988788] - Shengmin Zhang, Pieter De Frenne, Dries Landuyt, Kris Verheyen. Impact of tree species diversity on throughfall deposition in a young temperate forest plantation.
The Science of the total environment.
2022 Oct; 842(?):156947. doi:
10.1016/j.scitotenv.2022.156947
. [PMID: 35753456] - Christopher White, Carly Bader, Ken Teter. The manipulation of cell signaling and host cell biology by cholera toxin.
Cellular signalling.
2022 Oct; 100(?):110489. doi:
10.1016/j.cellsig.2022.110489
. [PMID: 36216164] - Krystyna Maslowska-Jarzyna, Alessio Cataldo, Anna Marszalik, Ilona Ignatikova, Stephen J Butler, Radosław Stachowiak, Michał J Chmielewski, Hennie Valkenier. Dissecting transmembrane bicarbonate transport by 1,8-di(thio)amidocarbazoles.
Organic & biomolecular chemistry.
2022 10; 20(38):7658-7663. doi:
10.1039/d2ob01461k
. [PMID: 36134504] - Naila Farooq, Laraib Ather, Muhammad Shafiq, Muhammad Shah Nawaz-Ul-Rehman, Muhammad Haseeb, Tehmina Anjum, Qamar Abbas, Mujahid Hussain, Numan Ali, Syed Agha Armaghan Asad Abbas, Sehrish Mushtaq, Muhammad Saleem Haider, Saleha Sadiq, Muhammad Adnan Shahid. Magnetofection approach for the transformation of okra using green iron nanoparticles.
Scientific reports.
2022 10; 12(1):16568. doi:
10.1038/s41598-022-20569-x
. [PMID: 36195624] - Tsolanku Sidney Maliehe, Melusi Mbambo, Londeka Sibusisiwe Ngidi, Jabulani Siyabonga Emmanuel Shandu, Ofentse Jacob Pooe, Peter Masoko, Tlou Nelson Selepe. Bioprospecting of endophytic actinobacterium associated with Aloe ferox mill for antibacterial activity.
BMC complementary medicine and therapies.
2022 Oct; 22(1):258. doi:
10.1186/s12906-022-03733-8
. [PMID: 36192707] - Kyunghoon Kim, Suyeon Lee, Yelim Choi, Daekeun Kim. Emissions of Fungal Volatile Organic Compounds in Residential Environments and Temporal Emission Patterns: Implications for Sampling Methods.
International journal of environmental research and public health.
2022 10; 19(19):. doi:
10.3390/ijerph191912601
. [PMID: 36231902] - Han-Yan Yang, Chao Zhang, Liang Hu, Chang Liu, Ni Pan, Mei Li, Hui Han, Yi Zhou, Jie Li, Li-Yan Zhao, Yao-Sheng Liu, Bing-Zheng Luo, Xiong-Qing Huang, Xiao-Fei Lv, Zi-Cheng Li, Jun Li, Zhi-Hong Li, Ruo-Mei Wang, Li Wang, Yong-Yuan Guan, Can-Zhao Liu, Bin Zhang, Guan-Lei Wang. Platelet CFTR inhibition enhances arterial thrombosis via increasing intracellular Cl- concentration and activation of SGK1 signaling pathway.
Acta pharmacologica Sinica.
2022 Oct; 43(10):2596-2608. doi:
10.1038/s41401-022-00868-9
. [PMID: 35241769] - Muhammad Naeem, Arshad Abbas, Sami Ul-Allah, Waqas Malik, Faheem Shehzad Baloch. Comparative genetic, biochemical and physiological analysis of sodium and chlorine in wheat.
Molecular biology reports.
2022 Oct; 49(10):9715-9724. doi:
10.1007/s11033-022-07453-7
. [PMID: 35513633] - Jie Wang, Zihao Xia, Peng Sheng, Mengmeng Shen, Lidong Ding, Dezhi Liu, Bing Chun Yan. Enhanced autophagy interacting proteins negatively correlated with the activation of apoptosis-related caspase family proteins after focal ischemic stroke of young rats.
BMC neuroscience.
2022 09; 23(1):55. doi:
10.1186/s12868-022-00740-w
. [PMID: 36171540] - Stephen E DeVilbiss, Meredith K Steele, Bryan L Brown, Brian D Badgley. Stream bacterial diversity peaks at intermediate freshwater salinity and varies by salt type.
The Science of the total environment.
2022 Sep; 840(?):156690. doi:
10.1016/j.scitotenv.2022.156690
. [PMID: 35714745] - Lewis Price, Yong Han, Tefera Angessa, Chengdao Li. Molecular Pathways of WRKY Genes in Regulating Plant Salinity Tolerance.
International journal of molecular sciences.
2022 Sep; 23(18):. doi:
10.3390/ijms231810947
. [PMID: 36142857] - Dominik Lenz, Dominik Oliver. Progress in understanding the structural mechanism underlying prestin's electromotile activity.
Hearing research.
2022 09; 423(?):108423. doi:
10.1016/j.heares.2021.108423
. [PMID: 34987017] - Tianling Li, Zhengguo Wang, Chenxu Wang, Jiayu Huang, Ming Zhou. Chlorination in the pandemic times: The current state of the art for monitoring chlorine residual in water and chlorine exposure in air.
The Science of the total environment.
2022 Sep; 838(Pt 3):156193. doi:
10.1016/j.scitotenv.2022.156193
. [PMID: 35613644]