Pyruvaldehyde (BioDeep_00000004156)
Secondary id: BioDeep_00000405419, BioDeep_00001867644
natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite BioNovoGene_Lab2019
代谢物信息卡片
化学式: C3H4O2 (72.0211284)
中文名称: 丙酮醛, 甲基乙二醛 溶液
谱图信息:
最多检出来源 Viridiplantae(plant) 0.03%
分子结构信息
SMILES: CC(=O)C=O
InChI: InChI=1/C3H4O2/c1-3(5)2-4/h2H,1H3
描述信息
Methylglyoxal, also known as 2-ketopropionaldehyde or 2-oxopropanal, is a member of the class of compounds known as alpha ketoaldehydes. Alpha ketoaldehydes are organic compounds containing an aldehyde substituted with a keto group on the adjacent carbon. Methylglyoxal is soluble (in water) and an extremely weak acidic compound (based on its pKa). Methylglyoxal can be found in a number of food items such as shiitake, yellow zucchini, roman camomile, and carob, which makes methylglyoxal a potential biomarker for the consumption of these food products. Methylglyoxal can be found primarily in blood and urine, as well as throughout most human tissues. Methylglyoxal exists in all living species, ranging from bacteria to humans. In humans, methylglyoxal is involved in few metabolic pathways, which include glycine and serine metabolism, pyruvaldehyde degradation, pyruvate metabolism, and spermidine and spermine biosynthesis. Methylglyoxal is also involved in several metabolic disorders, some of which include hyperglycinemia, non-ketotic, pyruvate kinase deficiency, non ketotic hyperglycinemia, and pyruvate decarboxylase E1 component deficiency (PDHE1 deficiency). Moreover, methylglyoxal is found to be associated with diabetes mellitus type 2. Methylglyoxal, also called pyruvaldehyde or 2-oxopropanal, is the organic compound with the formula CH3C(O)CHO. Gaseous methylglyoxal has two carbonyl groups, an aldehyde and a ketone but in the presence of water, it exists as hydrates and oligomers. It is a reduced derivative of pyruvic acid .
Pyruvaldehyde is an organic compound used often as a reagent in organic synthesis, as a flavoring agent, and in tanning. It has been demonstrated as an intermediate in the metabolism of acetone and its derivatives in isolated cell preparations, in various culture media, and in vivo in certain animals.
同义名列表
23 个代谢物同义名
alpha-Ketopropionaldehyde; 2-Keto propionaldehyde; Methylglyoxal solution; 2-Ketopropionaldehyde; 1-Ketopropionaldehyde; Α-ketopropionaldehyde; 2-oxo-Propionaldehyde; a-Ketopropionaldehyde; 2-Oxopropionaldehyde; Pyroracemic aldehyde; Ketopropionaldehyde; Acetylformaldehyde; Aldehyde, pyruvic; Pyruvic aldehyde; 1,2-Propanedione; Pyruvaldehyde; methylglyoxal; 2-Oxopropanal; Acetylformyl; Propanedione; Oxopropanal; Propanolone; CH3COCHO
数据库引用编号
23 个数据库交叉引用编号
- ChEBI: CHEBI:17158
- KEGG: C00546
- PubChem: 880
- HMDB: HMDB0001167
- Metlin: METLIN3211
- DrugBank: DB03587
- ChEMBL: CHEMBL170721
- Wikipedia: Methylglyoxal
- MeSH: Pyruvaldehyde
- MetaCyc: METHYL-GLYOXAL
- KNApSAcK: C00007562
- foodb: FDB031000
- chemspider: 857
- CAS: 51252-84-7
- CAS: 78-98-8
- MoNA: PS056001
- PMhub: MS000015929
- PubChem: 3827
- PDB-CCD: MIE
- 3DMET: B00127
- NIKKAJI: J1.489C
- RefMet: Pyruvaldehyde
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-525
分类词条
相关代谢途径
Reactome(3)
BioCyc(9)
- acetone degradation I (to methylglyoxal)
- threonine degradation III (to methylglyoxal)
- superpathway of threonine metabolism
- lactate biosynthesis (archaea)
- L-threonine degradation III (to methylglyoxal)
- superpathway of L-threonine metabolism
- methylglyoxal degradation VI
- detoxification of reactive carbonyls in chloroplasts
- glyoxalase pathway
代谢反应
725 个相关的代谢反应过程信息。
Reactome(64)
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- The citric acid (TCA) cycle and respiratory electron transport:
ETF:FAD + FADH2 ⟶ ETF:FADH2 + FAD
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism:
GSH + MGXL ⟶ (R)-S-LGSH
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- The citric acid (TCA) cycle and respiratory electron transport:
ETF:FAD + FADH2 ⟶ ETF:FADH2 + FAD
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism:
GSH + MGXL ⟶ (R)-S-LGSH
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- The citric acid (TCA) cycle and respiratory electron transport:
CoQ + ETF:FADH2 ⟶ ETF:FAD + ubiquinol
- Pyruvate metabolism and Citric Acid (TCA) cycle:
CIT ⟶ ISCIT
- Pyruvate metabolism:
GSH + MGXL ⟶ (R)-S-LGSH
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism:
DCA + H2O ⟶ HCl + glyoxylate
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism:
DCA + H2O ⟶ HCl + glyoxylate
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism:
DCA + H2O ⟶ HCl + glyoxylate
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism:
DCA + H2O ⟶ HCl + glyoxylate
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism:
DCA + H2O ⟶ HCl + glyoxylate
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism:
DCA + H2O ⟶ HCl + glyoxylate
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism:
DCA + H2O ⟶ HCl + glyoxylate
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism:
(R)-S-LGSH ⟶ GSH + LACT
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism:
DCA + H2O ⟶ HCl + glyoxylate
- Metabolism:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism:
CoA + NAD + PYR ⟶ Ac-CoA + NADH + carbon dioxide
- Metabolism:
GAA + SAM ⟶ CRET + H+ + SAH
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism:
CoA + NAD + PYR ⟶ Ac-CoA + NADH + carbon dioxide
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism:
DCA + H2O ⟶ HCl + glyoxylate
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism:
DCA + H2O ⟶ HCl + glyoxylate
BioCyc(81)
- lactate biosynthesis (archaea):
(S)-lactaldehyde + an oxidized coenzyme F420 ⟶ a reduced coenzyme F420 + methylglyoxal
- glyoxalase pathway:
L-lactaldehyde + NADP+ ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation VI:
(R)-lactate + an oxidized c-type cytochrome ⟶ H+ + a reduced c-type cytochrome + pyruvate
- methylglyoxal degradation VI:
(R)-lactaldehyde + H2O + NAD+ ⟶ (R)-lactate + H+ + NADH
- methylglyoxal degradation VI:
(R)-lactate + an oxidized c-type cytochrome ⟶ a reduced c-type cytochrome + pyruvate
- methylglyoxal degradation VI:
(R)-lactate + an oxidized c-type cytochrome ⟶ a reduced c-type cytochrome + pyruvate
- methylglyoxal degradation III:
NADP+ + acetol ⟶ H+ + NADPH + methylglyoxal
- superpathway of methylglyoxal degradation:
(S)-propane-1,2-diol + NAD+ ⟶ H+ + NADH + acetol
- detoxification of reactive carbonyls in chloroplasts:
(Z)-but-2-enal + H+ + NADPH ⟶ NADP+ + butan-1-al
- methylglyoxal degradation III:
(S)-propane-1,2-diol + NAD+ ⟶ H+ + NADH + acetol
- methylglyoxal degradation III:
NADP+ + acetol ⟶ H+ + NADPH + methylglyoxal
- superpathway of methylglyoxal degradation:
NADP+ + acetol ⟶ H+ + NADPH + methylglyoxal
- detoxification of reactive carbonyls in chloroplasts:
(Z)-but-2-enal + H+ + NADPH ⟶ NADP+ + butan-1-al
- methylglyoxal degradation III:
(S)-propane-1,2-diol + NAD+ ⟶ H+ + NADH + acetol
- methylglyoxal degradation III:
NADP+ + acetol ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + acetol ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + acetol ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + acetol ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + acetol ⟶ H+ + NADPH + methylglyoxal
- superpathway of methylglyoxal degradation:
NADP+ + acetol ⟶ H+ + NADPH + methylglyoxal
- superpathway of methylglyoxal degradation:
NADP+ + acetol ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + acetol ⟶ H+ + NADPH + methylglyoxal
- superpathway of methylglyoxal degradation:
NADP+ + acetol ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + acetol ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation V:
(S)-lactaldehyde + H2O + NAD+ ⟶ (S)-lactate + H+ + NADH
- methylglyoxal degradation IV:
(S)-lactaldehyde + H2O + NAD+ ⟶ (S)-lactate + H+ + NADH
- methylglyoxal degradation IV:
(S)-lactaldehyde + NADP+ ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation V:
(S)-lactaldehyde + NADP+ ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation V:
L-lactaldehyde + NADP+ ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation V:
L-lactaldehyde + NADP+ ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation I:
(R)-lactate + UQ ⟶ UQH2 + pyruvate
- acetone degradation I (to methylglyoxal):
H+ + acetoacetate ⟶ CO2 + acetone
- acetone degradation I (to methylglyoxal):
NADP+ + propan-2-ol ⟶ H+ + NADPH + acetone
- methylglyoxal degradation VII:
H2O + NAD+ + methylglyoxal ⟶ H+ + NADH + pyruvate
- methylglyoxal degradation I:
(R)-S-lactoylglutathione + H2O ⟶ (R)-lactate + H+ + glutathione
- methylglyoxal degradation II:
H2O + NADP+ + methylglyoxal ⟶ H+ + NADPH + pyruvate
- L-threonine degradation III (to methylglyoxal):
NAD+ + thr ⟶ H+ + L-2-amino-3-oxobutanoate + NADH
- chorismate biosynthesis II (archaea):
NADP+ + shikimate ⟶ 3-dehydroshikimate + H+ + NADPH
- superpathway of L-threonine metabolism:
NAD+ + thr ⟶ H+ + L-2-amino-3-oxobutanoate + NADH
- 3-dehydroquinate biosynthesis II (archaea):
enolaldehyde ⟶ methylglyoxal
- methylglyoxal degradation I:
(R)-lactate + UQ ⟶ UQH2 + pyruvate
- superpathway of L-threonine metabolism:
2-oxobutanoate + coenzyme A ⟶ formate + propanoyl-CoA
- L-threonine degradation III (to methylglyoxal):
H2O + O2 + aminoacetone ⟶ ammonium + hydrogen peroxide + methylglyoxal
- methylglyoxal catabolism:
(R)-lactate + an oxidized c-type cytochrome ⟶ H+ + a reduced c-type cytochrome + pyruvate
- methylglyoxal degradation I:
(R)-lactate + UQ ⟶ UQH2 + pyruvate
- threonine degradation III (to methylglyoxal):
H2O + O2 + aminoacetone ⟶ H+ + ammonia + hydrogen peroxide + methylglyoxal
- superpathway of threonine metabolism:
2-oxobutanoate + coenzyme A ⟶ formate + propanoyl-CoA
- methylglyoxal degradation I:
(R)-lactate + UQ ⟶ UQH2 + pyruvate
- methylglyoxal degradation I:
(R)-lactate + UQ ⟶ UQH2 + pyruvate
- methylglyoxal degradation II:
(R)-lactate + a quinone ⟶ a quinol + pyruvate
- methylglyoxal degradation I:
(R)-lactate + an electron-transfer quinone ⟶ an electron-transfer quinol + pyruvate
- methylglyoxal degradation I:
(R)-lactate + an electron-transfer quinone ⟶ an electron-transfer quinol + pyruvate
- methylglyoxal degradation I:
(R)-lactate + UQ ⟶ UQH2 + pyruvate
- methylglyoxal degradation I:
(R)-lactate + UQ ⟶ UQH2 + pyruvate
- methylglyoxal degradation II:
(R)-lactate + an electron-transfer quinone ⟶ an electron-transfer quinol + pyruvate
- methylglyoxal degradation I:
(R)-lactate + an electron-transfer quinone ⟶ an electron-transfer quinol + pyruvate
- threonine degradation III (to methylglyoxal):
H2O + O2 + aminoacetone ⟶ H+ + ammonia + hydrogen peroxide + methylglyoxal
- methylglyoxal degradation I:
(R)-lactate + a quinone ⟶ a quinol + pyruvate
- methylglyoxal degradation IX:
bacillithiol + methylglyoxal ⟶ β-D-galactopyranosyl-(1→3)-D-galactopyranose
- methylglyoxal degradation I:
(R)-lactate + UQ ⟶ UQH2 + pyruvate
- methylglyoxal degradation I:
(R)-lactate + UQ ⟶ UQH2 + pyruvate
- methylglyoxal degradation I:
(R)-lactate + a quinone ⟶ a quinol + pyruvate
- methylglyoxal degradation I:
(R)-lactate + an electron-transfer quinone ⟶ an electron-transfer quinol + pyruvate
- threonine degradation III (to methylglyoxal):
H2O + O2 + aminoacetone ⟶ ammonium + hydrogen peroxide + methylglyoxal
- superpathway of threonine metabolism:
H2O + O2 + aminoacetone ⟶ ammonium + hydrogen peroxide + methylglyoxal
- methylglyoxal degradation II:
(R)-lactate + an electron-transfer quinone ⟶ an electron-transfer quinol + pyruvate
- superpathway of threonine metabolism:
H2O + O2 + aminoacetone ⟶ ammonium + hydrogen peroxide + methylglyoxal
- methylglyoxal degradation II:
(R)-lactate + an electron-transfer quinone ⟶ an electron-transfer quinol + pyruvate
- threonine degradation III (to methylglyoxal):
H2O + O2 + aminoacetone ⟶ ammonium + hydrogen peroxide + methylglyoxal
- methylglyoxal degradation I:
(R)-lactate + an electron-transfer quinone ⟶ an electron-transfer quinol + pyruvate
- methylglyoxal degradation I:
(R)-lactate + an electron-transfer quinone ⟶ an electron-transfer quinol + pyruvate
- methylglyoxal degradation I:
(R)-lactate + an electron-transfer quinone ⟶ an electron-transfer quinol + pyruvate
- methylglyoxal degradation I:
(R)-lactate + an electron-transfer quinone ⟶ an electron-transfer quinol + pyruvate
- threonine degradation III (to methylglyoxal):
H2O + O2 + aminoacetone ⟶ H+ + ammonia + hydrogen peroxide + methylglyoxal
- methylglyoxal degradation II:
(R)-lactate + an electron-transfer quinone ⟶ an electron-transfer quinol + pyruvate
- methylglyoxal degradation I:
(R)-lactate + UQ ⟶ UQH2 + pyruvate
- methylglyoxal degradation I:
(R)-lactate + UQ ⟶ UQH2 + pyruvate
- methylglyoxal degradation I:
(R)-lactate + UQ ⟶ UQH2 + pyruvate
- methylglyoxal degradation I:
(R)-lactate + UQ ⟶ UQH2 + pyruvate
- 3-dehydroquinate biosynthesis II (archaea):
2-amino-3,7-dideoxy-D-threo-hept-6-ulosonate + H2O + NAD+ ⟶ 3-dehydroquinate + H+ + NADH + ammonium
- chorismate biosynthesis II (archaea):
NADP+ + shikimate ⟶ 3-dehydroshikimate + H+ + NADPH
WikiPathways(0)
Plant Reactome(268)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
H2O + L-Asn ⟶ L-Asp + ammonia
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
2OG + L-Val ⟶ Glu + KIV
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
H2O + L-Asn ⟶ L-Asp + ammonia
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
H2O + L-Asn ⟶ L-Asp + ammonia
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Amino acid metabolism:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- threonine catabolism:
H2O + Oxygen + aminoacetone ⟶ H2O2 + MGXL + ammonia
INOH(3)
- Pyruvate metabolism ( Pyruvate metabolism ):
ATP + Acetic acid + CoA ⟶ AMP + Acetyl-CoA + Pyrophosphate
- (R)-S-Lactoyl-glutathione = Glutathione + Methyl-glyoxal ( Pyruvate metabolism ):
(R)-S-Lactoyl-glutathione ⟶ Glutathione + Methyl-glyoxal
- Glycine and Serine metabolism ( Glycine and Serine metabolism ):
Guanidino-acetic acid + S-Adenosyl-L-methionine ⟶ Creatine + S-Adenosyl-L-homocysteine
PlantCyc(248)
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- methylglyoxal degradation III:
(S)-propane-1,2-diol + NAD+ ⟶ H+ + NADH + hydroxyacetone
- detoxification of reactive carbonyls in chloroplasts:
(Z)-but-2-enal + H+ + NADPH ⟶ NADP+ + butan-1-al
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- methylglyoxal degradation III:
NADP+ + acetol ⟶ H+ + NADPH + methylglyoxal
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- methylglyoxal degradation III:
(S)-propane-1,2-diol + NAD+ ⟶ H+ + NADH + hydroxyacetone
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
(Z)-but-2-enal + H+ + NADPH ⟶ NADP+ + butan-1-al
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- methylglyoxal degradation III:
(S)-propane-1,2-diol + NAD+ ⟶ H+ + NADH + hydroxyacetone
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- methylglyoxal degradation III:
(S)-propane-1,2-diol + NAD+ ⟶ H+ + NADH + hydroxyacetone
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- methylglyoxal degradation III:
(S)-propane-1,2-diol + NAD+ ⟶ H+ + NADH + acetol
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- methylglyoxal degradation III:
(S)-propane-1,2-diol + NAD+ ⟶ H+ + NADH + hydroxyacetone
- methylglyoxal degradation III:
(S)-propane-1,2-diol + NAD+ ⟶ H+ + NADH + hydroxyacetone
- methylglyoxal degradation III:
(S)-propane-1,2-diol + NAD+ ⟶ H+ + NADH + hydroxyacetone
- methylglyoxal degradation III:
(S)-propane-1,2-diol + NAD+ ⟶ H+ + NADH + hydroxyacetone
- methylglyoxal degradation III:
(S)-propane-1,2-diol + NAD+ ⟶ H+ + NADH + hydroxyacetone
- methylglyoxal degradation III:
(S)-propane-1,2-diol + NAD+ ⟶ H+ + NADH + hydroxyacetone
- methylglyoxal degradation III:
(S)-propane-1,2-diol + NAD+ ⟶ H+ + NADH + hydroxyacetone
- methylglyoxal degradation III:
(S)-propane-1,2-diol + NAD+ ⟶ H+ + NADH + hydroxyacetone
- methylglyoxal degradation III:
(S)-propane-1,2-diol + NAD+ ⟶ H+ + NADH + hydroxyacetone
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- methylglyoxal degradation III:
(S)-propane-1,2-diol + NAD+ ⟶ H+ + NADH + hydroxyacetone
- methylglyoxal degradation III:
(S)-propane-1,2-diol + NAD+ ⟶ H+ + NADH + hydroxyacetone
- methylglyoxal degradation III:
(S)-propane-1,2-diol + NAD+ ⟶ H+ + NADH + hydroxyacetone
- methylglyoxal degradation III:
(S)-propane-1,2-diol + NAD+ ⟶ H+ + NADH + hydroxyacetone
- methylglyoxal degradation III:
(S)-propane-1,2-diol + NAD+ ⟶ H+ + NADH + hydroxyacetone
- methylglyoxal degradation III:
(S)-propane-1,2-diol + NAD+ ⟶ H+ + NADH + hydroxyacetone
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- methylglyoxal degradation III:
(S)-propane-1,2-diol + NAD+ ⟶ H+ + NADH + hydroxyacetone
- methylglyoxal degradation III:
(S)-propane-1,2-diol + NAD+ ⟶ H+ + NADH + hydroxyacetone
- methylglyoxal degradation III:
(S)-propane-1,2-diol + NAD+ ⟶ H+ + NADH + hydroxyacetone
- methylglyoxal degradation III:
(S)-propane-1,2-diol + NAD+ ⟶ H+ + NADH + hydroxyacetone
- methylglyoxal degradation III:
(S)-propane-1,2-diol + NAD+ ⟶ H+ + NADH + hydroxyacetone
- methylglyoxal degradation III:
(S)-propane-1,2-diol + NAD+ ⟶ H+ + NADH + hydroxyacetone
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- methylglyoxal degradation III:
(S)-propane-1,2-diol + NAD+ ⟶ H+ + NADH + hydroxyacetone
- methylglyoxal degradation III:
(S)-propane-1,2-diol + NAD+ ⟶ H+ + NADH + hydroxyacetone
- methylglyoxal degradation III:
(S)-propane-1,2-diol + NAD+ ⟶ H+ + NADH + hydroxyacetone
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- methylglyoxal degradation III:
(S)-propane-1,2-diol + NAD+ ⟶ H+ + NADH + hydroxyacetone
- methylglyoxal degradation III:
(S)-propane-1,2-diol + NAD+ ⟶ H+ + NADH + hydroxyacetone
- methylglyoxal degradation III:
(S)-propane-1,2-diol + NAD+ ⟶ H+ + NADH + hydroxyacetone
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- methylglyoxal degradation III:
(S)-propane-1,2-diol + NAD+ ⟶ H+ + NADH + hydroxyacetone
- methylglyoxal degradation III:
(S)-propane-1,2-diol + NAD+ ⟶ H+ + NADH + hydroxyacetone
- methylglyoxal degradation III:
(S)-propane-1,2-diol + NAD+ ⟶ H+ + NADH + hydroxyacetone
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- methylglyoxal degradation III:
(S)-propane-1,2-diol + NAD+ ⟶ H+ + NADH + hydroxyacetone
- methylglyoxal degradation III:
(S)-propane-1,2-diol + NAD+ ⟶ H+ + NADH + hydroxyacetone
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- detoxification of reactive carbonyls in chloroplasts:
(Z)-but-2-enal + H+ + NADPH ⟶ NADP+ + butan-1-al
- methylglyoxal degradation III:
(S)-propane-1,2-diol + NAD+ ⟶ H+ + NADH + hydroxyacetone
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- detoxification of reactive carbonyls in chloroplasts:
NADP+ + allyl alcohol ⟶ H+ + NADPH + acrolein
- methylglyoxal degradation III:
(S)-propane-1,2-diol + NAD+ ⟶ H+ + NADH + hydroxyacetone
- methylglyoxal degradation I:
(R)-S-lactoylglutathione ⟶ glutathione + methylglyoxal
- methylglyoxal degradation I:
(R)-lactate + UQ ⟶ UQH2 + pyruvate
- methylglyoxal degradation I:
(R)-lactate + UQ ⟶ UQH2 + pyruvate
- methylglyoxal degradation I:
(R)-lactate + UQ ⟶ UQH2 + pyruvate
- methylglyoxal degradation I:
(R)-lactate + UQ ⟶ UQH2 + pyruvate
COVID-19 Disease Map(1)
- @COVID-19 Disease
Map["name"]:
2-Methyl-3-acetoacetyl-CoA + Coenzyme A ⟶ Acetyl-CoA + Propanoyl-CoA
PathBank(60)
- Glycine and Serine Metabolism:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Dimethylglycine Dehydrogenase Deficiency:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Dihydropyrimidine Dehydrogenase Deficiency (DHPD):
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Sarcosinemia:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Non-Ketotic Hyperglycinemia:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Dimethylglycine Dehydrogenase Deficiency:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Hyperglycinemia, Non-Ketotic:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- 3-Phosphoglycerate Dehydrogenase Deficiency:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Glycine and Serine Metabolism:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- 3-Phosphoglycerate Dehydrogenase Deficiency:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Dihydropyrimidine Dehydrogenase Deficiency (DHPD):
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Dimethylglycine Dehydrogenase Deficiency:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Sarcosinemia:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Non-Ketotic Hyperglycinemia:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Hyperglycinemia, Non-Ketotic:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- 3-Phosphoglycerate Dehydrogenase Deficiency:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Glycine and Serine Metabolism:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Glycine and Serine Metabolism:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Glycine and Serine Metabolism:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Glycine and Serine Metabolism:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Dihydropyrimidine Dehydrogenase Deficiency (DHPD):
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Dimethylglycine Dehydrogenase Deficiency:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Sarcosinemia:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Non-Ketotic Hyperglycinemia:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Hyperglycinemia, Non-Ketotic:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Pyruvate Metabolism:
Acetic acid + Coenzyme A ⟶ Acetyl-CoA + Water
- Pyruvaldehyde Degradation:
S-Lactoylglutathione + Water ⟶ D-Lactic acid + Glutathione + Hydrogen Ion
- Leigh Syndrome:
Acetic acid + Coenzyme A ⟶ Acetyl-CoA + Water
- Pyruvate Decarboxylase E1 Component Deficiency (PDHE1 Deficiency):
Acetic acid + Coenzyme A ⟶ Acetyl-CoA + Water
- Pyruvate Dehydrogenase Complex Deficiency:
Acetic acid + Coenzyme A ⟶ Acetyl-CoA + Water
- Primary Hyperoxaluria II, PH2:
Acetic acid + Coenzyme A ⟶ Acetyl-CoA + Water
- Pyruvate Kinase Deficiency:
Acetic acid + Coenzyme A ⟶ Acetyl-CoA + Water
- Methylglyoxal Degradation I:
Glutathione + Pyruvaldehyde ⟶ S-Lactoylglutathione
- Pyruvate Metabolism:
2-Isopropylmalic acid + Coenzyme A ⟶ -Ketoisovaleric acid + Acetyl-CoA + Water
- Pyruvaldehyde Degradation:
S-Lactoylglutathione ⟶ Glutathione + Pyruvaldehyde
- Pyruvate Metabolism:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Leigh Syndrome:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Pyruvate Dehydrogenase Complex Deficiency:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Pyruvate Decarboxylase E1 Component Deficiency (PDHE1 Deficiency):
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Primary Hyperoxaluria II, PH2:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Pyruvate Kinase Deficiency:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Pyruvaldehyde Degradation:
S-Lactoylglutathione ⟶ Glutathione + Pyruvaldehyde
- Pyruvate Metabolism:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Pyruvaldehyde Degradation:
S-Lactoylglutathione ⟶ Glutathione + Pyruvaldehyde
- Pyruvate Metabolism:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Pyruvaldehyde Degradation:
S-Lactoylglutathione ⟶ Glutathione + Pyruvaldehyde
- Pyruvate Metabolism:
Acetic acid + Coenzyme A ⟶ Acetyl-CoA + Water
- Pyruvate Metabolism:
Acetic acid + Coenzyme A ⟶ Acetyl-CoA + Water
- Leigh Syndrome:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Pyruvate Dehydrogenase Complex Deficiency:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Pyruvate Decarboxylase E1 Component Deficiency (PDHE1 Deficiency):
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Primary Hyperoxaluria II, PH2:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Pyruvate Kinase Deficiency:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Methylglyoxal Degradation I:
Glutathione + Pyruvaldehyde ⟶ S-Lactoylglutathione
- L-Threonine Degradation to Methylglyoxal:
Aminoacetone + Oxygen + Water ⟶ Ammonium + Hydrogen peroxide + Pyruvaldehyde
- Methylglyoxal Degradation II:
Pyruvaldehyde + Water ⟶ D-Lactic acid + Hydrogen Ion
- Methylglyoxal Degradation II:
Pyruvaldehyde + Water ⟶ D-Lactic acid + Hydrogen Ion
- Methylglyoxal Degradation III:
Hydrogen Ion + NADPH + Pyruvaldehyde ⟶ Hydroxyacetone + NADP
- Methylglyoxal Degradation IV:
(S)-lactaldehyde + NAD + Water ⟶ Hydrogen Ion + L-Lactic acid + NADH
- Methylglyoxal Degradation IV:
(S)-lactaldehyde + NAD + Water ⟶ Hydrogen Ion + L-Lactic acid + NADH
PharmGKB(0)
4 个相关的物种来源信息
- 654 - Aeromonas veronii: 10.3389/FCIMB.2020.00044
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1007/S11306-016-1051-4
- 4182 - Sesamum indicum: 10.3109/10915819309140647
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Huihui Liu, Ruiying Zhang, Wen Wang, Xiaoyang Xia, Zhenxia Xu, Xia Xiang. Inhibitory effects and mechanisms of phenolic compounds in rapeseed oil on advanced glycation end product formation in chemical and cellular models in vitro.
Food chemistry.
2024 Jul; 447(?):139056. doi:
10.1016/j.foodchem.2024.139056
. [PMID: 38513495] - Yang Yang, Hai-Ling Wang, Rui-Tong Cheng, Pei-Rong Zheng, Hui-Peng Sun, Zhi-Wen Liu, Heng Yuan, Xue-Yi Liu, Wen-Yun Gao, Heng Li. Determination of α-Dicarbonyl compounds in traditional Chinese herbal medicines.
Fitoterapia.
2024 Jun; 175(?):105928. doi:
10.1016/j.fitote.2024.105928
. [PMID: 38548027] - Yuzhu Xu, Menghe Huang, Yingting Chen, Lintao Yu, Meiran Wu, Shiyue Kang, Qiuyu Lin, Qiaoxuan Zhang, Liqiao Han, Haibiao Lin, Peifeng Ke, Wenjin Fu, Qizhi Tang, Jun Yan, Xianzhang Huang. Development of simultaneous quantitation method for 20 free advanced glycation end products using UPLC-MS/MS and clinical application in kidney injury.
Journal of pharmaceutical and biomedical analysis.
2024 May; 242(?):116035. doi:
10.1016/j.jpba.2024.116035
. [PMID: 38367518] - Rui Guo, Qiang Zhang, Chang Zhao Chen, Jie Ya Sun, Chun Yan Tu, Meng Xing He, Ren Fang Shen, Jiu Huang, Xiao Fang Zhu. A novel aldo-keto reductase gene, OsAKR1, from rice confers higher tolerance to cadmium stress in rice by an in vivo reactive aldehyde detoxification.
Journal of hazardous materials.
2024 May; 470(?):134212. doi:
10.1016/j.jhazmat.2024.134212
. [PMID: 38583205] - Sunan Wang, Yi Qiu, Fan Zhu. An updated review of functional ingredients of Manuka honey and their value-added innovations.
Food chemistry.
2024 May; 440(?):138060. doi:
10.1016/j.foodchem.2023.138060
. [PMID: 38211407] - Qianqian Zheng, Jianpan Xin, Chu Zhao, Runan Tian. Role of methylglyoxal and glyoxalase in the regulation of plant response to heavy metal stress.
Plant cell reports.
2024 Mar; 43(4):103. doi:
10.1007/s00299-024-03186-y
. [PMID: 38502356] - Ray Singh Rathore, Manjari Mishra, Ashwani Pareek, Sneh Lata Singla-Pareek. A glutathione-independent DJ-1/Pfp1 domain containing glyoxalase III, OsDJ-1C, functions in abiotic stress adaptation in rice.
Planta.
2024 Mar; 259(4):81. doi:
10.1007/s00425-023-04315-9
. [PMID: 38438662] - Habiba Kanwal, Syed Hammad Raza, Shafaqat Ali, Muhammad Iqbal, Mudassir Iqbal Shad. Effect of riboflavin on redox balance, osmolyte accumulation, methylglyoxal generation and nutrient acquisition in indian squash (Praecitrullus fistulosus L.) under chromium toxicity.
Environmental science and pollution research international.
2024 Mar; 31(14):20881-20897. doi:
10.1007/s11356-024-32516-6
. [PMID: 38381295] - Jinxin Li, Hao Zhang, Wei Liu, Xijuan Yang, Ling Zhu, Gangcheng Wu, Hui Zhang. Methylglyoxal scavenging capacity of fiber-bound polyphenols from highland barley during colonic fermentation and its modulation on methylglyoxal-interfered gut microbiota.
Food chemistry.
2024 Feb; 434(?):137409. doi:
10.1016/j.foodchem.2023.137409
. [PMID: 37699313] - Nazmir Binta Alam, Muskan Jain, Ananda Mustafiz. Pyramiding D-lactate dehydrogenase with the glyoxalase pathway enhances abiotic stress tolerance in plants.
Plant physiology and biochemistry : PPB.
2024 Jan; 207(?):108391. doi:
10.1016/j.plaphy.2024.108391
. [PMID: 38309183] - Sukhmanpreet Kaur, Satvir Kaur Grewal, Gaurav Kumar Taggar, Rachana D Bhardwaj. Methylglyoxal metabolism is altered during defence response in pigeonpea (Cajanus cajan (L.) Millsp.) against the spotted pod borer (Maruca vitrata).
Functional plant biology : FPB.
2024 Jan; ?(?):. doi:
10.1071/fp23155
. [PMID: 38266279] - Zheng-Wei Fu, Jian-Hui Li, Xiang Gao, Shi-Jia Wang, Ting-Ting Yuan, Ying-Tang Lu. Pathogen-induced methylglyoxal negatively regulates rice bacterial blight resistance by inhibiting OsCDR1 protease activity.
Molecular plant.
2024 Jan; ?(?):. doi:
10.1016/j.molp.2024.01.001
. [PMID: 38178576] - Yi-Hsuan Lin, Ya-Ning Zhou, Xiao-Gui Liang, Yu-Ka Jin, Zu-Dong Xiao, Ying-Jun Zhang, Cheng Huang, Bo Hong, Zhen-Yuan Chen, Shun-Li Zhou, Si Shen. Exogenous Methylglyoxal Alleviates Drought-Induced ''Plant Diabetes'' and Leaf Senescence in Maize.
Journal of experimental botany.
2023 Dec; ?(?):. doi:
10.1093/jxb/erad503
. [PMID: 38124377] - Manami Inoue, Yuki Nakagawa, Miku Azuma, Haruka Akahane, Ryusei Chimori, Yasunari Mano, Ryoko Takasawa. The PKM2 inhibitor shikonin enhances piceatannol-induced apoptosis of glyoxalase I-dependent cancer cells.
Genes to cells : devoted to molecular & cellular mechanisms.
2023 Nov; ?(?):. doi:
10.1111/gtc.13084
. [PMID: 37963646] - Sampurna Garai, Bidisha Bhowal, Mayank Gupta, Sudhir Sopory, Sneh L Singla-Pareek, Ashwani Pareek, Charanpreet Kaur. mpsmpRole of methylglyoxal and redox homeostasis in microbe-mediated stress mitigation in plants.
Plant science : an international journal of experimental plant biology.
2023 Nov; ?(?):111922. doi:
10.1016/j.plantsci.2023.111922
. [PMID: 37952767] - Priya Gambhir, Arun Kumar Sharma, Rahul Kumar. The two faces of DJ-1D proteins.
Trends in plant science.
2023 10; 28(10):1089-1091. doi:
10.1016/j.tplants.2023.06.005
. [PMID: 37330357] - Muniesh Muthaiyan Shanmugam, Jyotiska Chaudhuri, Durai Sellegounder, Amit Kumar Sahu, Sanjib Guha, Manish Chamoli, Brian Hodge, Neelanjan Bose, Charis Roberts, Dominique O Farrera, Gordon Lithgow, Richmond Sarpong, James J Galligan, Pankaj Kapahi. Methylglyoxal-derived hydroimidazolone, MG-H1, increases food intake by altering tyramine signaling via the GATA transcription factor ELT-3 in Caenorhabditis elegans.
eLife.
2023 09; 12(?):. doi:
10.7554/elife.82446
. [PMID: 37728328] - Kamila Iram, Muhammad Arslan Ashraf, Sobhy M Ibrahim, Rizwan Rasheed, Shafaqat Ali. Coumarin regulated redox homeostasis to facilitate phytoremediation of saline and alkaline soils by bitter gourd (Momordica charantia L.).
Environmental science and pollution research international.
2023 Aug; ?(?):. doi:
10.1007/s11356-023-29360-5
. [PMID: 37620696] - Yoneal Bless, Linda Ndlovu, Esihle Gcanga, Lee-Ann Niekerk, Mbukeni Nkomo, Olalekan Bakare, Takalani Mulaudzi, Ashwil Klein, Arun Gokul, Marshall Keyster. Methylglyoxal improves zirconium stress tolerance in Raphanus sativus seedling shoots by restricting zirconium uptake, reducing oxidative damage, and upregulating glyoxalase I.
Scientific reports.
2023 08; 13(1):13618. doi:
10.1038/s41598-023-40788-0
. [PMID: 37604852] - Shu-Li Wei, Ying Yang, Wei-Yue Si, Yang Zhou, Tao Li, Tong Du, Peng Zhang, Xiao-Li Li, Ruo-Nan Duan, Rui-Sheng Duan, Chun-Lin Yang. Methylglyoxal suppresses microglia inflammatory response through NRF2-IκBζ pathway.
Redox biology.
2023 Aug; 65(?):102843. doi:
10.1016/j.redox.2023.102843
. [PMID: 37573838] - Maoxiang Zhao, Toshiyuki Nakamura, Yoshimasa Nakamura, Shintaro Munemasa, Izumi C Mori, Yoshiyuki Murata. The effect of exogenous dihydroxyacetone and methylglyoxal on growth, anthocyanin accumulation, and the glyoxalase system in Arabidopsis.
Bioscience, biotechnology, and biochemistry.
2023 Aug; ?(?):. doi:
10.1093/bbb/zbad109
. [PMID: 37553179] - Divya Mishra. Off-putting! No red, no ripe: methylglyoxal inhibits fruit ripening.
Plant physiology.
2023 08; 192(4):2596-2597. doi:
10.1093/plphys/kiad239
. [PMID: 37072322] - Muhammad Arslan Ashraf, Sobhy M Ibrahim, Rizwan Rasheed, Muhammad Rizwan, Iqbal Hussain, Shafaqat Ali. Effect of seed priming by taurine on growth and chromium (Cr) uptake in canola (Brassica napus L.) under Cr stress.
Environmental science and pollution research international.
2023 Aug; 30(37):87851-87865. doi:
10.1007/s11356-023-28471-3
. [PMID: 37434055] - Xingren Pan, Abid Ullah, Yu-Xi Feng, Peng Tian, Xiao-Zhang Yu. Proline-mediated activation of glyoxalase II improve methylglyoxal detoxification in Oryza sativa L. under chromium injury: Clarification via vector analysis of enzymatic activities and gene expression.
Plant physiology and biochemistry : PPB.
2023 Aug; 201(?):107867. doi:
10.1016/j.plaphy.2023.107867
. [PMID: 37393860] - Wenjie Wang, Jinhong Ye, Zishuo Guo, Yunnan Ma, Qilin Yang, Wanling Zhong, Shouying Du, Jie Bai. A novel glycoprotein from earthworm extract PvE-3: Insights of their characteristics for promoting diabetic wound healing and attenuating methylglyoxal-induced cell damage.
International journal of biological macromolecules.
2023 Jun; 239(?):124267. doi:
10.1016/j.ijbiomac.2023.124267
. [PMID: 37003377] - Su Hui Seong, Bo-Ram Kim, Jong-Soo Park, Do Yun Jeong, Tae-Su Kim, Sua Im, Jin-Woo Jeong, Myoung Lae Cho. Phytochemical profiling of Symplocos tanakana Nakai and S. sawafutagi Nagam. leaf and identification of their antioxidant and anti-diabetic potential.
Journal of pharmaceutical and biomedical analysis.
2023 May; 233(?):115441. doi:
10.1016/j.jpba.2023.115441
. [PMID: 37148699] - Izabela Fecka, Katarzyna Bednarska, Adam Kowalczyk. In Vitro Antiglycation and Methylglyoxal Trapping Effect of Peppermint Leaf (Mentha × piperita L.) and Its Polyphenols.
Molecules (Basel, Switzerland).
2023 Mar; 28(6):. doi:
10.3390/molecules28062865
. [PMID: 36985839] - Inas Y Younis, Rana M Ibrahim, Ali M El-Halawany, Mohamed-Elamir F Hegazy, Thomas Efferth, Engy Mohsen. Chemometric discrimination of Hylocereus undulatus from different geographical origins via their metabolic profiling and antidiabetic activity.
Food chemistry.
2023 Mar; 404(Pt B):134650. doi:
10.1016/j.foodchem.2022.134650
. [PMID: 36283320] - Priya Gambhir, Utkarsh Raghuvanshi, Adwaita Prasad Parida, Stuti Kujur, Shweta Sharma, Sudhir K Sopory, Rahul Kumar, Arun Kumar Sharma. Elevated methylglyoxal levels inhibit tomato fruit ripening by preventing ethylene biosynthesis.
Plant physiology.
2023 Mar; ?(?):. doi:
10.1093/plphys/kiad142
. [PMID: 36879389] - Soumyajit Mukherjee, Shubhojit Das, Minakshi Bedi, Lavanya Vadupu, Writoban Basu Ball, Alok Ghosh. Methylglyoxal-mediated Gpd1 activation restores the mitochondrial defects in a yeast model of mitochondrial DNA depletion syndrome.
Biochimica et biophysica acta. General subjects.
2023 Feb; 1867(5):130328. doi:
10.1016/j.bbagen.2023.130328
. [PMID: 36791826] - Long Guo, Long Ling, Xiaoqian Wang, Ting Cheng, Hongyan Wang, Yanan Ruan. Exogenous hydrogen sulfide and methylglyoxal alleviate cadmium-induced oxidative stress in Salix matsudana Koidz by regulating glutathione metabolism.
BMC plant biology.
2023 Feb; 23(1):73. doi:
10.1186/s12870-023-04089-y
. [PMID: 36732696] - Priya Gambhir, Vijendra Singh, Utkarsh Raghuvanshi, Adwaita Prasad Parida, Amit Pareek, Abhishek Roychowdhury, Sudhir K Sopory, Rahul Kumar, Arun Kumar Sharma. A glutathione-independent DJ-1/PfpI domain-containing tomato glyoxalaseIII2, SlGLYIII2, confers enhanced tolerance under salt and osmotic stresses.
Plant, cell & environment.
2023 02; 46(2):518-548. doi:
10.1111/pce.14493
. [PMID: 36377315] - Zheng-Wei Fu, Yu-Rui Feng, Xiang Gao, Feng Ding, Jian-Hui Li, Ting-Ting Yuan, Ying-Tang Lu. Salt stress-induced chloroplastic hydrogen peroxide stimulates pdTPI sulfenylation and methylglyoxal accumulation.
The Plant cell.
2023 Jan; ?(?):. doi:
10.1093/plcell/koad019
. [PMID: 36695476] - Raffaella Colombo, Mayra Paolillo, Ilaria Frosi, Lucia Ferron, Adele Papetti. Effect of the simulated digestion process on the chlorogenic acid trapping activity against methylglyoxal.
Food & function.
2023 Jan; 14(1):541-549. doi:
10.1039/d2fo02778j
. [PMID: 36533636] - Sarah C Shuck, Peter Achenbach, Bart O Roep, John S Termini, Carlos Hernandez-Castillo, Christiane Winkler, Andreas Weiss, Anette-Gabriele Ziegler. Methylglyoxal products in pre-symptomatic type 1 diabetes.
Frontiers in endocrinology.
2023; 14(?):1108910. doi:
10.3389/fendo.2023.1108910
. [PMID: 36742390] - Manimegalai Sengani, Shreya Chakraborty, Menaka Priya Balaji, Rajakumar Govindasamy, Tahani Awad Alahmadi, Sami Al Obaid, Indira Karuppusamy, Nguyen Thuy Lan Chi, Kathirvel Brindhadevi, Devi Rajeswari V. Anti-diabetic efficacy and selective inhibition of methyl glyoxal, intervention with biogenic Zinc oxide nanoparticle.
Environmental research.
2023 01; 216(Pt 2):114475. doi:
10.1016/j.envres.2022.114475
. [PMID: 36244440] - Xue-Mei Qiu, Yu-Ying Sun, Zhong-Guang Li. Signaling molecule glutamic acid initiates the expression of genes related to methylglyoxal scavenging and osmoregulation systems in maize seedlings.
Plant signaling & behavior.
2022 12; 17(1):1994257. doi:
10.1080/15592324.2021.1994257
. [PMID: 34875972] - Klaudia Borysiuk, Monika Ostaszewska-Bugajska, Katsiaryna Kryzheuskaya, Per Gardeström, Bożena Szal. Glyoxalase I activity affects Arabidopsis sensitivity to ammonium nutrition.
Plant cell reports.
2022 Dec; 41(12):2393-2413. doi:
10.1007/s00299-022-02931-5
. [PMID: 36242617] - Arslan Hafeez, Rizwan Rasheed, Muhammad Arslan Ashraf, Muhammad Rizwan, Shafaqat Ali. Effects of exogenous taurine on growth, photosynthesis, oxidative stress, antioxidant enzymes and nutrient accumulation by Trifolium alexandrinum plants under manganese stress.
Chemosphere.
2022 Dec; 308(Pt 3):136523. doi:
10.1016/j.chemosphere.2022.136523
. [PMID: 36165928] - Wei Chen, Hua Zhang, Guishan Liu, Ji Kang, Biao Wang, Jilite Wang, Jing Li, Hao Wang. Lutein attenuated methylglyoxal-induced oxidative damage and apoptosis in PC12 cells via the PI3K/Akt signaling pathway.
Journal of food biochemistry.
2022 12; 46(12):e14382. doi:
10.1111/jfbc.14382
. [PMID: 36017617] - Cengiz Kaya, Ferhat Ugurlar, Muhammed Ashraf, Mohammed Nasser Alyemeni, Andrzej Bajguz, Parvaiz Ahmad. The involvement of hydrogen sulphide in melatonin-induced tolerance to arsenic toxicity in pepper (Capsicum annuum L.) plants by regulating sequestration and subcellular distribution of arsenic, and antioxidant defense system.
Chemosphere.
2022 Dec; 309(Pt 1):136678. doi:
10.1016/j.chemosphere.2022.136678
. [PMID: 36191761] - Jiang Zhang, Xu-Feng Chen, Wei-Lin Huang, Huan-Huan Chen, Zeng-Rong Huang, Xin Ye, Li-Song Chen. High pH Alleviated Sweet Orange (Citrus sinensis) Copper Toxicity by Enhancing the Capacity to Maintain a Balance between Formation and Removal of Reactive Oxygen Species and Methylglyoxal in Leaves and Roots.
International journal of molecular sciences.
2022 Nov; 23(22):. doi:
10.3390/ijms232213896
. [PMID: 36430374] - Zongyuan Luo, Zhangyan Zhu, Tingrui Zhang, Hu Jiang, Nan Huang, Feng Liang, Zhouyu Wang, Yuzhi Li, Xiaolong He, Shan Qian. A lysosome-targeting fluorescent probe to visualize endogenous and exogenous methylglyoxal in live cells and zebrafish.
The Analyst.
2022 Nov; 147(22):4949-4953. doi:
10.1039/d2an01386j
. [PMID: 36263890] - Somenath Das, Anand Kumar Chaudhari, Vipin Kumar Singh, Bijendra Kumar Singh, Nawal Kishore Dubey. High speed homogenization assisted encapsulation of synergistic essential oils formulation: Characterization, in vitro release study, safety profile, and efficacy towards mitigation of aflatoxin B1 induced deterioration in rice samples.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2022 Nov; 169(?):113443. doi:
10.1016/j.fct.2022.113443
. [PMID: 36167259] - Sanpreet Singh, Sudeep K Maurya, Mohammad Aqdas, Hilal Bashir, Ashish Arora, Vijayender Bhalla, Javed N Agrewala. Mycobacterium tuberculosis exploits MPT64 to generate myeloid-derived suppressor cells to evade the immune system.
Cellular and molecular life sciences : CMLS.
2022 Oct; 79(11):567. doi:
10.1007/s00018-022-04596-5
. [PMID: 36283989] - Seigmund Wai Tsuen Lai, Edwin De Jesus Lopez Gonzalez, Tala Zoukari, Priscilla Ki, Sarah C Shuck. Methylglyoxal and Its Adducts: Induction, Repair, and Association with Disease.
Chemical research in toxicology.
2022 10; 35(10):1720-1746. doi:
10.1021/acs.chemrestox.2c00160
. [PMID: 36197742] - Cheng-Pei Chung, Shih-Min Hsia, Wen-Szu Chang, Din-Wen Huang, Wen-Chang Chiang, Mohamed Ali, Ming-Yi Lee, Chi-Hao Wu. Antiglycation Effects of Adlay Seed and Its Active Polyphenol Compounds: An In Vitro Study.
Molecules (Basel, Switzerland).
2022 Oct; 27(19):. doi:
10.3390/molecules27196729
. [PMID: 36235272] - Bijendra Kumar Singh, Anand Kumar Chaudhari, Somenath Das, Shikha Tiwari, Nawal Kishore Dubey. Preparation and characterization of a novel nanoemulsion consisting of chitosan and Cinnamomum tamala essential oil and its effect on shelf-life lengthening of stored millets.
Pesticide biochemistry and physiology.
2022 Oct; 187(?):105214. doi:
10.1016/j.pestbp.2022.105214
. [PMID: 36127040] - Shunxiao Zhang, Sheng Zhang, Yuan-Yuan Li, Yan Zhang, Hua Wang, Yue Chen, Mingyu Sun. Umbelliferone protects against methylglyoxal-induced HUVECs dysfunction through suppression of apoptosis and oxidative stress.
Journal of applied toxicology : JAT.
2022 Sep; ?(?):. doi:
10.1002/jat.4399
. [PMID: 36170298] - Bret Cooper. The Detriment of Salicylic Acid to the Pseudomonas savastanoi pv. phaseolicola Proteome.
Molecular plant-microbe interactions : MPMI.
2022 Sep; 35(9):814-824. doi:
10.1094/mpmi-05-22-0104-r
. [PMID: 35612310] - Michael D Eggen, Paul Merboth, Helen Neukirchner, Marcus A Glomb. Lipid Peroxidation Has Major Impact on Malondialdehyde-Derived but Only Minor Influence on Glyoxal and Methylglyoxal-Derived Protein Modifications in Carbohydrate-Rich Foods.
Journal of agricultural and food chemistry.
2022 Aug; 70(33):10271-10283. doi:
10.1021/acs.jafc.2c04052
. [PMID: 35968682] - Muhammad Mohsin Altaf, Xiao-Ping Diao, Muhammad Ahsan Altaf, Atique Ur Rehman, Awais Shakoor, Latif Ullah Khan, Basit Latief Jan, Parvaiz Ahmad. Silicon-mediated metabolic upregulation of ascorbate glutathione (AsA-GSH) and glyoxalase reduces the toxic effects of vanadium in rice.
Journal of hazardous materials.
2022 08; 436(?):129145. doi:
10.1016/j.jhazmat.2022.129145
. [PMID: 35739696] - Akankcha Gupta, Manal Khursheed, Zarina Arif, Asim Badar, Khursheed Alam. Methylglyoxal-induces multiple stable changes in human serum albumin before forming nephrotoxic advanced glycation end-products: Injury demonstration in human embryonic kidney cells.
International journal of biological macromolecules.
2022 Aug; 214(?):252-263. doi:
10.1016/j.ijbiomac.2022.06.096
. [PMID: 35716786] - Darshan Chikkanayakanahalli Mukunda, Vijay Kumar Joshi, Subhash Chandra, Manjunath Siddaramaiah, Jackson Rodrigues, Shivaprasad Gadag, Usha Yogendra Nayak, Nirmal Mazumder, Kapaettu Satyamoorthy, Krishna Kishore Mahato. Probing nonenzymatic glycation of proteins by deep ultraviolet light emitting diode induced autofluorescence.
International journal of biological macromolecules.
2022 Jul; 213(?):279-296. doi:
10.1016/j.ijbiomac.2022.05.151
. [PMID: 35654218] - Shengjie Liu, Wenhua Liu, Jianyun Lai, Qinjian Liu, Wenhu Zhang, Zhongjian Chen, Jiadong Gao, Songquan Song, Jun Liu, Yinghui Xiao. OsGLYI3, a glyoxalase gene expressed in rice seed, contributes to seed longevity and salt stress tolerance.
Plant physiology and biochemistry : PPB.
2022 Jul; 183(?):85-95. doi:
10.1016/j.plaphy.2022.04.028
. [PMID: 35569169] - Alejandro Gugliucci, Russell Caccavello. Optimized sensitive and inexpensive method to measure D-lactate as a surrogate marker of methylglyoxal fluxes in metabolically relevant contexts.
Methods (San Diego, Calif.).
2022 07; 203(?):5-9. doi:
10.1016/j.ymeth.2020.06.010
. [PMID: 32590035] - Soodabe Esmaielzadeh, Hormoz Fallah, Yosoof Niknejad, Mehran Mahmoudi, Davood Barari Tari. Methyl jasmonate increases aluminum tolerance in rice by augmenting the antioxidant defense system, maintaining ion homeostasis, and increasing nonprotein thiol compounds.
Environmental science and pollution research international.
2022 Jul; 29(31):46708-46720. doi:
10.1007/s11356-022-19201-2
. [PMID: 35171418] - Amy R Biermann, Deborah A Hogan. Transcriptional Response of Candida auris to the Mrr1 Inducers Methylglyoxal and Benomyl.
mSphere.
2022 06; 7(3):e0012422. doi:
10.1128/msphere.00124-22
. [PMID: 35473297] - Fadhel A Alomar, Marai N Alshakhs, Salah Abohelaika, Hassan M Almarzouk, Mohammed Almualim, Amein K Al-Ali, Fahad Al-Muhanna, Mohammed F Alomar, Mousa J Alhaddad, Mohammed S Almulaify, Faisal S Alessa, Ahmed S Alsalman, Ahmed Alaswad, Sean R Bidasee, Hassan A Alsaad, Rudaynah A Alali, Mona H AlSheikh, Mohammed S Akhtar, Mohammed Al Mohaini, Abdulkhaliq J Alsalman, Hussain Alturaifi, Keshore R Bidasee. Elevated plasma level of the glycolysis byproduct methylglyoxal on admission is an independent biomarker of mortality in ICU COVID-19 patients.
Scientific reports.
2022 06; 12(1):9510. doi:
10.1038/s41598-022-12751-y
. [PMID: 35680931] - Dong-Hwan Kim, Sang Woo Lee, Heewon Moon, Dasom Choi, Sujeong Kim, Hajeong Kang, Jungtae Kim, Giltsu Choi, Enamul Huq. ABI3- and PIF1-mediated regulation of GIG1 enhances seed germination by detoxification of methylglyoxal in Arabidopsis.
The Plant journal : for cell and molecular biology.
2022 06; 110(6):1578-1591. doi:
10.1111/tpj.15755
. [PMID: 35365944] - Charanpreet Kaur, Mayank Gupta, Sampurna Garai, Shashank K Mishra, Puneet Singh Chauhan, Sudhir Sopory, Sneh L Singla-Pareek, Nidhi Adlakha, Ashwani Pareek. Microbial methylglyoxal metabolism contributes towards growth promotion and stress tolerance in plants.
Environmental microbiology.
2022 06; 24(6):2817-2836. doi:
10.1111/1462-2920.15743
. [PMID: 34435423] - Min Chen, Hua Zhou, Caihuan Huang, Pengzhan Liu, Jia Fei, Juanying Ou, Shiyi Ou, Jie Zheng. Identification and cytotoxic evaluation of the novel rutin-methylglyoxal adducts with dione structures in vivo and in foods.
Food chemistry.
2022 May; 377(?):132008. doi:
10.1016/j.foodchem.2021.132008
. [PMID: 34999458] - Catrin Herpich, Bastian Kochlik, Daniela Weber, Christiane Ott, Tilman Grune, Kristina Norman, Jana Raupbach. Fasting Concentrations and Postprandial Response of 1,2-Dicarbonyl Compounds 3-Deoxyglucosone, Glyoxal, and Methylglyoxal Are Not Increased in Healthy Older Adults.
The journals of gerontology. Series A, Biological sciences and medical sciences.
2022 05; 77(5):934-940. doi:
10.1093/gerona/glab331
. [PMID: 34726231] - Ajit Ghosh, Ananda Mustafiz, Ashwani Pareek, Sudhir K Sopory, Sneh L Singla-Pareek. Glyoxalase III enhances salinity tolerance through reactive oxygen species scavenging and reduced glycation.
Physiologia plantarum.
2022 May; 174(3):e13693. doi:
10.1111/ppl.13693
. [PMID: 35483971] - Fan Wang, Ben Fan, Chao Chen, Wensheng Zhang. Acrylamide causes neurotoxicity by inhibiting glycolysis and causing the accumulation of carbonyl compounds in BV2 microglial cells.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2022 May; 163(?):112982. doi:
10.1016/j.fct.2022.112982
. [PMID: 35390441] - Shu-Er Yang, Yen-Fong Lin, Jiunn-Wang Liao, Jian-Ting Chen, Chien-Lin Chen, Chen-I Chen, Shih-Lan Hsu, Tuzz-Ying Song. Insulin sensitizer and antihyperlipidemic effects of Cajanus cajan (L.) millsp. root in methylglyoxal-induced diabetic rats.
The Chinese journal of physiology.
2022 May; 65(3):125-135. doi:
10.4103/cjp.cjp_88_21
. [PMID: 35775531] - Qunfang Xie, Yuanjin Zhan, Longhua Guo, Huili Hao, Xianai Shi, Jianmin Yang, Fang Luo, Bin Qiu, Zhenyu Lin. A Ratiometric Fluorescence Probe for Selective Detection of ex vivo Methylglyoxal in Diabetic Mice.
ChemistryOpen.
2022 May; 11(5):e202200055. doi:
10.1002/open.202200055
. [PMID: 35543213] - Yiming Zhang, Lanlan Zhan, Quan Wen, Yulin Feng, Yun Luo, Ting Tan. Trapping Methylglyoxal by Taxifolin and Its Metabolites in Mice.
Journal of agricultural and food chemistry.
2022 Apr; 70(16):5026-5038. doi:
10.1021/acs.jafc.2c02189
. [PMID: 35420027] - Joel Frandsen, Prabagaran Narayanasamy. Effect of Cannabidiol on the Neural Glyoxalase Pathway Function and Longevity of Several C. elegans Strains Including a C. elegans Alzheimer's Disease Model.
ACS chemical neuroscience.
2022 04; 13(8):1165-1177. doi:
10.1021/acschemneuro.1c00667
. [PMID: 35385645] - Shivani, Satvir Kaur Grewal, Ranjit Kaur Gill, Harpreet Kaur Virk, Rachana D Bhardwaj. Methylglyoxal detoxification pathway - Explored first time for imazethapyr tolerance in lentil (Lens culinaris L.).
Plant physiology and biochemistry : PPB.
2022 Apr; 177(?):10-22. doi:
10.1016/j.plaphy.2022.02.007
. [PMID: 35219898] - Sota Todoriki, Yui Hosoda, Tae Yamamoto, Mayu Watanabe, Akiyo Sekimoto, Hiroshi Sato, Takefumi Mori, Mariko Miyazaki, Nobuyuki Takahashi, Emiko Sato. Methylglyoxal Induces Inflammation, Metabolic Modulation and Oxidative Stress in Myoblast Cells.
Toxins.
2022 04; 14(4):. doi:
10.3390/toxins14040263
. [PMID: 35448872] - Julian Koschmieder, Saleh Alseekh, Marzieh Shabani, Raymonde Baltenweck, Veronica G Maurino, Klaus Palme, Alisdair R Fernie, Philippe Hugueney, Ralf Welsch. Color recycling: metabolization of apocarotenoid degradation products suggests carbon regeneration via primary metabolic pathways.
Plant cell reports.
2022 Apr; 41(4):961-977. doi:
10.1007/s00299-022-02831-8
. [PMID: 35064799] - Huijun Liu, Xingli Huo, Shengjie Wang, Zongning Yin. The inhibitory effects of natural antioxidants on protein glycation as well as aggregation induced by methylglyoxal and underlying mechanisms.
Colloids and surfaces. B, Biointerfaces.
2022 Apr; 212(?):112360. doi:
10.1016/j.colsurfb.2022.112360
. [PMID: 35131714] - Shahida Perween, Minhal Abidi, Abul Faiz Faizy, Moinuddin. Biophysical changes in methylglyoxal modified fibrinogen and its role in the immunopathology of type 2 diabetes mellitus.
International journal of biological macromolecules.
2022 Mar; 202(?):199-214. doi:
10.1016/j.ijbiomac.2021.12.161
. [PMID: 34999047] - Ezgi Doğan Cömert, Vural Gökmen. Interactions of epicatechin and cysteine with certain other dicarbonyl scavengers during their reaction with methylglyoxal under simulated physiological conditions.
Food chemistry.
2022 Feb; 369(?):130884. doi:
10.1016/j.foodchem.2021.130884
. [PMID: 34455317] - Dan Liu, Ye Cheng, Zhipeng Tang, Junliang Chen, Ying Xia, Chengbin Xu, Xiangyu Cao. Potential Mechanisms of Methylglyoxal-Induced Human Embryonic Kidney Cells Damage: Regulation of Oxidative Stress, DNA Damage, and Apoptosis.
Chemistry & biodiversity.
2022 Feb; 19(2):e202100829. doi:
10.1002/cbdv.202100829
. [PMID: 34962083] - Ikuho Ban, Hikari Sugawa, Ryoji Nagai. Protein Modification with Ribose Generates Nδ-(5-hydro-5-methyl-4-imidazolone-2-yl)-ornithine.
International journal of molecular sciences.
2022 01; 23(3):. doi:
10.3390/ijms23031224
. [PMID: 35163152] - Kim Maasen, Simone J P M Eussen, Jean L J M Scheijen, Carla J H van der Kallen, Pieter C Dagnelie, Antoon Opperhuizen, Coen D A Stehouwer, Marleen M J van Greevenbroek, Casper G Schalkwijk. Higher habitual intake of dietary dicarbonyls is associated with higher corresponding plasma dicarbonyl concentrations and skin autofluorescence: the Maastricht Study.
The American journal of clinical nutrition.
2022 01; 115(1):34-44. doi:
10.1093/ajcn/nqab329
. [PMID: 34625788] - Jae Sung Kim, Jae Hyuk Lee, Seong Min Hong, Kyo Hee Cho, Sun Yeou Kim. Salvia miltiorrhiza Prevents Methylglyoxal-Induced Glucotoxicity via the Regulation of Apoptosis-Related Pathways and the Glyoxalase System in Human Umbilical Vein Endothelial Cells.
Biological & pharmaceutical bulletin.
2022 Jan; 45(1):51-62. doi:
10.1248/bpb.b21-00507
. [PMID: 34732594] - Imre Majláth, Csaba Éva, Kamirán Áron Hamow, József Kun, Magda Pál, Altafur Rahman, Balázs Palla, Zoltán Nagy, Attila Gyenesei, Gabriella Szalai, Tibor Janda. Methylglyoxal induces stress signaling and promotes the germination of maize at low temperature.
Physiologia plantarum.
2022 Jan; 174(1):e13609. doi:
10.1111/ppl.13609
. [PMID: 34851527] - Xiao-Li Sun, Chun-Yan Jia, Shou-le Tian, Wen-Yan Xu, Jin-Ping Wang, Kun Ran, Guang-Ning Shen. [Effects of exogenous methylglyoxal on chesnut seedlings under drought stress].
Ying yong sheng tai xue bao = The journal of applied ecology.
2022 Jan; 33(1):104-110. doi:
10.13287/j.1001-9332.202201.021
. [PMID: 35224931] - Minfei Jiang, Aobuliaximu Yakupu, Haonan Guan, Jiaoyun Dong, Yingkai Liu, Fei Song, Jiajun Tang, Ming Tian, Yiwen Niu, Shuliang Lu. Pyridoxamine ameliorates methylglyoxal-induced macrophage dysfunction to facilitate tissue repair in diabetic wounds.
International wound journal.
2022 Jan; 19(1):52-63. doi:
10.1111/iwj.13597
. [PMID: 33792156] - Carlos Hernandez-Castillo, Sarah C Shuck. Diet and Obesity-Induced Methylglyoxal Production and Links to Metabolic Disease.
Chemical research in toxicology.
2021 12; 34(12):2424-2440. doi:
10.1021/acs.chemrestox.1c00221
. [PMID: 34851609] - Mariko Takenokuchi, Kinuyo Matsumoto, Yuko Nitta, Rumi Takasugi, Yukari Inoue, Michi Iwai, Keiichi Kadoyama, Kazutoshi Yoshida, Hiromi Takano-Ohmuro, Taizo Taniguchi. In Vitro and In Vivo Antiglycation Effects of Connarus ruber Extract.
Planta medica.
2021 Dec; ?(?):. doi:
10.1055/a-1690-3528
. [PMID: 34861700] - Chun-Yan Peng, Hua-Dong Zhu, Lu Zhang, Xiao-Feng Li, Wen-Na Zhou, Zong-Cai Tu. Urolithin A alleviates advanced glycation end-product formation by altering protein structures, trapping methylglyoxal and forming complexes.
Food & function.
2021 Nov; 12(23):11849-11861. doi:
10.1039/d1fo02631c
. [PMID: 34734623] - Li Zhao, Xiaoling Zhu, Yue Yu, Langzhi He, Yubing Li, Li Zhang, Rui Liu. Comprehensive analysis of the anti-glycation effect of peanut skin extract.
Food chemistry.
2021 Nov; 362(?):130169. doi:
10.1016/j.foodchem.2021.130169
. [PMID: 34102509] - Myrthe M van der Bruggen, Bart Spronck, Tammo Delhaas, Koen D Reesink, Casper G Schalkwijk. The Putative Role of Methylglyoxal in Arterial Stiffening: A Review.
Heart, lung & circulation.
2021 Nov; 30(11):1681-1693. doi:
10.1016/j.hlc.2021.06.527
. [PMID: 34393049] - Ruchi Rai, Shilpi Singh, Krishna Kumar Rai, Alka Raj, Sonam Sriwastaw, L C Rai. Regulation of antioxidant defense and glyoxalase systems in cyanobacteria.
Plant physiology and biochemistry : PPB.
2021 Nov; 168(?):353-372. doi:
10.1016/j.plaphy.2021.09.037
. [PMID: 34700048] - Qian Li, Tao Wu, Min Zhang, Haixia Chen, Rui Liu. Induction of the glycolysis product methylglyoxal on trimethylamine lyase synthesis in the intestinal microbiota from mice fed with choline and dietary fiber.
Food & function.
2021 Oct; 12(20):9880-9893. doi:
10.1039/d1fo01481a
. [PMID: 34664588] - Maurice Michel, Cornelius Hess, Leonard Kaps, Wolfgang M Kremer, Max Hilscher, Peter R Galle, Markus Moehler, Jörn M Schattenberg, Marcus-Alexander Wörns, Christian Labenz, Michael Nagel. Elevated serum levels of methylglyoxal are associated with impaired liver function in patients with liver cirrhosis.
Scientific reports.
2021 10; 11(1):20506. doi:
10.1038/s41598-021-00119-7
. [PMID: 34654829] - Tiemei Li, Xin Cheng, Xiaowei Wang, Guanggui Li, Bianbian Wang, Wenyuan Wang, Na Zhang, Yulei Han, Bolei Jiao, Yuejin Wang, Guotian Liu, Tengfei Xu, Yan Xu. Glyoxalase I-4 functions downstream of NAC72 to modulate downy mildew resistance in grapevine.
The Plant journal : for cell and molecular biology.
2021 10; 108(2):394-410. doi:
10.1111/tpj.15447
. [PMID: 34318550] - Behrad Darvishi, Rassoul Dinarvand, Hadiseh Mohammadpour, Tunku Kamarul, Ali Mohammad Sharifi. Dual l-Carnosine/Aloe vera Nanophytosomes with Synergistically Enhanced Protective Effects against Methylglyoxal-Induced Angiogenesis Impairment.
Molecular pharmaceutics.
2021 09; 18(9):3302-3325. doi:
10.1021/acs.molpharmaceut.1c00248
. [PMID: 34297586] - Yantao Zhao, Yao Tang, Shengmin Sang. Dietary Quercetin Reduces Plasma and Tissue Methylglyoxal and Advanced Glycation End Products in Healthy Mice Treated with Methylglyoxal.
The Journal of nutrition.
2021 09; 151(9):2601-2609. doi:
10.1093/jn/nxab176
. [PMID: 34091674] - Thavaree Thilavech, Marisa Marnpae, Kittana Mäkynen, Sirichai Adisakwattana. Phytochemical Composition, Antiglycation, Antioxidant Activity and Methylglyoxal-Trapping Action of Brassica Vegetables.
Plant foods for human nutrition (Dordrecht, Netherlands).
2021 Sep; 76(3):340-346. doi:
10.1007/s11130-021-00903-w
. [PMID: 34342789] - M Piazza, N M J Hanssen, F Persson, J L Scheijen, M P H van de Waarenburg, M M J van Greevenbroek, P Rossing, P Hovind, C D A Stehouwer, H-H Parving, C G Schalkwijk. Irbesartan treatment does not influence plasma levels of the dicarbonyls methylglyoxal, glyoxal and 3-deoxyglucosone in participants with type 2 diabetes and microalbuminuria: An IRMA2 sub-study.
Diabetic medicine : a journal of the British Diabetic Association.
2021 09; 38(9):e14405. doi:
10.1111/dme.14405
. [PMID: 32961617] - Nadia Taïbi, Qosay Ali Al-Balas, Nadjia Bekari, Oualid Talhi, Ghazi Ahmad Al Jabal, Yasmine Benali, Rachid Ameraoui, Mohamed Hadjadj, Amina Taïbi, Zahra Mouna Boutaiba, Mohamed Abou-Mustapha, Farida Khammar, Fayçal Dergal, Ridha Hassaine, Leila Boukenna, Khaldoun Bachari, Artur Manuel Soares Silva. Molecular docking and dynamic studies of a potential therapeutic target inhibiting glyoxalase system: Metabolic action of the 3, 3 '- [3- (5-chloro-2-hydroxyphenyl) -3-oxopropane-1, 1-diyl] - Bis-4-hydroxycoumarin leads overexpression of the intracellular level of methylglyoxal and induction of a pro-apoptotic phenomenon in a hepatocellular carcinoma model.
Chemico-biological interactions.
2021 Aug; 345(?):109511. doi:
10.1016/j.cbi.2021.109511
. [PMID: 33989593] - Yongling Lu, Min Lu, Jiaqi Wang, Xiaoyun Jiang, Yang Lu, Caiyi Qiu, Lishuang Lv, Wenjiang Dong. Inhibitory Activity on the Formation of Reactive Carbonyl Species in Edible Oil by Synthetic Polyphenol Antioxidants.
Journal of agricultural and food chemistry.
2021 Aug; 69(32):9025-9033. doi:
10.1021/acs.jafc.0c07248
. [PMID: 33459012] - Andrea Anaya-Sanchez, Ying Feng, John C Berude, Daniel A Portnoy. Detoxification of methylglyoxal by the glyoxalase system is required for glutathione availability and virulence activation in Listeria monocytogenes.
PLoS pathogens.
2021 08; 17(8):e1009819. doi:
10.1371/journal.ppat.1009819
. [PMID: 34407151] - Pengzhan Liu, Zhao Yin, Min Chen, Caihuan Huang, Zhihui Wu, Junqing Huang, Shiyi Ou, Jie Zheng. Cytotoxicity of adducts formed between quercetin and methylglyoxal in PC-12 cells.
Food chemistry.
2021 Aug; 352(?):129424. doi:
10.1016/j.foodchem.2021.129424
. [PMID: 33706136]