11,12-DiHETrE (BioDeep_00000004021)
Main id: BioDeep_00000629480
human metabolite Endogenous blood metabolite natural product
代谢物信息卡片
化学式: C20H34O4 (338.2457)
中文名称:
谱图信息:
最多检出来源 Homo sapiens(lipidomics) 50%
分子结构信息
SMILES: CCCCC/C=C\CC(C(C/C=C\C/C=C\CCCC(=O)O)O)O
InChI: InChI=1S/C20H34O4/c1-2-3-4-5-9-12-15-18(21)19(22)16-13-10-7-6-8-11-14-17-20(23)24/h6,8-10,12-13,18-19,21-22H,2-5,7,11,14-17H2,1H3,(H,23,24)
描述信息
11,12-DiHETrE is a Cytochrome P450 (P450) eicosanoid. Arachidonic acid may be oxygenated by cytochrome P450 in several ways. Epoxidation of the double bonds leads to the regio- and enantioselective formation of four epoxyeicosatrienoic acids (EETs), which are hydrolyzed by epoxide hydrolase to vicinal diols (DHETs). 11,12-DiHETrE excretion is increased in healthy pregnant women compared with nonpregnant female volunteers, and increased even further in patients with pregnancy-induced hypertension (PIH). The physiological significance of arachidonic acid epoxides has been debated and it is unknown whether they play a role in pregnancy and parturition. Vasodilative effects, inhibition of cyclooxygenase, or inhibition of platelet aggregation by EETs have been observed only at micromolar concentrations. On the other hand, effects on the stimulus-secretion coupling during hormone release have been found in the nanomolar and picomolar range. (PMID: 9440131, 2198572) [HMDB]
11,12-DiHETrE is a Cytochrome P450 (P450) eicosanoid. Arachidonic acid may be oxygenated by cytochrome P450 in several ways. Epoxidation of the double bonds leads to the regio- and enantioselective formation of four epoxyeicosatrienoic acids (EETs), which are hydrolyzed by epoxide hydrolase to vicinal diols (DHETs). 11,12-DiHETrE excretion is increased in healthy pregnant women compared with nonpregnant female volunteers, and increased even further in patients with pregnancy-induced hypertension (PIH). The physiological significance of arachidonic acid epoxides has been debated and it is unknown whether they play a role in pregnancy and parturition. Vasodilative effects, inhibition of cyclooxygenase, or inhibition of platelet aggregation by EETs have been observed only at micromolar concentrations. On the other hand, effects on the stimulus-secretion coupling during hormone release have been found in the nanomolar and picomolar range. (PMID: 9440131, 2198572).
同义名列表
19 个代谢物同义名
(+/-)-11,12-dihydroxy-5Z,8Z,14Z,17Z-eicosatetraenoic acid; (±)11,12-dihydroxy-5Z,8Z,14Z-eicosatrienoic acid; (5Z,8Z,14Z)-11,12-Dihydroxyeicosa-5,8,14-trienoic acid; (+/-)-11,12-dihydroxy-5Z,8Z,14Z,17Z-eicosatetraenoate; (5Z,8Z,14Z)-11,12-Dihydroxyicosa-5,8,14-trienoic acid; (5Z,8Z,14Z)-11,12-Dihydroxyeicosa-5,8,14-trienoate; (5Z,8Z,14Z)-11,12-Dihydroxyicosa-5,8,14-trienoate; 11,12-dihydroxy-5Z,8Z,14Z-eicosatrienoic acid; 11,12-Dihydroxy-5Z,8Z,14Z-eicosatrienoate; 11,12-Dihydroxyicosa-5,8,14-trienoic acid; 12-Dihydroxyicosa-5,8,14-trienoic acid; 12-Dihydroxyicosa-5,8,14-trienoate; 11,12-Dihydroxyeicosatrienoic acid; 11,12-Dihydroxyeicosatrienoate; (±)11,12-DHET; (+/-)11,12-DiHETrE; 11,12-DiHETrE; 11,12-DiHETE; 11,12-DHET
数据库引用编号
15 个数据库交叉引用编号
- ChEBI: CHEBI:63969
- KEGG: C14774
- PubChem: 5283146
- PubChem: 133225
- HMDB: HMDB0002314
- Metlin: METLIN3834
- foodb: FDB022961
- chemspider: 4446270
- CAS: 192461-95-3
- PMhub: MS000014719
- PubChem: 17395772
- LipidMAPS: LMFA03050008
- NIKKAJI: J1.455.638I
- RefMet: 11,12-DiHETrE
- LOTUS: LTS0232061
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
47 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(46)
- Leukotriene C4 Synthesis Deficiency:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Piroxicam Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Acetylsalicylic Acid Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Etodolac Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Ketoprofen Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Ibuprofen Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Rofecoxib Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Diclofenac Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Sulindac Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Celecoxib Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Ketorolac Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Suprofen Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Bromfenac Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Indomethacin Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Mefenamic Acid Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Oxaprozin Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Nabumetone Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Naproxen Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Diflunisal Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Meloxicam Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Valdecoxib Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Antipyrine Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Antrafenine Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Carprofen Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Etoricoxib Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Fenoprofen Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Flurbiprofen Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Magnesium Salicylate Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Lumiracoxib Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Lornoxicam Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Phenylbutazone Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Nepafenac Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Trisalicylate-Choline Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Tolmetin Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Tiaprofenic Acid Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Arachidonic Acid Metabolism:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Salsalate Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Salicylate-Sodium Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Salicylic Acid Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Acetaminophen Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Tenoxicam Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Leukotriene C4 Synthesis Deficiency:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Arachidonic Acid Metabolism:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Arachidonic Acid Metabolism:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Leukotriene C4 Synthesis Deficiency:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Arachidonic Acid Metabolism:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
PharmGKB(0)
9 个相关的物种来源信息
- 7458 - Apidae: LTS0232061
- 7459 - Apis: LTS0232061
- 7461 - Apis cerana: 10.1371/JOURNAL.PONE.0175573
- 7461 - Apis cerana: LTS0232061
- 6656 - Arthropoda: LTS0232061
- 2759 - Eukaryota: LTS0232061
- 9606 - Homo sapiens: -
- 50557 - Insecta: LTS0232061
- 33208 - Metazoa: LTS0232061
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Dorottya Nagy-Szakal, Dinesh K Barupal, Bohyun Lee, Xiaoyu Che, Brent L Williams, Ellie J R Kahn, Joy E Ukaigwe, Lucinda Bateman, Nancy G Klimas, Anthony L Komaroff, Susan Levine, Jose G Montoya, Daniel L Peterson, Bruce Levin, Mady Hornig, Oliver Fiehn, W Ian Lipkin. Insights into myalgic encephalomyelitis/chronic fatigue syndrome phenotypes through comprehensive metabolomics.
Scientific reports.
2018 07; 8(1):10056. doi:
10.1038/s41598-018-28477-9
. [PMID: 29968805] - Anne Marowsky, Imke Meyer, Kira Erismann-Ebner, Giovanni Pellegrini, Nandkishor Mule, Michael Arand. Beyond detoxification: a role for mouse mEH in the hepatic metabolism of endogenous lipids.
Archives of toxicology.
2017 Nov; 91(11):3571-3585. doi:
10.1007/s00204-017-2060-4
. [PMID: 28975360] - Dina Ripken, Mark van Avesaat, Freddy J Troost, Ad A Masclee, Renger F Witkamp, Henk F Hendriks. Intraileal casein infusion increases plasma concentrations of amino acids in humans: A randomized cross over trial.
Clinical nutrition (Edinburgh, Scotland).
2017 02; 36(1):143-149. doi:
10.1016/j.clnu.2016.01.012
. [PMID: 26872548] - Jinu Kim, Sang Pil Yoon, Myron L Toews, John D Imig, Sung Hee Hwang, Bruce D Hammock, Babu J Padanilam. Pharmacological inhibition of soluble epoxide hydrolase prevents renal interstitial fibrogenesis in obstructive nephropathy.
American journal of physiology. Renal physiology.
2015 Jan; 308(2):F131-9. doi:
10.1152/ajprenal.00531.2014
. [PMID: 25377915] - Yindi Ding, Timo Frömel, Rüdiger Popp, John R Falck, Wolf-Hagen Schunck, Ingrid Fleming. The biological actions of 11,12-epoxyeicosatrienoic acid in endothelial cells are specific to the R/S-enantiomer and require the G(s) protein.
The Journal of pharmacology and experimental therapeutics.
2014 Jul; 350(1):14-21. doi:
10.1124/jpet.114.214254
. [PMID: 24763066] - Mohamed Abukhashim, Glenis J Wiebe, John M Seubert. Regulation of forskolin-induced cAMP production by cytochrome P450 epoxygenase metabolites of arachidonic acid in HEK293 cells.
Cell biology and toxicology.
2011 Oct; 27(5):321-32. doi:
10.1007/s10565-011-9190-x
. [PMID: 21519968]