Mercaptopurine (BioDeep_00000003406)

 

Secondary id: BioDeep_00000398029

human metabolite Endogenous blood metabolite Chemicals and Drugs natural product


代谢物信息卡片


GlaxoSmithKline brand OF 6 mercaptopurine

化学式: C5H4N4S (152.0157)
中文名称: 6-巯基嘌呤, 6-巯基嘌呤 (6-MP)
谱图信息: 最多检出来源 Homo sapiens(blood) 25.12%

分子结构信息

SMILES: C1=NC2=C(N1)C(=S)N=CN2
InChI: InChI=1S/C5H4N4S/c10-5-3-4(7-1-6-3)8-2-9-5/h1-2H,(H2,6,7,8,9,10)

描述信息

Mercaptopurine is only found in individuals that have used or taken this drug. It is an antimetabolite antineoplastic agent with immunosuppressant properties. It interferes with nucleic acid synthesis by inhibiting purine metabolism and is used, usually in combination with other drugs, in the treatment of or in remission maintenance programs for leukemia. [PubChem]Mercaptopurine competes with hypoxanthine and guanine for the enzyme hypoxanthine-guanine phosphoribosyltransferase (HGPRTase) and is itself converted to thioinosinic acid (TIMP). This intracellular nucleotide inhibits several reactions involving inosinic acid (IMP), including the conversion of IMP to xanthylic acid (XMP) and the conversion of IMP to adenylic acid (AMP) via adenylosuccinate (SAMP). In addition, 6-methylthioinosinate (MTIMP) is formed by the methylation of TIMP. Both TIMP and MTIMP have been reported to inhibit glutamine-5-phosphoribosylpyrophosphate amidotransferase, the first enzyme unique to the de novo pathway for purine ribonucleotide synthesis. Experiments indicate that radiolabeled mercaptopurine may be recovered from the DNA in the form of deoxythioguanosine. Some mercaptopurine is converted to nucleotide derivatives of 6-thioguanine (6-TG) by the sequential actions of inosinate (IMP) dehydrogenase and xanthylate (XMP) aminase, converting TIMP to thioguanylic acid (TGMP).
L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01B - Antimetabolites > L01BB - Purine analogues
C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite
D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors
D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents
C308 - Immunotherapeutic Agent > C574 - Immunosuppressant
D009676 - Noxae > D000963 - Antimetabolites
D000970 - Antineoplastic Agents

同义名列表

33 个代谢物同义名

GlaxoSmithKline brand OF 6 mercaptopurine; GlaxoSmithKline brand OF 6-mercaptopurine; Glaxo wellcome brand OF 6-mercaptopurine; Glaxo wellcome brand OF 6 mercaptopurine; Wellcome brand OF 6 mercaptopurine; Wellcome brand OF 6-mercaptopurine; 1,7-Dihydro-6H-purine-6-thione; 6,7-dihydro-3H-purine-6-thione; 6 Mercaptopurine monohydrate; 6-Mercaptopurine monohydrate; Mercaptopurine monohydrate; Mercaptopurine anhydrous; Mercaptopurina wellcome; 6 Thiohypoxanthine; 6-Thiohypoxanthine; 3H-Purine-6-thiol; 6 Mercaptopurine; 6-Mercaptopurine; mercaptopurine; 6-Thiopurine; 6 Thiopurine; Puri-nethol; Puri nethol; Purimethol; Purinethol; Mercapurin; thiopurine; Leupurin; 6-MP; 6 MP; MP; 6-Mercaptopurine; 6-Mercaptopurine



数据库引用编号

27 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(10)

BioCyc(0)

PlantCyc(0)

代谢反应

73 个相关的代谢反应过程信息。

Reactome(66)

BioCyc(0)

WikiPathways(1)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(1)

PathBank(5)

PharmGKB(0)

20 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 10 ABCB1, CASP3, HPGDS, ITPA, NR4A1, NT5C2, PACSIN2, TP53, TPMT, XDH
Peripheral membrane protein 1 PACSIN2
Endosome membrane 1 ITM2B
Endoplasmic reticulum membrane 1 CD4
Nucleus 3 CASP3, NR4A1, TP53
cytosol 12 CASP3, GPT, HPGDS, ITPA, MTHFR, NR4A1, NT5C2, NUDT15, PACSIN2, TP53, TPMT, XDH
centrosome 1 TP53
nucleoplasm 5 CASP3, HPGDS, ITPA, NR4A1, TP53
Cell membrane 5 ABCB1, CD4, CD8A, ITM2B, TNF
Cytoplasmic side 1 PACSIN2
ruffle membrane 1 PACSIN2
Multi-pass membrane protein 2 ABCB1, ABCC4
Golgi apparatus membrane 1 ITM2B
cell surface 2 ABCB1, TNF
glutamatergic synapse 2 CASP3, PACSIN2
Golgi apparatus 2 ABCC4, ITM2B
Golgi membrane 1 ITM2B
neuronal cell body 2 CASP3, TNF
Cytoplasm, cytosol 2 NR4A1, NT5C2
Presynapse 1 NR4A1
endosome 1 PACSIN2
plasma membrane 7 ABCB1, ABCC4, CD4, CD8A, ITM2B, PACSIN2, TNF
Membrane 4 ABCB1, ABCC4, ITM2B, TP53
apical plasma membrane 2 ABCB1, ABCC4
basolateral plasma membrane 1 ABCC4
caveola 1 PACSIN2
extracellular exosome 4 ABCB1, GPT, ITM2B, PACSIN2
endoplasmic reticulum 1 TP53
extracellular space 5 IL10, IL6, ITM2B, TNF, XDH
mitochondrion 2 NR4A1, TP53
protein-containing complex 1 TP53
intracellular membrane-bounded organelle 4 HPGDS, ITM2B, ITPA, PACSIN2
postsynaptic density 1 CASP3
Single-pass type I membrane protein 2 CD4, CD8A
Secreted 2 IL10, IL6
extracellular region 5 CD8A, IL10, IL6, ITM2B, TNF
[Isoform 2]: Secreted 1 CD8A
Mitochondrion matrix 1 TP53
mitochondrial matrix 1 TP53
transcription regulator complex 2 NR4A1, TP53
centriolar satellite 1 PACSIN2
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 TP53
nuclear membrane 1 NR4A1
external side of plasma membrane 3 CD4, CD8A, TNF
nucleolus 2 ABCC4, TP53
Early endosome 2 CD4, PACSIN2
cell-cell junction 1 PACSIN2
recycling endosome 1 TNF
Single-pass type II membrane protein 2 ITM2B, TNF
Apical cell membrane 2 ABCB1, ABCC4
Cell projection, ruffle membrane 1 PACSIN2
Membrane raft 2 CD4, TNF
Cytoplasm, cytoskeleton 2 PACSIN2, TP53
focal adhesion 1 PACSIN2
Peroxisome 1 XDH
sarcoplasmic reticulum 1 XDH
Nucleus, PML body 1 TP53
PML body 1 TP53
nuclear speck 1 PACSIN2
receptor complex 1 CD8A
chromatin 2 NR4A1, TP53
cell projection 1 PACSIN2
phagocytic cup 1 TNF
cytoskeleton 1 PACSIN2
Basolateral cell membrane 1 ABCC4
organelle membrane 1 ITM2B
site of double-strand break 1 TP53
Recycling endosome membrane 1 PACSIN2
Membrane, caveola 1 PACSIN2
Cytoplasmic vesicle membrane 1 PACSIN2
Golgi-associated vesicle membrane 1 ITM2B
germ cell nucleus 1 TP53
replication fork 1 TP53
platelet dense granule membrane 1 ABCC4
plasma membrane raft 1 CD8A
endoplasmic reticulum lumen 2 CD4, IL6
nuclear matrix 1 TP53
transcription repressor complex 1 TP53
clathrin-coated endocytic vesicle membrane 1 CD4
[Isoform 1]: Nucleus 1 TP53
external side of apical plasma membrane 2 ABCB1, ABCC4
death-inducing signaling complex 1 CASP3
[Isoform 1]: Cell membrane 1 CD8A
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
T cell receptor complex 2 CD4, CD8A
interleukin-6 receptor complex 1 IL6
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF
[Integral membrane protein 2B]: Golgi apparatus membrane 1 ITM2B
[BRI2, membrane form]: Cell membrane 1 ITM2B
[Bri23 peptide]: Secreted 1 ITM2B
[BRI2C, soluble form]: Secreted 1 ITM2B


文献列表

  • Ahmet Doğan Ergin, Çağatay Oltulu, Büşra Koç. Enhanced Cytotoxic Activity of 6-Mercaptopurine-Loaded Solid Lipid Nanoparticles in Hepatic Cancer Treatment. Assay and drug development technologies. 2023 Jul; ?(?):. doi: 10.1089/adt.2023.007. [PMID: 37417972]
  • Yaru Zou, Wei Gao, Huizhen Jin, Chenmei Mao, Yi Zhang, Xiaoling Wang, Dong Mei, Libo Zhao. Cellular Uptake and Transport Mechanism of 6-Mercaptopurine Nanomedicines for Enhanced Oral Bioavailability. International journal of nanomedicine. 2023; 18(?):79-94. doi: 10.2147/ijn.s394819. [PMID: 36636639]
  • . Suspected Drug-induced Liver Injury Due to 6-Mercaptopurine With a Superimposed SARS-CoV-2 Infection in a Patient With B-ALL: Erratum. Journal of pediatric hematology/oncology. 2022 05; 44(4):193. doi: 10.1097/mph.0000000000002476. [PMID: 35452202]
  • Kory Cablay, Violet M Borowicz, Ryan Fulton. Suspected Drug-induced Liver Injury Due to 6-Mercaptopurine With a Superimposed SARS-CoV-2 Infection in a Patient With B-ALL. Journal of pediatric hematology/oncology. 2022 04; 44(3):e792-e794. doi: 10.1097/mph.0000000000002407. [PMID: 35091518]
  • Mirabella Zhao, Mads Damsgaard Wewer, Jacob Tveiten Bjerrum, Casper Steenholdt, Frank Schiødt, Kent Haderslev, Marianne Kiszka-Kanowitz, Pia Munkholm, Jakob Seidelin, Johan Burisch. [Practical guide to the use of thiopurinesin patients with inflammatory bowel diseases]. Ugeskrift for laeger. 2022 03; 184(11):. doi: NULL. [PMID: 35315759]
  • Rana Salari, Tooba Hallaj. A dual colorimetric and fluorometric sensor based on N, P-CDs and shape transformation of AgNPrs for the determination of 6-mercaptopurine. Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy. 2021 Dec; 262(?):120104. doi: 10.1016/j.saa.2021.120104. [PMID: 34218180]
  • Hiromu Morikubo, Taku Kobayashi, Ryo Ozaki, Shinji Okabayashi, Satoshi Kuronuma, Osamu Takeuchi, Tenyo Shiba, Hiroki Kiyohara, Mao Matsubayashi, Shintaro Sagami, Masaru Nakano, Osamu Ikezaki, Tadakazu Hisamatsu, Yoichi Tanaka, Toshifumi Hibi. Differential effects of mesalazine formulations on thiopurine metabolism through thiopurine S-methyltransferase inhibition. Journal of gastroenterology and hepatology. 2021 Aug; 36(8):2116-2124. doi: 10.1111/jgh.15411. [PMID: 33470487]
  • Zahra Alizadeh, Mahdi M Farimani, Valentina Parisi, Stefania Marzocco, Samad N Ebrahimi, Nunziatina De Tommasi. Nor-abietane Diterpenoids from Perovskia abrotanoides Roots with Anti-inflammatory Potential. Journal of natural products. 2021 04; 84(4):1185-1197. doi: 10.1021/acs.jnatprod.0c01256. [PMID: 33749273]
  • Xuanxuan An, Ruchun Chen, Qizhen Chen, Qin Tan, Shuang Pan, Hui Liu, Xiaoli Hu. A MnO2 nanosheet-assisted ratiometric fluorescence probe based on carbon quantum dots and o-phenylenediamine for determination of 6-mercaptopurine. Mikrochimica acta. 2021 04; 188(5):156. doi: 10.1007/s00604-021-04802-4. [PMID: 33825037]
  • Ryan C Ungaro, Erica J Brenner, Richard B Gearry, Gilaad G Kaplan, Michele Kissous-Hunt, James D Lewis, Siew C Ng, Jean-Francois Rahier, Walter Reinisch, Flávio Steinwurz, Fox E Underwood, Xian Zhang, Jean-Frederic Colombel, Michael D Kappelman. Effect of IBD medications on COVID-19 outcomes: results from an international registry. Gut. 2021 04; 70(4):725-732. doi: 10.1136/gutjnl-2020-322539. [PMID: 33082265]
  • Kristyna Pospisilova, Jitka Siroka, Eva Karaskova, Ondrej Hradsky, Tereza Lerchova, Kristyna Zarubova, Ivana Copova, Lucie Gonsorcikova, Maria Velganova-Veghova, Irena Francova, Lubor Urbanek, Milos Geryk, Vladimir Mihal, Jiri Bronsky. Is It Useful to Monitor Thiopurine Metabolites in Pediatric Patients with Crohn's Disease on Combination Therapy? A Multicenter Prospective Observational Study. Paediatric drugs. 2021 Mar; 23(2):183-194. doi: 10.1007/s40272-021-00439-1. [PMID: 33709340]
  • Venkatraman Radhakrishnan, Devleena Gangopadhyay. Repeat-positive SARS-CoV-2 in a child with cancer. Pediatric blood & cancer. 2021 03; 68(3):e28744. doi: 10.1002/pbc.28744. [PMID: 33009874]
  • Xueying Lu, Yandong Xie, Fengyu Wang. Application and Analysis of 6-Mercaptopurine Nanomedicine in the Treatment of Leukemia. Journal of nanoscience and nanotechnology. 2021 Feb; 21(2):1001-1007. doi: 10.1166/jnn.2021.18695. [PMID: 33183436]
  • Abeer A Sharfalddin, Abdul-Hamid Emwas, Mariusz Jaremko, Mostafa A Hussien. Complexation of uranyl (UO2)2+ with bidentate ligands: XRD, spectroscopic, computational, and biological studies. PloS one. 2021; 16(8):e0256186. doi: 10.1371/journal.pone.0256186. [PMID: 34411162]
  • Yaru Zou, Dong Mei, Jinjie Yuan, Jiaqi Han, Jiamin Xu, Ning Sun, Huan He, Changqing Yang, Libo Zhao. Preparation, Characterization, Pharmacokinetic, and Therapeutic Potential of Novel 6-Mercaptopurine-Loaded Oral Nanomedicines for Acute Lymphoblastic Leukemia. International journal of nanomedicine. 2021; 16(?):1127-1141. doi: 10.2147/ijn.s290466. [PMID: 33603372]
  • Zhao Wang, Shuting Li, Chunyan Zhou, Yingying Sun, Hui Pang, Wei Liu, Xinchun Li. Ratiometric fluorescent nanoprobe based on CdTe/SiO2/folic acid/silver nanoparticles core-shell-satellite assembly for determination of 6-mercaptopurine. Mikrochimica acta. 2020 11; 187(12):665. doi: 10.1007/s00604-020-04628-6. [PMID: 33205310]
  • Benoît Bernar, Gabriele Kropshofer, Roman Crazzolara, Klaus Kapelari, Andrea Griesmacher, Thomas Müller, Sabine Scholl-Bürgi. SARS-CoV-2 infection in a 7-year-old girl with pancytopenia during acute lymphocytic leukemia maintenance therapy. Pediatric blood & cancer. 2020 11; 67(11):e28391. doi: 10.1002/pbc.28391. [PMID: 32779856]
  • Nabeel Khan, Dhruvan Patel, Dawei Xie, James Lewis, Chinmay Trivedi, Yu-Xiao Yang. Impact of Anti-Tumor Necrosis Factor and Thiopurine Medications on the Development of COVID-19 in Patients With Inflammatory Bowel Disease: A Nationwide Veterans Administration Cohort Study. Gastroenterology. 2020 10; 159(4):1545-1546.e1. doi: 10.1053/j.gastro.2020.05.065. [PMID: 32479823]
  • Rafael Martín-Masot, María Pilar Ortiz Pérez, Natalia Ramos Rueda, Juliana Serrano Nieto, Javier Blasco-Alonso, Víctor Manuel Navas-López. [Laboratory determination of thiopurine levels in paediatric patients with inflammatory bowel disease]. Anales de pediatria. 2020 Jul; 93(1):34-40. doi: 10.1016/j.anpedi.2019.10.005. [PMID: 31784325]
  • Rikke Hebo Larsen, Lisa Lyngsie Hjalgrim, Kathrine Grell, Kim Kristensen, Line Gerner Pedersen, Emilie Damgaard Brünner, Bodil Als-Nielsen, Kjeld Schmiegelow, Jacob Nersting. Pharmacokinetics of tablet and liquid formulations of oral 6-mercaptopurine in children with acute lymphoblastic leukemia. Cancer chemotherapy and pharmacology. 2020 07; 86(1):25-32. doi: 10.1007/s00280-020-04097-x. [PMID: 32519032]
  • Thomas M Goodsall, Samuel P Costello, Robert V Bryant. COVID-19 and implications for thiopurine use. The Medical journal of Australia. 2020 06; 212(10):490-490.e1. doi: 10.5694/mja2.50613. [PMID: 32400020]
  • Mirko Kroll, Kirsten Kaupat-Bleckmann, Anja Mörickel, Julia Altenl, Denis M Schewel, Martin Stanullal, Martin Zimmermann, Martin Schrappe, Gunnar Cario. Methotrexate-associated toxicity in children with Down syndrome and acute lymphoblastic leukemia during consolidation therapy with high dose methotrexate according to ALL-BFM treatment regimen. Haematologica. 2020 04; 105(4):1013-1020. doi: 10.3324/haematol.2019.224774. [PMID: 31371414]
  • Peter Ter Horst, Elise J Smolders, Daphne den Besten-Bertholee. Mercaptopurine and Metabolites in Breast Milk. Breastfeeding medicine : the official journal of the Academy of Breastfeeding Medicine. 2020 04; 15(4):277-279. doi: 10.1089/bfm.2019.0101. [PMID: 31414890]
  • Sandra Bohn Thomsen, Kristine Højgaard Allin, Johan Burisch, Camilla Bjørn Jensen, Susanne Hansen, Lise Lotte Gluud, Klaus Theede, Marianne Kiszka-Kanowitz, Anette Mertz Nielsen, Tine Jess. Outcome of concomitant treatment with thiopurines and allopurinol in patients with inflammatory bowel disease: A nationwide Danish cohort study. United European gastroenterology journal. 2020 02; 8(1):68-76. doi: 10.1177/2050640619868387. [PMID: 32213059]
  • Jiaqi Han, Shenghui Mei, Jiamin Xu, Dongjie Zhang, Siyao Jin, Zhigang Zhao, Libo Zhao. Simultaneous UPLC-MS/MS Determination of 6-mercaptopurine, 6-methylmercaptopurine and 6-thioguanine in Plasma: Application to the Pharmacokinetic Evaluation of Novel Dosage forms in Beagle Dogs. Current pharmaceutical design. 2020; 26(46):6013-6020. doi: 10.2174/1381612826999200820161343. [PMID: 32867649]
  • Yadi Zhou, Yuan Hou, Jiayu Shen, Yin Huang, William Martin, Feixiong Cheng. Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. Cell discovery. 2020; 6(?):14. doi: NULL. [PMID: 32194980]
  • Marzieh Dadkhah Aseman, Shiva Aryamanesh, Zahra Shojaeifard, Bahram Hemmateenejad, S Masoud Nabavizadeh. Cycloplatinated(II) Derivatives of Mercaptopurine Capable of Binding Interactions with HSA/DNA. Inorganic chemistry. 2019 Dec; 58(23):16154-16170. doi: 10.1021/acs.inorgchem.9b02696. [PMID: 31721562]
  • Simon Pape, Christoph Schramm, Tom Jg Gevers. Clinical management of autoimmune hepatitis. United European gastroenterology journal. 2019 11; 7(9):1156-1163. doi: 10.1177/2050640619872408. [PMID: 31700628]
  • Ida Sofie Grønningsæter, Hanne Kristin Fredly, Bjørn Tore Gjertsen, Kimberley Joanne Hatfield, Øystein Bruserud. Systemic Metabolomic Profiling of Acute Myeloid Leukemia Patients before and During Disease-Stabilizing Treatment Based on All-Trans Retinoic Acid, Valproic Acid, and Low-Dose Chemotherapy. Cells. 2019 10; 8(10):. doi: 10.3390/cells8101229. [PMID: 31658693]
  • Prashanthi Kandavel, Sally J Eder, Noah E Newman, Akbar K Waljee, Emily P Whitfield, Jeremy Adler. Mean Corpuscular Volume to White Blood Cell Ratio for Thiopurine Monitoring in Pediatric Inflammatory Bowel Disease. Journal of pediatric gastroenterology and nutrition. 2019 07; 69(1):88-94. doi: 10.1097/mpg.0000000000002296. [PMID: 30747813]
  • Diana Schmidt, Kim Kristensen, Henrik Schroeder, Peder Skov Wehner, Steen Rosthøj, Jesper Heldrup, Linn Damsgaard, Kjeld Schmiegelow, Torben Stamm Mikkelsen. Plasma creatinine as predictor of delayed elimination of high-dose methotrexate in childhood acute lymphoblastic leukemia: A Danish population-based study. Pediatric blood & cancer. 2019 06; 66(6):e27637. doi: 10.1002/pbc.27637. [PMID: 30835935]
  • Nicholas M Ruel, Khanh H Nguyen, Gonzalo Vilas, James R Hammond. Characterization of 6-Mercaptopurine Transport by the SLC43A3-Encoded Nucleobase Transporter. Molecular pharmacology. 2019 06; 95(6):584-596. doi: 10.1124/mol.118.114389. [PMID: 30910793]
  • Anil Kumar, Purnendu Kumar Pathak, Bhim Bali Prasad. Electrocatalytic Imprinted Polymer of N-Doped Hollow Carbon Nanosphere-Palladium Nanocomposite for Ultratrace Detection of Anticancer Drug 6-Mercaptopurine. ACS applied materials & interfaces. 2019 May; 11(17):16065-16074. doi: 10.1021/acsami.9b02947. [PMID: 30990996]
  • Nicholas A Kennedy, Graham A Heap, Harry D Green, Benjamin Hamilton, Claire Bewshea, Gareth J Walker, Amanda Thomas, Rachel Nice, Mandy H Perry, Sonia Bouri, Neil Chanchlani, Neel M Heerasing, Peter Hendy, Simeng Lin, Daniel R Gaya, J R Fraser Cummings, Christian P Selinger, Charlie W Lees, Ailsa L Hart, Miles Parkes, Shaji Sebastian, John C Mansfield, Peter M Irving, James Lindsay, Richard K Russell, Timothy J McDonald, Dermot McGovern, James R Goodhand, Tariq Ahmad. Predictors of anti-TNF treatment failure in anti-TNF-naive patients with active luminal Crohn's disease: a prospective, multicentre, cohort study. The lancet. Gastroenterology & hepatology. 2019 05; 4(5):341-353. doi: 10.1016/s2468-1253(19)30012-3. [PMID: 30824404]
  • Miriam Saiz-Rodríguez, Dolores Ochoa, Carmen Belmonte, Manuel Román, Cristina Martínez-Ingelmo, Lucía Ortega-Ruíz, Carmen Sarmiento-Iglesias, Coral Herrador, Francisco Abad-Santos. Influence of thiopurine S-methyltransferase polymorphisms in mercaptopurine pharmacokinetics in healthy volunteers. Basic & clinical pharmacology & toxicology. 2019 Apr; 124(4):449-455. doi: 10.1111/bcpt.13153. [PMID: 30346660]
  • Anne Grosen, Jacob Nersting, Mona Bungum, Lisbet Ambrosius Christensen, Kjeld Schmiegelow, Marcello Spanò, Mette Julsgaard, Eugenia Cordelli, Giorgio Leter, Peter Braad Larsen, Christian Lodberg Hvas, Jens Kelsen. Sperm DNA Integrity is Unaffected by Thiopurine Treatment in Men With Inflammatory Bowel Disease. Journal of Crohn's & colitis. 2019 Jan; 13(1):3-11. doi: 10.1093/ecco-jcc/jjy086. [PMID: 29917107]
  • Feng Zhang, Hua Liu, Qing Liu, Xingguang Su. An enzymatic ratiometric fluorescence assay for 6-mercaptopurine by using MoS2 quantum dots. Mikrochimica acta. 2018 11; 185(12):540. doi: 10.1007/s00604-018-3039-4. [PMID: 30415422]
  • Floris F van den Brand, Carin M J van Nieuwkerk, Bart J Verwer, Ynto S de Boer, Nanne K H de Boer, Chris J J Mulder, Elisabeth Bloemena, Christine M Bakker, Jan M Vrolijk, Joost P H Drenth, Adriaan C I T L Tan, Frank Ter Borg, Martijn J Ter Borg, Sven J van den Hazel, Akin Inderson, Maarten E Tushuizen, Gerd Bouma. Biochemical efficacy of tioguanine in autoimmune hepatitis: a retrospective review of practice in the Netherlands. Alimentary pharmacology & therapeutics. 2018 10; 48(7):761-767. doi: 10.1111/apt.14939. [PMID: 30109891]
  • Sandra Bohn Thomsen, Marianne Kiszka-Kanowitz, Klaus Theede, Lise Lotte Gluud, Anette Mertz Nielsen. Optimized thiopurine therapy before withdrawal of anti-tumour necrosis factor-α in patients with Crohn's disease. European journal of gastroenterology & hepatology. 2018 10; 30(10):1155-1158. doi: 10.1097/meg.0000000000001194. [PMID: 29975242]
  • Xin-Yu Zhang, Adnan A Elfarra. Toxicity mechanism-based prodrugs: glutathione-dependent bioactivation as a strategy for anticancer prodrug design. Expert opinion on drug discovery. 2018 09; 13(9):815-824. doi: 10.1080/17460441.2018.1508207. [PMID: 30101640]
  • Blanka Stiburkova, Katerina Pavelcova, Lenka Petru, Jakub Krijt. Thiopurine-induced toxicity is associated with dysfunction variant of the human molybdenum cofactor sulfurase gene (xanthinuria type II). Toxicology and applied pharmacology. 2018 08; 353(?):102-108. doi: 10.1016/j.taap.2018.06.015. [PMID: 29935280]
  • Olivia A Attallah, Medhat A Al-Ghobashy, Ahmed Taha Ayoub, Marianne Nebsen. Magnetic molecularly imprinted polymer nanoparticles for simultaneous extraction and determination of 6-mercaptopurine and its active metabolite thioguanine in human plasma. Journal of chromatography. A. 2018 Aug; 1561(?):28-38. doi: 10.1016/j.chroma.2018.05.038. [PMID: 29798806]
  • Neera Gupta, Robert H Lustig, Cewin Chao, Eric Vittinghoff, Howard Andrews, Cheng-Shiun Leu. Thiopurines are negatively associated with anthropometric parameters in pediatric Crohn's disease. World journal of gastroenterology. 2018 May; 24(18):2036-2046. doi: 10.3748/wjg.v24.i18.2036. [PMID: 29760546]
  • Zhehui Zhu, Zubing Mei, Yuegui Guo, Guanghui Wang, Tingyu Wu, Ximao Cui, Zhenyu Huang, Yilian Zhu, Dongpeng Wen, Jinglve Song, Hailan He, Weimin Xu, Long Cui, Chenying Liu. Reduced Risk of Inflammatory Bowel Disease-associated Colorectal Neoplasia with Use of Thiopurines: a Systematic Review and Meta-analysis. Journal of Crohn's & colitis. 2018 Apr; 12(5):546-558. doi: 10.1093/ecco-jcc/jjy006. [PMID: 29370346]
  • Gabriel G Llanos, Liliana M Araujo, Ignacio A Jiménez, Laila M Moujir, Jaime Rodríguez, Carlos Jiménez, Isabel L Bazzocchi. Structure-based design, synthesis, and biological evaluation of withaferin A-analogues as potent apoptotic inducers. European journal of medicinal chemistry. 2017 Nov; 140(?):52-64. doi: 10.1016/j.ejmech.2017.09.004. [PMID: 28923386]
  • Gerta Hoxhaj, James Hughes-Hallett, Rebecca C Timson, Erika Ilagan, Min Yuan, John M Asara, Issam Ben-Sahra, Brendan D Manning. The mTORC1 Signaling Network Senses Changes in Cellular Purine Nucleotide Levels. Cell reports. 2017 Oct; 21(5):1331-1346. doi: 10.1016/j.celrep.2017.10.029. [PMID: 29091770]
  • Jaszianne A Tolbert, Shasha Bai, Susan M Abdel-Rahman, Keith J August, Scott J Weir, Gregory L Kearns, Kathleen A Neville. Pharmacokinetics of two 6-mercaptopurine liquid formulations in children with acute lymphoblastic leukemia. Pediatric blood & cancer. 2017 Aug; 64(8):. doi: 10.1002/pbc.26465. [PMID: 28295989]
  • Xindi Li, Shenghui Mei, Xiaoqing Gong, Heng Zhou, Li Yang, Anna Zhou, Yonghong Liu, Xingang Li, Zhigang Zhao, Xinghu Zhang. Relationship between Azathioprine metabolites and therapeutic efficacy in Chinese patients with neuromyelitis optica spectrum disorders. BMC neurology. 2017 Jul; 17(1):130. doi: 10.1186/s12883-017-0903-5. [PMID: 28679367]
  • Meng Jin, Zhao-Li Mou, Rui-Ling Zhang, Si-Si Liang, Zhi-Qi Zhang. An efficient ratiometric fluorescence sensor based on metal-organic frameworks and quantum dots for highly selective detection of 6-mercaptopurine. Biosensors & bioelectronics. 2017 May; 91(?):162-168. doi: 10.1016/j.bios.2016.12.022. [PMID: 28006684]
  • C Nascimbeni, S Chantepie, C Brugiere, F Comoz, V Salaun, L Verneuil. [Cutaneous involvement in T-lymphoblastic lymphoma]. Annales de dermatologie et de venereologie. 2017 Apr; 144(4):268-274. doi: 10.1016/j.annder.2017.01.001. [PMID: 28242092]
  • Alex M Glazer, Bryan D Sofen, Darrell S Rigel, Jerome L Shupack. Successful Treatment of Generalized Essential Telangiectasia With 6-Mercaptopurine. Journal of drugs in dermatology : JDD. 2017 Mar; 16(3):280-282. doi: NULL. [PMID: 28301625]
  • James Guoxian Huang, Allen Eng Juh Yeoh, Paul Anantharajah Tambyah, Mas Isa Suhaila. The Conundrum in the Diagnosis and Management of Atypical Fulminant Measles in a Leukemia Survivor on Maintenance Chemotherapy. Journal of pediatric hematology/oncology. 2017 01; 39(1):e36-e38. doi: 10.1097/mph.0000000000000620. [PMID: 27992394]
  • Hassan Karimi-Maleh, Abdollah Fallah Shojaei, Khalil Tabatabaeian, Fatemeh Karimi, Shahryar Shakeri, Reza Moradi. Simultaneous determination of 6-mercaptopruine, 6-thioguanine and dasatinib as three important anticancer drugs using nanostructure voltammetric sensor employing Pt/MWCNTs and 1-butyl-3-methylimidazolium hexafluoro phosphate. Biosensors & bioelectronics. 2016 Dec; 86(?):879-884. doi: 10.1016/j.bios.2016.07.086. [PMID: 27494812]
  • Medhat A Al-Ghobashy, Said A Hassan, Doaa H Abdelaziz, Noha M Elhosseiny, Nirmeen A Sabry, Ahmed S Attia, Manal H El-Sayed. Development and validation of LC-MS/MS assay for the simultaneous determination of methotrexate, 6-mercaptopurine and its active metabolite 6-thioguanine in plasma of children with acute lymphoblastic leukemia: Correlation with genetic polymorphism. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2016 Dec; 1038(?):88-94. doi: 10.1016/j.jchromb.2016.10.035. [PMID: 27802917]
  • Pramod Katara, Himani Kuntal. TPMT Polymorphism: When Shield Becomes Weakness. Interdisciplinary sciences, computational life sciences. 2016 Jun; 8(2):150-155. doi: 10.1007/s12539-015-0111-1. [PMID: 26297310]
  • D Zochowska, J Zegarska, E Hryniewiecka, E Samborowska, R Jazwiec, W Tszyrsznic, A Borowiec, M Dadlez, L Paczek. Determination of Concentrations of Azathioprine Metabolites 6-Thioguanine and 6-Methylmercaptopurine in Whole Blood With the Use of Liquid Chromatography Combined With Mass Spectrometry. Transplantation proceedings. 2016 Jun; 48(5):1836-9. doi: 10.1016/j.transproceed.2016.01.084. [PMID: 27496503]
  • Ai Ping Li, Jing Dong Peng, MingQiong Zhou, Jin Zhang. Resonance light scattering determination of 6-mercaptopurine coupled with HPLC technique. Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy. 2016 Feb; 154(?):1-7. doi: 10.1016/j.saa.2015.09.010. [PMID: 26479445]
  • Paula Fernández-Calotti, Olga Casulleras, María Antolin, Francisco Guarner, Marçal Pastor-Anglada. Galectin-4 interacts with the drug transporter human concentrative nucleoside transporter 3 to regulate its function. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2016 Feb; 30(2):544-54. doi: 10.1096/fj.15-272773. [PMID: 26481311]
  • Xiaojie Lv, Ming Zhao, Yuiji Wang, Xi Hu, Jianhui Wu, Xueyun Jiang, Shan Li, Chunying Cui, Shiqi Peng. Loading cisplatin onto 6-mercaptopurine covalently modified MSNS: a nanomedicine strategy to improve the outcome of cisplatin therapy. Drug design, development and therapy. 2016; 10(?):3933-3946. doi: 10.2147/dddt.s116286. [PMID: 27942204]
  • Sudeep Dhoj Thapa, Hiba Hadid, Mohammed Usman, Waseem Imam, Ahmad Hassan, Jason Schairer, Syed-Mohammed R Jafri, Nirmal Kaur. Predictors of Thiopurine Treatment Failure in Biologic-Naïve Ulcerative Colitis Patients. Digestive diseases and sciences. 2016 Jan; 61(1):230-7. doi: 10.1007/s10620-015-3864-9. [PMID: 26511478]
  • Zhuo Li, Yongnian Ni, Serge Kokot. A new fluorescent nitrogen-doped carbon dot system modified by the fluorophore-labeled ssDNA for the analysis of 6-mercaptopurine and Hg (II). Biosensors & bioelectronics. 2015 Dec; 74(?):91-7. doi: 10.1016/j.bios.2015.06.014. [PMID: 26120815]
  • G Prem Kumar, Jagadeesh S Sanganal, A R Phani, C Manohara, Syamantak M Tripathi, H L Raghavendra, P B Janardhana, S Amaresha, K B Swamy, R G S V Prasad. Anti-cancerous efficacy and pharmacokinetics of 6-mercaptopurine loaded chitosan nanoparticles. Pharmacological research. 2015 Oct; 100(?):47-57. doi: 10.1016/j.phrs.2015.07.025. [PMID: 26232590]
  • Zhuo Li, Yong Wang, Yongnian Ni, Serge Kokot. Fluorescence analysis of 6-mercaptopurine with the use of a nano-composite consisting of BSA-capped Au nano-clusters and core-shell Fe3O4-SiO2 nanoparticles. Biosensors & bioelectronics. 2015 Aug; 70(?):246-53. doi: 10.1016/j.bios.2015.03.035. [PMID: 25829222]
  • Kayode Ogungbenro, Leon Aarons. Physiologically based pharmacokinetic model for 6-mercpatopurine: exploring the role of genetic polymorphism in TPMT enzyme activity. British journal of clinical pharmacology. 2015 Jul; 80(1):86-100. doi: 10.1111/bcp.12588. [PMID: 25614061]
  • Tuğçe Tülümen, Ali Ayata, Metehan Özen, Recep Sütçü, Duran Canatan. The protective effect of Capparis ovata on 6-mercaptopurine-induced hepatotoxicity and oxidative stress in rats. Journal of pediatric hematology/oncology. 2015 May; 37(4):290-4. doi: 10.1097/mph.0000000000000288. [PMID: 25411867]
  • Sophia Ingeborg Vang, Kjeld Schmiegelow, Thomas Frandsen, Susanne Rosthøj, Jacob Nersting. Mercaptopurine metabolite levels are predictors of bone marrow toxicity following high-dose methotrexate therapy of childhood acute lymphoblastic leukaemia. Cancer chemotherapy and pharmacology. 2015 May; 75(5):1089-93. doi: 10.1007/s00280-015-2717-8. [PMID: 25788208]
  • Zhengjuan Sun, Yali Liu, Yuanfang Li. Selective recognition of 6-mercaptopurine based on luminescent metal-organic frameworks Fe-MIL-88NH₂. Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy. 2015 Mar; 139(?):296-301. doi: 10.1016/j.saa.2014.12.009. [PMID: 25574647]
  • Greetje J Tack, Petra Waayenberg, Nanne K H de Boer. Beneficial pharmacological interaction between thiopurine and mesalazine—never change a winning team. Journal of Crohn's & colitis. 2014 Dec; 8(12):1743-4. doi: 10.1016/j.crohns.2014.08.003. [PMID: 25175784]
  • Tine Jess, Anthony Lopez, Mikael Andersson, Laurent Beaugerie, Laurent Peyrin-Biroulet. Thiopurines and risk of colorectal neoplasia in patients with inflammatory bowel disease: a meta-analysis. Clinical gastroenterology and hepatology : the official clinical practice journal of the American Gastroenterological Association. 2014 Nov; 12(11):1793-1800.e1. doi: 10.1016/j.cgh.2014.05.019. [PMID: 24907505]
  • Julienne Brackett, Eric S Schafer, Daniel H Leung, M Brooke Bernhardt. Use of allopurinol in children with acute lymphoblastic leukemia to reduce skewed thiopurine metabolism. Pediatric blood & cancer. 2014 Jun; 61(6):1114-7. doi: 10.1002/pbc.24913. [PMID: 24376133]
  • Kayode Ogungbenro, Leon Aarons. Physiologically based pharmacokinetic modelling of methotrexate and 6-mercaptopurine in adults and children. Part 2: 6-mercaptopurine and its interaction with methotrexate. Journal of pharmacokinetics and pharmacodynamics. 2014 Apr; 41(2):173-85. doi: 10.1007/s10928-014-9355-3. [PMID: 24651962]
  • Z Bannur, L K Teh, T Hennesy, W R W Rosli, N Mohamad, A Nasir, R Ankathil, Z A Zakaria, A Baba, M Z Salleh. The differential metabolite profiles of acute lymphoblastic leukaemic patients treated with 6-mercaptopurine using untargeted metabolomics approach. Clinical biochemistry. 2014 Apr; 47(6):427-31. doi: 10.1016/j.clinbiochem.2014.02.013. [PMID: 24582698]
  • Jolanta Sochacka. Docking of thiopurine derivatives to human serum albumin and binding site analysis with Molegro Virtual Docker. Acta poloniae pharmaceutica. 2014 Mar; 71(2):343-9. doi: NULL. [PMID: 25272656]
  • Edgar S Wills, Daisy M A E Jonkers, Paul H Savelkoul, Ad A Masclee, Marieke J Pierik, John Penders. Fecal microbial composition of ulcerative colitis and Crohn's disease patients in remission and subsequent exacerbation. PloS one. 2014; 9(3):e90981. doi: 10.1371/journal.pone.0090981. [PMID: 24608638]
  • Jasmin Prüfer, Mirjam Schuchardt, Markus Tölle, Nicole Prüfer, Matthias Höhne, Walter Zidek, Markus van der Giet. Harmful effects of the azathioprine metabolite 6-mercaptopurine in vascular cells: induction of mineralization. PloS one. 2014; 9(7):e101709. doi: 10.1371/journal.pone.0101709. [PMID: 25029363]
  • Bhavesh D Kevadiya, Shiva Shankaran Chettiar, Shalini Rajkumar, Hari C Bajaj, Kalpeshgiri A Gosai, Harshad Brahmbhatt. Evaluation of clay/poly (L-lactide) microcomposites as anticancer drug, 6-mercaptopurine reservoir through in vitro cytotoxicity, oxidative stress markers and in vivo pharmacokinetics. Colloids and surfaces. B, Biointerfaces. 2013 Dec; 112(?):400-7. doi: 10.1016/j.colsurfb.2013.07.008. [PMID: 24036475]
  • P A Blaker, M Arenas-Hernandez, M A Smith, E A Shobowale-Bakre, L Fairbanks, P M Irving, J D Sanderson, A M Marinaki. Mechanism of allopurinol induced TPMT inhibition. Biochemical pharmacology. 2013 Aug; 86(4):539-47. doi: 10.1016/j.bcp.2013.06.002. [PMID: 23770457]
  • Wenjing Wang, Chenjie Fang, Xiaozhu Wang, Yuxi Chen, Yaonan Wang, Wei Feng, Chunhua Yan, Ming Zhao, Shiqi Peng. Modifying mesoporous silica nanoparticles to avoid the metabolic deactivation of 6-mercaptopurine and methotrexate in combinatorial chemotherapy. Nanoscale. 2013 Jul; 5(14):6249-53. doi: 10.1039/c3nr00227f. [PMID: 23680872]
  • Robert Zakrzewski, Kamila Borowczyk, Adam Łuczak, Wojciech Młynarski, Joanna Trelińska. Determination of urinary 6-mercaptopurine and three of its metabolites by HPLC-UV coupled with the iodine-azide reaction. Bioanalysis. 2013 Apr; 5(8):869-77. doi: 10.4155/bio.13.46. [PMID: 23590470]
  • Shomron Ben-Horin, Matti Waterman, Uri Kopylov, Miri Yavzori, Orit Picard, Ella Fudim, Halim Awadie, Batia Weiss, Yehuda Chowers. Addition of an immunomodulator to infliximab therapy eliminates antidrug antibodies in serum and restores clinical response of patients with inflammatory bowel disease. Clinical gastroenterology and hepatology : the official clinical practice journal of the American Gastroenterological Association. 2013 Apr; 11(4):444-7. doi: 10.1016/j.cgh.2012.10.020. [PMID: 23103905]
  • Zhanguang Chen, Guomin Zhang, Xi Chen, Junhui Chen, Jinbin Liu, Haiqiong Yuan. A fluorescence switch sensor for 6-mercaptopurine detection based on gold nanoparticles stabilized by biomacromolecule. Biosensors & bioelectronics. 2013 Mar; 41(?):844-7. doi: 10.1016/j.bios.2012.07.079. [PMID: 22939508]
  • Kenji Taki, Tamio Fukushima, Ryota Ise, Ikuo Horii, Takemi Yoshida. Microarray analysis of 6-mercaptopurine-induced-toxicity-related genes and microRNAs in the rat placenta. The Journal of toxicological sciences. 2013 Feb; 38(1):159-67. doi: 10.2131/jts.38.159. [PMID: 23358152]
  • Qingping Yao, Roy D Altman. Thiopurine methyltransferase measurement may not predict azathiopurine-associated non-myelotoxicity. Clinical and experimental rheumatology. 2013 Jan; 31(1):156. doi: NULL. [PMID: 23192017]
  • Ali A Ensafi, H Karimi-Maleh. Determination of 6-mercaptopurine in the presence of uric acid using modified multiwall carbon nanotubes-TiO2 as a voltammetric sensor. Drug testing and analysis. 2012 Dec; 4(12):970-7. doi: 10.1002/dta.286. [PMID: 21538998]
  • Jolanta Sochacka, Wojciech Baran. The investigation of the binding of 6-mercaptopurine to site I on human serum albumin. The protein journal. 2012 Dec; 31(8):689-702. doi: 10.1007/s10930-012-9449-y. [PMID: 23001616]
  • Oranit Cohen-Ezra, Yona Avni, Sara Morgenstern, Ziv Ben-Ari. [Nodular regenerative hyperplasia as a complication of thiopurine treatment in a patient with inflammatory bowel disease]. Harefuah. 2012 Dec; 151(12):675-8, 721. doi: NULL. [PMID: 23330258]
  • Jing-Xin Gong, Jian-Bo Meng, Yue Ma. [Effects of all-trans retinoic acid and compound huangdai tablet sequential maintenance treatment on the long-term efficacy of acute promyelocytic leukemia patients]. Zhongguo Zhong xi yi jie he za zhi Zhongguo Zhongxiyi jiehe zazhi = Chinese journal of integrated traditional and Western medicine. 2012 Nov; 32(11):1473-6. doi: . [PMID: 23359967]
  • Xiao-Feng Guo, Hui-Xian Zhang, Li-Na Ma, Hong Wang, Hua-Shan Zhang, Jian Guo. Determination of thiols by capillary micellar electrokinetic chromatography with laser induced fluorescence detection using 1,3,5,7-tetramethyl-8-phenyl-(4-iodoacetamido) difluoroboradiaza-s-indacene as labeling reagent. Journal of separation science. 2012 Oct; 35(20):2756-63. doi: 10.1002/jssc.201200474. [PMID: 22961811]
  • Gabriel G Llanos, Liliana M Araujo, Ignacio A Jiménez, Laila M Moujir, Isabel L Bazzocchi. Withaferin A-related steroids from Withania aristata exhibit potent antiproliferative activity by inducing apoptosis in human tumor cells. European journal of medicinal chemistry. 2012 Aug; 54(?):499-511. doi: 10.1016/j.ejmech.2012.05.032. [PMID: 22705001]
  • Jianxiu Du, Yadi Wang, Weimin Zhang. Label-free, non-derivatization CRET detection platform for 6-mercaptopurine based on the distance-dependent optical properties of gold nanoparticles. Chemistry (Weinheim an der Bergstrasse, Germany). 2012 Jul; 18(27):8540-6. doi: 10.1002/chem.201200013. [PMID: 22639371]
  • S M A Hassanein, M M S Abd-El-Latif, O M Hassanin, L M S Abd-El-Latif, N I Ramadan. Cryptosporidium gastroenteritis in Egyptian children with acute lymphoblastic leukemia: magnitude of the problem. Infection. 2012 Jun; 40(3):279-84. doi: 10.1007/s15010-011-0230-5. [PMID: 22189516]
  • A Koch, F Tacke, K L Streetz, C Trautwein. [Treatment of inflammatory bowel disease in intensive care medicine]. Deutsche medizinische Wochenschrift (1946). 2012 May; 137(21):1107-18; quiz 19. doi: 10.1055/s-0032-1304963. [PMID: 22588657]
  • Sarwat Jahan, Shakeel Ahmed, Erum Emanuel, Ismat Fatima, Hussain Ahmed. Effect of an anti-thyroid drug, 2,8-Dimercapto-6-hydroxy purine on reproduction in male rats. Pakistan journal of pharmaceutical sciences. 2012 Apr; 25(2):401-6. doi: NULL. [PMID: 22459469]
  • Daniel A Rossignol. Hyperbaric oxygen treatment for inflammatory bowel disease: a systematic review and analysis. Medical gas research. 2012 Mar; 2(1):6. doi: 10.1186/2045-9912-2-6. [PMID: 22417628]
  • Zhiwu Lin, Yvonne Will. Evaluation of drugs with specific organ toxicities in organ-specific cell lines. Toxicological sciences : an official journal of the Society of Toxicology. 2012 Mar; 126(1):114-27. doi: 10.1093/toxsci/kfr339. [PMID: 22166485]
  • Fadi Bleibel, Keith Fragoza, Garrey T Faller. Acute eosinophilic ascites in a middle-aged man. Case reports in gastrointestinal medicine. 2012; 2012(?):896523. doi: 10.1155/2012/896523. [PMID: 22649743]
  • Terumi Kamisawa, Tadashi Takeuchi. Treatment of autoimmune pancreatitis with the anecdotes of the first report. International journal of rheumatology. 2012; 2012(?):597643. doi: 10.1155/2012/597643. [PMID: 22548071]
  • G Schlaf, C Mauz-Körholz, U Ott, S Leike, W Altermann. General insufficiency of the classical CDC-based crossmatch to detect donor-specific anti-HLA antibodies leading to invalid results under recipients' medical treatment or underlying diseases. Histology and histopathology. 2012 01; 27(1):31-8. doi: 10.14670/hh-27.31. [PMID: 22127594]
  • Yoh Zen, Dimitrios P Bogdanos, Shigeyuki Kawa. Type 1 autoimmune pancreatitis. Orphanet journal of rare diseases. 2011 Dec; 6(?):82. doi: 10.1186/1750-1172-6-82. [PMID: 22151922]