Phosphate (BioDeep_00000003244)
Secondary id: BioDeep_00000018495, BioDeep_00000265250
human metabolite Endogenous blood metabolite
代谢物信息卡片
化学式: H3O4P (97.9769)
中文名称: 磷酸
谱图信息:
最多检出来源 Homo sapiens(blood) 7.27%
Last reviewed on 2024-07-29.
Cite this Page
Phosphate. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/phosphate (retrieved
2024-12-22) (BioDeep RN: BioDeep_00000003244). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: OP(=O)(O)O
InChI: InChI=1S/H3O4P/c1-5(2,3)4/h(H3,1,2,3,4)
描述信息
Phosphate is a salt of phosphoric acid and is an essential component of life. Organic phosphates are important in biochemistry, biogeochemistry, and ecology. In biological systems, phosphorus is found as a free phosphate ion in solution and is called inorganic phosphate, to distinguish it from phosphates bound in various phosphate esters. Inorganic phosphate is generally denoted Pi and at physiological (neutral) pH primarily consists of a mixture of HPO2-4 and H2PO-4 ions. Phosphates are most commonly found in the form of adenosine phosphates (AMP, ADP, and ATP) and in DNA and RNA, and can be released by the hydrolysis of ATP or ADP. Similar reactions exist for the other nucleoside diphosphates and triphosphates. Phosphoanhydride bonds in ADP and ATP, or other nucleoside diphosphates and triphosphates, contain high amounts of energy which give them their vital role in all living organisms. Phosphate must be actively transported into cells against its electrochemical gradient. In vertebrates, two unrelated families of Na+-dependent Pi transporters carry out this task. Remarkably, the two families transport different Pi species: whereas type II Na+/Pi cotransporters (SCL34) prefer divalent HPO4(2), type III Na+/Pi cotransporters (SLC20) transport monovalent H2PO4. The SCL34 family comprises both electrogenic and electroneutral members that are expressed in various epithelia and other polarized cells. Through regulated activity in apical membranes of the gut and kidney, they maintain body Pi homeostasis, and in salivary and mammary glands, liver, and testes they play a role in modulating the Pi content of luminal fluids. Phosphate levels in the blood play an important role in hormone signalling and in bone homeostasis. In classical endocrine regulation, low serum phosphate induces the renal production of the secosteroid hormone 1,25-dihydroxyvitamin D3 (1,25(OH)2D3). This active metabolite of vitamin D acts to restore circulating mineral (i.e. phosphate and calcium) levels by increasing absorption in the intestine, reabsorption in the kidney, and mobilization of calcium and phosphate from bone. Thus, chronic renal failure is associated with hyperparathyroidism, which in turn contributes to osteomalacia (softening of the bones). Another complication of chronic renal failure is hyperphosphatemia (low levels of phosphate in the blood). Hyperphosphatemia (excess levels of phosphate in the blood) is a prevalent condition in kidney dialysis patients and is associated with increased risk of mortality. Hypophosphatemia (hungry bone syndrome) has been associated with postoperative electrolyte aberrations and after parathyroidectomy (PMID: 17581921, 11169009, 11039261, 9159312, 17625581). Fibroblast growth factor 23 (FGF-23) has recently been recognized as a key mediator of phosphate homeostasis and its most notable effect is the promotion of phosphate excretion. FGF-23 was discovered to be involved in diseases such as autosomal dominant hypophosphatemic rickets, X-linked hypophosphatemia, and tumour-induced osteomalacia in which phosphate wasting was coupled to inappropriately low levels of 1,25(OH)2D3. FGF-23 is regulated by dietary phosphate in humans. In particular, it was found that phosphate restriction decreased FGF-23, and phosphate loading increased FGF-23. In agriculture, phosphate refers to one of the three primary plant nutrients, and it is a component of fertilizers. In ecological terms, because of its important role in biological systems, phosphate is a highly sought after resource. Consequently, it is often a limiting reagent in environments, and its availability may govern the rate of growth of organisms. Addition of high levels of phosphate to environments and to micro-environments in which it is typically rare can have significant ecological consequences. In the context of pollution, phosphates are a principal component of total dissolved solids, a major indicator of water quality. Dihydrogen phosphate is an inorganic sal...
Found in fruit juices. It is used in foods as an acidulant for drinks and candies, pH control agent, buffering agent, flavour enhancer, flavouring agent, sequestrant, stabiliser and thickener, and synergist
D001697 - Biomedical and Dental Materials > D003764 - Dental Materials
同义名列表
35 个代谢物同义名
Sodium pyrophosphate decahydrate biochemica; Tetrasodium pyrophosphate decahydrate; Tetrasodium pyrophosphate 10-hydrate; Sodium pyrophosphate decahydrate; Phosphorsaeureloesungen [German]; Phosphoric acid (acd/name 4.0); Fosforzuuroplossingen [Dutch]; acide phosphorique (FRENCH); Tetra-sodium pyrophosphate; acido fosforico [Italian]; Hydrogen phosphoric acid; Phosphorsaeureloesungen; Diphosphate tetrasodium; ortho- Phosphoric acid; White phosphoric acid; Dihydrogen phosphate; Sodium pyrophosphate; Orthophosphoric acid; Acidum phosphoricum; Hydrogen phosphate; Acide phosphorique; Phosphoric acid; Concise etchant; Orthophosphate; Phosphorsaeure; phosphate; K-Etchant; [PO(OH)3]; Uni-etch; Condact; Marphos; H3PO4; Sonac; NFB; Orthophosphate
数据库引用编号
22 个数据库交叉引用编号
- ChEBI: CHEBI:26078
- ChEBI: CHEBI:52641
- KEGG: C00009
- KEGGdrug: D05467
- PubChem: 1004
- HMDB: HMDB0001429
- Metlin: METLIN3231
- DrugBank: DB09394
- ChEMBL: CHEMBL1187
- Wikipedia: Phosphoric_Acid
- KNApSAcK: C00007408
- foodb: FDB013380
- chemspider: 979
- CAS: 7664-38-2
- ChEBI: CHEBI:18367
- PDB-CCD: 2HP
- PDB-CCD: PI
- PDB-CCD: PO4
- 3DMET: B00002
- NIKKAJI: J3.746J
- PubChem: 3311
- KNApSAcK: 18367
分类词条
相关代谢途径
Reactome(0)
BioCyc(64)
- superpathway of ribose and deoxyribose phosphate degradation
- (deoxy)ribose phosphate degradation
- purine and pyrimidine metabolism
- superpathway of sterol biosynthesis
- superpathway of arginine and ornithine degradation
- superpathway of arginine, putrescine, and 4-aminobutyrate degradation
- salvage pathways of purine nucleosides
- purine nucleotide metabolism (phosphotransfer and nucleotide modification)
- salvage pathways of adenine, hypoxanthine, and their nucleosides
- purine nucleotides de novo biosynthesis I
- superpathway of histidine, purine, and pyrimidine biosynthesis
- purine nucleotides de novo biosynthesis II
- salvage pathways of purine nucleosides I
- TCA cycle, aerobic respiration
- oxidative ethanol degradation
- serine biosynthesis
- superpathway of central carbon metabolism
- CMP-KDO biosynthesis I
- peptidoglycan and lipid A precursor biosynthesis
- UDP-N-acetylmuramoyl-pentapeptide biosynthesis III (meso-DAP-containing)
- superpathway of histidine, purine and pyrimidine biosynthesis
- riboflavin and FMN and FAD biosynthesis
- allantoin degradation
- glutamine biosynthesis II
- methionine biosynthesis
- superpathway of threonine metabolism
- superpathway of lysine, threonine and methionine biosynthesis II
- isoleucine biosynthesis I
- superpathway of lysine, threonine and methionine biosynthesis I
- formylTHF biosynthesis II
- formylTHF biosynthesis I
- salvage pathways of guanine, xanthine, and their nucleosides
- methionine biosynthesis II
- thiamin (vitamin B1) biosynthesis
- acetyl-CoA degradation to acetate
- glycolysis I
- selenocysteine biosynthesis I (bacteria)
- superpathway of glycolysis, pyruvate dehydrogenase and TCA cycle
- superpathway of glycolysis and Entner-Doudoroff
- glycolysis II
- arginine biosynthesis I
- tetrahydrofolate biosynthesis I
- folate polyglutamylation I
- methionine and S-adenosylmethionine synthesis
- sphingolipid metabolism
- superpathway of phospholipid biosynthesis
- ester phospholipid biosynthesis
- lactate oxidation
- folate metabolism
- proline biosynthesis II
- S-adenosylmethionine cycle
- biotin biosynthesis
- S-adenosylmethionine biosynthesis
- glycogen catabolism
- methylglyoxal pathway
- fatty acid biosynthesis -- elongase pathway
- glyoxalase pathway
- respiration (anaerobic)
- glycerolipid biosynthesis - initial steps
- ether phospholipid biosynthesis
- threonine biosynthesis
- lysine biosynthesis VI
- lysine biosynthesis I
- ornithine biosynthesis
PlantCyc(0)
代谢反应
553 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(192)
- TCA cycle, aerobic respiration:
H2O + cis-aconitate ⟶ isocitrate
- gluconeogenesis:
NAD+ + malate ⟶ CO2 + NADH + pyruvate
- aspartate biosynthesis:
α-ketoglutarate + L-aspartate ⟶ L-glutamate + oxaloacetate
- GDP-mannose metabolism:
ATP + D-mannose ⟶ ADP + D-mannose 6-phosphate + H+
- oxidative ethanol degradation:
H2O + NAD+ + acetaldehyde ⟶ NADH + acetate
- formaldehyde assimilation I (serine pathway):
L-malyl-CoA ⟶ acetyl-CoA + glyoxylate
- uridine-5'-phosphate biosynthesis:
H+ + orotidine-5'-phosphate ⟶ CO2 + UMP
- pyrimidine ribonucleotides de novo biosynthesis:
H+ + orotidine-5'-phosphate ⟶ CO2 + UMP
- urea cycle:
ATP + L-citrulline + asp ⟶ AMP + H+ + L-arginino-succinate + diphosphate
- arginine biosynthesis I:
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- superpathway of histidine, purine, and pyrimidine biosynthesis:
glt + imidazole acetol-phosphate ⟶ 2-oxoglutarate + L-histidinol-phosphate
- superpathway of arginine and polyamine biosynthesis:
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- pyrimidine ribonucleotides de novo biosynthesis:
H+ + orotidine-5'-phosphate ⟶ CO2 + UMP
- uridine-5'-phosphate biosynthesis:
H+ + orotidine-5'-phosphate ⟶ CO2 + UMP
- peptidoglycan and lipid A precursor biosynthesis:
ATP + UDP-N-acetylmuramate + ala ⟶ ADP + H+ + UDP-N-acetylmuramyl-L-Ala + phosphate
- peptidoglycan biosynthesis I (meso-diaminopimelate containing):
ATP + UDP-N-acetylmuramate + ala ⟶ ADP + H+ + UDP-N-acetylmuramyl-L-Ala + phosphate
- UDP-N-acetylmuramoyl-pentapeptide biosynthesis III (meso-DAP-containing):
ATP + UDP-N-acetylmuramate + ala ⟶ ADP + H+ + UDP-N-acetylmuramyl-L-Ala + phosphate
- superpathway of central carbon metabolism:
ATP + H2O + pyruvate ⟶ AMP + H+ + phosphate + phosphoenolpyruvate
- glycolysis I:
ATP + H2O + pyruvate ⟶ AMP + H+ + phosphate + phosphoenolpyruvate
- gluconeogenesis I:
ATP + H2O + pyruvate ⟶ AMP + H+ + phosphate + phosphoenolpyruvate
- superpathway of glycolysis, pyruvate dehydrogenase and TCA cycle:
ATP + H2O + pyruvate ⟶ AMP + H+ + phosphate + phosphoenolpyruvate
- formaldehyde assimilation III (dihydroxyacetone cycle):
ATP + dihydroxy-acetone ⟶ ADP + H+ + dihydroxyacetone phosphate
- Bifidobacterium shunt:
ATP + acetate ⟶ ADP + H+ + acetylphosphate
- sucrose degradation to ethanol and lactate (anaerobic):
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- superpathway of glycolysis and Entner-Doudoroff:
ATP + H2O + pyruvate ⟶ AMP + H+ + phosphate + phosphoenolpyruvate
- glycolysis II:
ATP + H2O + pyruvate ⟶ AMP + H+ + phosphate + phosphoenolpyruvate
- glycolysis III:
β-D-glucose + ATP ⟶ β-D-glucose-6-phosphate + ADP + H+
- glycolysis I:
ATP + H2O + pyruvate ⟶ AMP + H+ + phosphate + phosphoenolpyruvate
- superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass:
ATP + H2O + pyruvate ⟶ AMP + H+ + phosphate + phosphoenolpyruvate
- heterolactic fermentation:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- gluconeogenesis I:
ATP + H2O + pyruvate ⟶ AMP + H+ + phosphate + phosphoenolpyruvate
- glycolysis:
3-phosphoglycerate + ATP ⟶ 1,3-diphosphateglycerate + ADP
- methionine biosynthesis:
H2O + L-cystathionine ⟶ H+ + L-homocysteine + ammonia + pyruvate
- superpathway of lysine, threonine and methionine biosynthesis II:
H2O + L-cystathionine ⟶ H+ + L-homocysteine + ammonia + pyruvate
- methionine biosynthesis II:
H2O + L-cystathionine ⟶ H+ + L-homocysteine + ammonia + pyruvate
- salvage pathways of adenine, hypoxanthine, and their nucleosides:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- sphingolipid metabolism:
NADP+ + a sphinganine ⟶ 3-dehydrosphinganine + H+ + NADPH
- sphingolipid metabolism:
H+ + palmitoyl-CoA + ser ⟶ 3-dehydrosphinganine + CO2 + coenzyme A
- ascorbate biosynthesis I (L-galactose pathway):
GDP-L-galactose + phosphate ⟶ α-L-galactose-1-phosphate + GDP + H+
- methylmalonyl pathway:
ATP + bicarbonate + propanoyl-CoA ⟶ (S)-methylmalonyl-CoA + ADP + H+ + phosphate
- methionine salvage pathway:
S-methyl-5'-thioadenosine + phosphate ⟶ 5-methylthioribose-1-phosphate + adenine
- glyoxalase pathway:
L-lactaldehyde + NADP+ ⟶ H+ + NADPH + methylglyoxal
- histidine biosynthesis:
glt + imidazole acetol-phosphate ⟶ 2-oxoglutarate + L-histidinol-phosphate
- glutathione biosynthesis:
ATP + L-γ-glutamylcysteine + gly ⟶ ADP + H+ + glutathione + phosphate
- γ-glutamyl cycle:
a 5-L-glutamyl-L-amino acid + cysteinylglycine ⟶ a standard α amino acid + glutathione
- purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- purine nucleotides de novo biosynthesis II:
adenylo-succinate ⟶ AMP + fumarate
- glutathione biosynthesis:
ATP + L-γ-glutamylcysteine + gly ⟶ ADP + H+ + glutathione + phosphate
- 5-aminoimidazole ribonucleotide biosynthesis I:
5-phospho-β-D-ribosyl-amine + ATP + gly ⟶ 5-phospho-ribosyl-glycineamide + ADP + H+ + phosphate
- 5-aminoimidazole ribonucleotide biosynthesis II:
5-phospho-β-D-ribosyl-amine + ATP + gly ⟶ 5-phospho-ribosyl-glycineamide + ADP + H+ + phosphate
- superpathway of histidine, purine and pyrimidine biosynthesis:
ATP + D-ribose 5-phosphate ⟶ 5-phosphoribosyl 1-pyrophosphate + AMP
- pyrimidine ribonucleotides de novo biosynthesis:
O2 + dihydroorotate ⟶ H2O2 + orotate
- salvage pathways of purine nucleosides:
AMP + pyrophosphate ⟶ 5-phosphoribosyl 1-pyrophosphate + adenine
- purine nucleotides de novo biosynthesis:
ATP + XMP + ammonia ⟶ AMP + GMP + pyrophosphate
- lactate oxidation:
ATP + acetate ⟶ ADP + H+ + acetylphosphate
- superpathway of acetate utilization and formation:
ATP + acetate ⟶ ADP + H+ + acetylphosphate
- acetate formation from acetyl-CoA I:
ATP + acetate ⟶ ADP + H+ + acetylphosphate
- glutathionylspermidine biosynthesis:
ATP + glutathione + spermidine ⟶ ADP + H+ + glutathionylspermidine + phosphate
- trypanothione biosynthesis:
ATP + glutathione + glutathionylspermidine ⟶ ADP + H+ + phosphate + trypanothione
- trypanothione biosynthesis:
ATP + glutathione + glutathionylspermidine ⟶ ADP + H+ + phosphate + trypanothione
- glutathione biosynthesis:
ATP + L-γ-glutamylcysteine + glycine ⟶ ADP + glutathione + phosphate
- gamma-glutamyl cycle:
Cys-Gly + an α-(γ-L-glutamyl)-L-amino acid ⟶ an amino acid + glutathione
- purine nucleotide metabolism (phosphotransfer and nucleotide modification):
AMP + ATP ⟶ ADP + H+
- adenosine nucleotides de novo biosynthesis:
adenylo-succinate ⟶ AMP + fumarate
- salvage pathways of purine nucleosides I:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- S-adenosylmethionine cycle:
ATP + H2O + L-methionine ⟶ SAM + phosphate + pyrophosphate
- ornithine biosynthesis:
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- arginine biosynthesis:
ATP + L-aspartate + citrulline ⟶ AMP + L-arginino-succinate + pyrophosphate
- salvage pathways of pyrimidine deoxyribonucleotides:
H2O + deoxycytidine ⟶ ammonia + deoxyuridine
- salvage pathways of pyrimidine ribonucleotides:
H2O + cytidine ⟶ ammonia + uridine
- superpathway of ribose and deoxyribose phosphate degradation:
H2O + deoxycytidine ⟶ ammonia + deoxyuridine
- (deoxy)ribose phosphate degradation:
H2O + deoxycytidine ⟶ ammonia + deoxyuridine
- (deoxy)ribose phosphate degradation:
deoxyuridine + phosphate ⟶ deoxyribose 1-phosphate + uracil
- superpathway of ribose and deoxyribose phosphate degradation:
deoxyuridine + phosphate ⟶ deoxyribose 1-phosphate + uracil
- salvage pathways of pyrimidine deoxyribonucleotides:
ATP + deoxyuridine ⟶ ADP + H+ + dUMP
- salvage pathways of pyrimidine ribonucleotides:
H2O + cytidine ⟶ ammonia + uridine
- NAD salvage pathway:
ATP + H2O + L-glutamine + deamido-NAD ⟶ AMP + L-glutamate + NAD+ + pyrophosphate
- fatty acid biosynthesis -- elongase pathway:
an acyl-CoA + malonyl-CoA ⟶ CO2 + a 3-oxoacyl-CoA + coenzyme A
- superpathway of sterol biosynthesis:
4-methyl-2-oxopentanoate + NAD+ + coenzyme A ⟶ CO2 + NADH + isovaleryl-CoA
- leucine degradation I:
4-methyl-2-oxopentanoate + NAD+ + coenzyme A ⟶ CO2 + NADH + isovaleryl-CoA
- leucine degradation I:
2-oxoglutarate + leu ⟶ 4-methyl-2-oxopentanoate + glt
- inosine-5'-phosphate biosynthesis I:
5'-phosphoribosyl-4-(N-succinocarboxamide)-5-aminoimidazole ⟶ aminoimidazole carboxamide ribonucleotide + fumarate
- flavin biosynthesis I (bacteria and plants):
2,5-diamino-6-(5-phospho-D-ribosylamino)pyrimidin-4(3H)-one + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- superpathway of ornithine degradation:
γ-glutamyl-L-putrescine + H2O + O2 ⟶ γ-glutamyl-γ-aminobutyraldehyde + ammonium + hydrogen peroxide
- putrescine degradation II:
γ-glutamyl-L-putrescine + H2O + O2 ⟶ γ-glutamyl-γ-aminobutyraldehyde + ammonium + hydrogen peroxide
- superpathway of arginine and ornithine degradation:
γ-glutamyl-L-putrescine + H2O + O2 ⟶ γ-glutamyl-γ-aminobutyraldehyde + ammonium + hydrogen peroxide
- superpathway of arginine, putrescine, and 4-aminobutyrate degradation:
γ-glutamyl-L-putrescine + H2O + O2 ⟶ γ-glutamyl-γ-aminobutyraldehyde + ammonium + hydrogen peroxide
- homoserine biosynthesis:
L-aspartate-semialdehyde + NADP+ + phosphate ⟶ H+ + L-aspartyl-4-phosphate + NADPH
- aspartate superpathway:
ATP + ammonia + nicotinate adenine dinucleotide ⟶ AMP + H+ + NAD+ + diphosphate
- isoleucine biosynthesis I:
thr ⟶ 2-oxobutanoate + H+ + ammonia
- superpathway of lysine, threonine and methionine biosynthesis I:
H2O + L-cystathionine ⟶ H+ + L-homocysteine + ammonia + pyruvate
- threonine biosynthesis:
2-oxoglutarate + asp ⟶ glt + oxaloacetate
- lysine biosynthesis VI:
2-oxoglutarate + L,L-diaminopimelate ⟶ H2O + H+ + glt + tetrahydrodipicolinate
- lysine biosynthesis I:
2-oxoglutarate + N-succinyl-L,L-2,6-diaminopimelate ⟶ N-succinyl-2-amino-6-ketopimelate + glt
- homoserine biosynthesis:
L-aspartate-semialdehyde + NADP+ + phosphate ⟶ H+ + L-aspartyl-4-phosphate + NADPH
- homoserine biosynthesis:
ATP + L-aspartate ⟶ ADP + L-aspartyl-4-phosphate
- CMP-KDO biosynthesis I:
D-arabinose 5-phosphate + H2O + phosphoenolpyruvate ⟶ 3-deoxy-D-manno-octulosonate 8-P + phosphate
- folate polyglutamylation I:
H+ + ser + tetrahydrofolate ⟶ 5,10-methylene-THF + H2O + gly
- folate metabolism:
H+ + ser + tetrahydrofolate ⟶ 5,10-methylene-THF + H2O + gly
- tetrahydrofolate biosynthesis I:
6-hydroxymethyl-7,8-dihydropterin + ATP ⟶ 6-hydroxymethyl-dihydropterin diphosphate + AMP + H+
- formylTHF biosynthesis II:
H+ + NAD+ + gly + tetrahydrofolate ⟶ 5,10-methylenetetrahydrofolate + CO2 + NADH + ammonia
- formylTHF biosynthesis I:
H+ + NAD+ + gly + tetrahydrofolate ⟶ 5,10-methylenetetrahydrofolate + CO2 + NADH + ammonia
- folate polyglutamylation I:
H+ + ser + tetrahydrofolate ⟶ 5,10-methylenetetrahydrofolate + H2O + gly
- salvage pathways of guanine, xanthine, and their nucleosides:
H2O + guanine ⟶ ammonia + xanthine
- selenocysteine biosynthesis I (bacteria):
ATP + H2O + hydrogen selenide ⟶ AMP + H+ + phosphate + selenophosphate
- selenocysteine biosynthesis I (bacteria):
ATP + H2O + hydrogen selenide ⟶ AMP + H+ + phosphate + selenophosphate
- myo-inositol biosynthesis:
1D-myo-inositol (3)-monophosphate + H2O ⟶ myo-inositol + phosphate
- myo-inositol biosynthesis:
1D-myo-inositol (3)-monophosphate + H2O ⟶ myo-inositol + phosphate
- salvage pathways of purine nucleosides:
H2O + adenine ⟶ ammonia + hypoxanthine
- purine and pyrimidine metabolism:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- proline biosynthesis II:
NAD(P)+ + pro ⟶ (S)-1-pyrroline-5-carboxylate + H+ + NAD(P)H
- proline biosynthesis II:
H2O + NAD(P)+ + glt ⟶ 2-oxoglutarate + NAD(P)H + ammonia
- threonine biosynthesis from homoserine:
H2O + O-phospho-L-homoserine ⟶ phosphate + thr
- threonine biosynthesis from homoserine:
H2O + O-phospho-L-homoserine ⟶ phosphate + thr
- inosine-5'-phosphate biosynthesis II:
5'-phosphoribosyl-4-(N-succinocarboxamide)-5-aminoimidazole ⟶ aminoimidazole carboxamide ribonucleotide + fumarate
- sucrose biosynthesis:
β-D-fructofuranose + UDP-D-glucose ⟶ UDP + sucrose
- superpathway of serine and glycine biosynthesis I:
2-oxoglutarate + 3-phospho-L-serine ⟶ 3-phospho-hydroxypyruvate + glt
- serine biosynthesis:
2-oxoglutarate + 3-phospho-L-serine ⟶ 3-phospho-hydroxypyruvate + glt
- threonine degradation I:
2-oxobutanoate + coenzyme A ⟶ formate + propanoyl-CoA
- superpathway of threonine metabolism:
2-oxobutanoate + coenzyme A ⟶ formate + propanoyl-CoA
- chorismate biosynthesis:
NADP+ + shikimate ⟶ 3-dehydro-shikimate + NADPH
- superpathway of phenylalanine, tyrosine and tryptophan biosynthesis:
L-serine + indole ⟶ H2O + L-tryptophan
- pyridine nucleotide cycling (plants):
ATP + H2O + gln + nicotinate adenine dinucleotide ⟶ AMP + H+ + NAD+ + diphosphate + glt
- mevalonate pathway I:
ATP + mevalonate-diphosphate ⟶ ADP + CO2 + H+ + isopentenyl diphosphate + phosphate
- mevalonate pathway I:
ATP + mevalonate-diphosphate ⟶ ADP + CO2 + H+ + isopentenyl diphosphate + phosphate
- mevalonate pathway I:
(R)-mevalonate + NADP+ + coenzyme A ⟶ 3-hydroxy-3-methyl-glutaryl-CoA + NADPH
- superpathway of ergosterol biosynthesis:
H+ + NADPH + O2 + lanosterol ⟶ 4,4-dimethyl-5-α-cholesta-8,14,24-trien-3-β-ol + NADP+ + formate
- S-adenosyl-L-methionine biosynthesis:
ATP + H2O + met ⟶ S-adenosyl-L-methionine + H+ + diphosphate + phosphate
- methionine and S-adenosylmethionine synthesis:
ATP + H2O + met ⟶ S-adenosyl-L-methionine + H+ + diphosphate + phosphate
- S-adenosylmethionine biosynthesis:
ATP + H2O + met ⟶ S-adenosyl-L-methionine + H+ + diphosphate + phosphate
- mannogen metabolism:
[mannose β-1,2]n+1-mannose ⟶ D-mannose + [mannose β-1,2]n-mannose
- acetyl-CoA degradation to acetate:
ATP + acetate + coenzyme A ⟶ AMP + H+ + acetyl-CoA + diphosphate
- respiration (anaerobic):
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- TCA cycle:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- polyphosphate metabolism:
ATP + long chain polyphosphate ⟶ ADP + long chain polyphosphate
- NAD/NADH phosphorylation and dephosphorylation:
NAD+ + NADPH ⟶ NADH + NADP+
- pyrimidine nucleotide metabolism (phosphotransfer and nucleotide modification):
ATP + H2O + UTP + gln ⟶ ADP + CTP + H+ + glt + phosphate
- pyrimidine ribonucleotides interconversion:
ATP + H2O + UTP + gln ⟶ ADP + CTP + H+ + glt + phosphate
- glutamine biosynthesis II:
ATP + ammonia + glt ⟶ ADP + H+ + gln + phosphate
- triacylglycerol biosynthesis:
sn-glycerol-3-phosphate + a long-chain acyl-CoA ⟶ a 1-acyl-sn-glycerol-3-phosphate + coenzyme A
- glycerolipid biosynthesis - initial steps:
H+ + NADPH + a 1-acyl-glycerone 3-phosphate ⟶ NADP+ + a 1-acyl-sn-glycerol-3-phosphate
- superpathway of phospholipid biosynthesis:
an L-1-phosphatidyl-glycerol ⟶ a cardiolipin + glycerol
- ester phospholipid biosynthesis:
an L-1-phosphatidyl-glycerol ⟶ a cardiolipin + glycerol
- ether phospholipid biosynthesis:
1-alkyl-glycerone 3-phosphate + H+ + NADPH ⟶ NADP+ + a 1-alkyl-sn-glycerol-3-phosphate
- starch degradation:
H2O + a 1,4-α-D-glucan ⟶ α-maltose + a 1,4-α-D-glucan
- UDP-glucose conversion:
α-D-glucose 1-phosphate + H+ + UTP ⟶ UDP-D-glucose + diphosphate
- respiration (anaerobic):
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- TCA cycle:
2-oxoglutarate + NAD+ + coenzyme A ⟶ CO2 + NADH + succinyl-CoA
- superpathway of glyoxylate bypass and TCA:
2-oxoglutarate + NAD+ + coenzyme A ⟶ CO2 + NADH + succinyl-CoA
- phosphatidylglycerol biosynthesis II (non-plastidic):
sn-glycerol-3-phosphate + a CDP-diacylglycerol ⟶ CMP + H+ + an L-1-phosphatidylglycerol-phosphate
- triacylglycerol biosynthesis:
sn-glycerol-3-phosphate + a long-chain acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- choline biosynthesis I:
H2O + phosphoryl-choline ⟶ choline + phosphate
- cardiolipin biosynthesis I:
an L-1-phosphatidyl-glycerol ⟶ a cardiolipin + glycerol
- folate polyglutamylation II:
ATP + a folylpolyglutamate(n) + glt ⟶ ADP + a folylpolyglutamate(n) + phosphate
- NAD phosphorylation and dephosphorylation:
H2O + NADP+ ⟶ NAD+ + phosphate
- NAD biosynthesis I (from aspartate):
ATP + ammonia + nicotinate adenine dinucleotide ⟶ AMP + H+ + NAD+ + diphosphate
- mycothiol biosynthesis:
1-(2-acetamido-2-deoxy-α-D-glucopyranosyl)-1D-myo-inositol + H2O ⟶ 1-(2-amino-2-deoxy-α-D-glucopyranoside)-1D-myo-inositol + acetate
- pyrimidine ribonucleotides interconversion:
ATP + H2O + UTP + gln ⟶ ADP + CTP + H+ + glt + phosphate
- glutamine biosynthesis II:
H2O + NAD(P)+ + glt ⟶ 2-oxoglutarate + NAD(P)H + ammonia
- histidine biosynthesis:
L-glutamate + imidazole acetol-phosphate ⟶ α-ketoglutarate + L-histidinol-phosphate
- glycine degradation:
a ferricytochrome b1 + formate ⟶ CO2 + a ferrocytochrome b1
- trehalose biosynthesis:
β-D-glucose-6-phosphate + UDP-D-glucose ⟶ UDP + trehalose 6-phosphate
- selenocysteine biosynthesis:
ATP + L-serine ⟶ AMP + pyrophosphate
- citrulline biosynthesis:
α-ketoglutarate + L-ornithine ⟶ L-glutamate + L-glutamate γ-semialdehyde
- salvage pathways of pyrimidine ribonucleotides:
H2O + cytidine ⟶ ammonia + uridine
- thiamin (vitamin B1) biosynthesis:
ATP + thiamine ⟶ AMP + thiamin diphosphate
- trehalose degradation V:
α-D-glucose ⟶ β-D-glucose
- riboflavin and FMN and FAD biosynthesis:
2,5-diamino-6-(ribosylamino)-4-(3H)-pyrimidinone 5'-phosphate + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- tetrahydrofolate biosynthesis:
6-hydroxymethyl-dihydropterin + ATP ⟶ 2-amino-4-hydroxy-6-hydroxymethyl-7,8-dihydropteridine diphosphate + AMP
- proline biosynthesis:
H2O + L-glutamate + NAD(P)+ ⟶ α-ketoglutarate + NAD(P)H + ammonia
- mannitol biosynthesis:
NADP+ + mannitol-1-phosphate ⟶ NADPH + mannose-6-phosphate
- salvage pathways of guanine, xanthine, and their nucleosides:
H2O + guanine ⟶ ammonia + xanthine
- folate transformations II:
L-serine + a tetrahydrofolate ⟶ H2O + a 5,10-methylenetetrahydrofolate + glycine
- triacylglycerol biosynthesis:
H2O + a 1,2-diacyl-sn-glycerol 3-phosphate ⟶ a 1,2-diacyl-sn-glycerol + phosphate
- salvage pathways of pyrimidine deoxyribonucleotides:
H2O + deoxycytidine ⟶ ammonia + deoxyuridine
- glutamine biosynthesis:
ATP + L-glutamate + ammonia ⟶ ADP + L-glutamine + phosphate
- threonine degradation:
2-oxobutanoate + ammonia + succinate ⟶ H2O + O-succinyl-L-homoserine
- threonine biosynthesis:
ATP + homoserine ⟶ ADP + O-phospho-L-homoserine
- methylglyoxal pathway:
H2O + S-lactoyl-glutathione ⟶ D-lactate + glutathione
- folate polyglutamylation:
L-serine + a tetrahydrofolate ⟶ H2O + a 5,10-methylenetetrahydrofolate + glycine
- phospholipid biosynthesis:
L-serine + a CDP-diacylglycerol ⟶ CMP + a 3-O-sn-phosphatidyl-L-serine
- allantoin degradation:
H2O + urea-1-carboxylate ⟶ CO2 + ammonia
- glycogen catabolism:
maltose + maltotriose ⟶ β-D-glucose + maltotetraose
- folate polyglutamylation I:
L-serine + a tetrahydrofolate ⟶ H2O + a 5,10-methylenetetrahydrofolate + glycine
- UDP-glucose conversion:
α-D-glucose 1-phosphate + UTP ⟶ UDP-D-glucose + pyrophosphate
- salvage pathways of adenine, hypoxanthine, and their nucleosides:
AMP + H2O ⟶ D-ribose 5-phosphate + adenine
- NAD/NADH phosphorylation and dephosphorylation:
H2O + NADP+ ⟶ NAD+ + phosphate
- biotin biosynthesis:
7,8-diaminononanoate + ATP + CO2 ⟶ ADP + dethiobiotin + phosphate
- starch degradation:
a short glucan ⟶ β-D-glucose + a long-linear α-D-glucan
- serine biosynthesis:
3-phospho-serine + H2O ⟶ L-serine + phosphate
- folate polyglutamylation II:
ATP + L-glutamate + a folylpolyglutamate(n) ⟶ ADP + a folylpolyglutamate(n+1) + phosphate
- myo-inositol biosynthesis:
β-D-glucose-6-phosphate ⟶ D-myo-inositol (3)-monophosphate
WikiPathways(1)
- 1q21.1 copy number variation syndrome:
1-(9Z-octadecenoyl)-sn-glycero-3-phosphate ⟶ 1-(9Z-octadecenoyl)-sn-glycerol
Plant Reactome(0)
INOH(38)
- Purine nucleotides and Nucleosides metabolism ( Purine nucleotides and Nucleosides metabolism ):
H2O + XTP ⟶ Pyrophosphate + XMP
- Alanine,Aspartic acid and Asparagine metabolism ( Alanine,Aspartic acid and Asparagine metabolism ):
H2O + N-Acetyl-L-aspartic acid ⟶ Acetic acid + L-Aspartic acid
- ATP + Pyruvic acid + CO2 + H2O = ADP + Oxaloacetic acid + Orthophosphate ( Alanine,Aspartic acid and Asparagine metabolism ):
ATP + CO2 + H2O + Pyruvic acid ⟶ ADP + Orthophosphate + Oxaloacetic acid
- Citrate cycle ( Citrate cycle ):
H2O + cis-Aconitic acid ⟶ Isocitric acid
- ATP + Pyruvic acid + CO2 + H2O = ADP + Oxaloacetic acid + Orthophosphate ( Glycolysis and Gluconeogenesis ):
ADP + Orthophosphate + Oxaloacetic acid ⟶ ATP + CO2 + H2O + Pyruvic acid
- Fructose and Mannose metabolism ( Fructose and Mannose metabolism ):
D-Sorbitol + NADP+ ⟶ D-Glucose + NADPH
- Arginine and Proline metabolism ( Arginine and Proline metabolism ):
ATP + Creatine ⟶ ADP + N-Phospho-creatine
- Glutamic acid and Glutamine metabolism ( Glutamic acid and Glutamine metabolism ):
ATP + L-Glutamine + tRNA(Gln) ⟶ AMP + L-Glutaminyl-tRNA(Gln) + Pyrophosphate
- Pyrimidine Nucleotides and Nucleosides metabolism ( Pyrimidine Nucleotides and Nucleosides metabolism ):
Deoxy-cytidine + H2O ⟶ Deoxy-uridine + NH3
- Glycolysis and Gluconeogenesis ( Glycolysis and Gluconeogenesis ):
D-Glucose 6-phosphate + H2O ⟶ D-Glucose + Orthophosphate
- NADH + 1,3-Bisphospho-D-glyceric acid = NAD+ + D-Glyceraldehyde 3-phosphate + Orthophosphate ( Glycolysis and Gluconeogenesis ):
D-Glyceraldehyde 3-phosphate + NAD+ + Orthophosphate ⟶ 1,3-Bisphospho-D-glyceric acid + NADH
- Inositol phosphate metabolism ( Inositol phosphate metabolism ):
O2 + myo-Inositol ⟶ D-Glucuronic acid + H2O
- Deoxy-adenosine + Orthophosphate = 2-Deoxy-D-ribose 1-phosphate + Adenine ( Purine nucleotides and Nucleosides metabolism ):
2-Deoxy-D-ribose 1-phosphate + Adenine ⟶ Deoxy-adenosine + Orthophosphate
- Aminosugars metabolism ( Aminosugars metabolism ):
D-Fructose 6-phosphate + NH3 ⟶ D-Glucosamine 6-phosphate + H2O
- Pyruvate metabolism ( Pyruvate metabolism ):
ATP + Acetic acid + CoA ⟶ AMP + Acetyl-CoA + Pyrophosphate
- Propanoate metabolism ( Propanoate metabolism ):
ATP + CoA + Propanoic acid ⟶ AMP + Propanoyl-CoA + Pyrophosphate
- CoA + GTP + Succinic acid = Succinyl-CoA + GDP + Orthophosphate ( Citrate cycle ):
GDP + Orthophosphate + Succinyl-CoA ⟶ CoA + GTP + Succinic acid
- CoA + ATP + Succinic acid = Succinyl-CoA + ADP + Orthophosphate ( Citrate cycle ):
ATP + CoA + Succinic acid ⟶ ADP + Orthophosphate + Succinyl-CoA
- Tryptophan degradation ( Tryptophan degradation ):
L-Tryptophan + O2 ⟶ N-Formyl-L-kynurenine
- Pentose phosphate cycle ( Pentose phosphate cycle ):
ATP + D-Ribose 5-phosphate ⟶ AMP + D-5-Phospho-ribosyl 1-diphosphate
- ATP + CoA + Citric acid = ADP + Acetyl-CoA + Oxaloacetic acid + Orthophosphate ( Lysine degradation ):
ADP + Acetyl-CoA + Orthophosphate + Oxaloacetic acid ⟶ ATP + Citric acid + CoA
- Uridine + Orthophosphate = Uracil + D-Ribose 1-phosphate ( Pyrimidine Nucleotides and Nucleosides metabolism ):
Orthophosphate + Uridine ⟶ D-Ribose 1-phosphate + Uracil
- Deoxy-uridine + Orthophosphate = 2-Deoxy-D-ribose 1-phosphate + Uracil ( Pyrimidine Nucleotides and Nucleosides metabolism ):
2-Deoxy-D-ribose 1-phosphate + Uracil ⟶ Deoxy-uridine + Orthophosphate
- Nicotinate and Nicotinamide metabolism ( Nicotinate and Nicotinamide metabolism ):
ATP + Deamido-NAD+ + H2O + L-Glutamine ⟶ AMP + L-Glutamic acid + NAD+ + Pyrophosphate
- Folate metabolism ( Folate metabolism ):
6-Pyruvoyl-5,6,7,8-tetrahydro-pterin + NADPH ⟶ 5,6,7,8-Tetrahydro-biopterin + NADP+
- Deoxy-guanosine + Orthophosphate = 2-Deoxy-D-ribose 1-phosphate + Guanine ( Purine nucleotides and Nucleosides metabolism ):
2-Deoxy-D-ribose 1-phosphate + Guanine ⟶ Deoxy-guanosine + Orthophosphate
- Adenosine + Orthophosphate = Adenine + D-Ribose 1-phosphate ( Purine nucleotides and Nucleosides metabolism ):
Adenosine + Orthophosphate ⟶ Adenine + D-Ribose 1-phosphate
- Inosine + Orthophosphate = Hypoxanthine + D-Ribose 1-phosphate ( Purine nucleotides and Nucleosides metabolism ):
Inosine + Orthophosphate ⟶ D-Ribose 1-phosphate + Hypoxanthine
- Guanosine + Orthophosphate = Guanine + D-Ribose 1-phosphate ( Purine nucleotides and Nucleosides metabolism ):
D-Ribose 1-phosphate + Guanine ⟶ Guanosine + Orthophosphate
- Glycine and Serine metabolism ( Glycine and Serine metabolism ):
Guanidino-acetic acid + S-Adenosyl-L-methionine ⟶ Creatine + S-Adenosyl-L-homocysteine
- ATP + L-Glutamic acid + NH3 = ADP + L-Glutamine + Orthophosphate ( Glutamic acid and Glutamine metabolism ):
ATP + L-Glutamic acid + NH3 ⟶ ADP + L-Glutamine + Orthophosphate
- Nicotinate D-ribonucleoside + Orthophosphate = Nicotinic acid + D-Ribose 1-phosphate ( Nicotinate and Nicotinamide metabolism ):
Nicotinate D-ribonucleoside + Orthophosphate ⟶ D-Ribose 1-phosphate + Nicotinic acid
- N-Ribosyl-nicotinamide + Orthophosphate = Nicotinamide + D-Ribose 1-phosphate ( Nicotinate and Nicotinamide metabolism ):
N-Ribosyl-nicotinamide + Orthophosphate ⟶ D-Ribose 1-phosphate + Nicotinamide
- Methionine and Cysteine metabolism ( Methionine and Cysteine metabolism ):
H2O + L-Cystathionine ⟶ 2-Oxo-butanoic acid + L-Cysteine + NH3
- Deoxy-inosine + Orthophosphate = 2-Deoxy-D-ribose 1-phosphate + Hypoxanthine ( Purine nucleotides and Nucleosides metabolism ):
2-Deoxy-D-ribose 1-phosphate + Hypoxanthine ⟶ Deoxy-inosine + Orthophosphate
- Xanthosine + Orthophosphate = Xanthine + D-Ribose 1-phosphate ( Purine nucleotides and Nucleosides metabolism ):
Orthophosphate + Xanthosine ⟶ D-Ribose 1-phosphate + Xanthine
- Thymidine + Orthophosphate = 2-Deoxy-D-ribose 1-phosphate + Thymine ( Pyrimidine Nucleotides and Nucleosides metabolism ):
2-Deoxy-D-ribose 1-phosphate + Thymine ⟶ Orthophosphate + Thymidine
- Valine,Leucine and Isoleucine degradation ( Valine,Leucine and Isoleucine degradation ):
2-Methyl-3-acetoacetyl-CoA + CoA ⟶ Acetyl-CoA + Propanoyl-CoA
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(322)
- Glycolysis:
Adenosine triphosphate + D-Glucose ⟶ Adenosine diphosphate + Glucose 6-phosphate
- Gluconeogenesis:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Glycerol Phosphate Shuttle:
Glycerol 3-phosphate + Quinone ⟶ Dihydroxyacetone phosphate + Hydroquinone
- Glycogen Storage Disease Type 1A (GSD1A) or Von Gierke Disease:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Glycogenosis, Type VII. Tarui Disease:
Adenosine triphosphate + D-Glucose ⟶ Adenosine diphosphate + Glucose 6-phosphate
- Phosphoenolpyruvate Carboxykinase Deficiency 1 (PEPCK1):
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Fructose-1,6-diphosphatase Deficiency:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Triosephosphate Isomerase Deficiency:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Fanconi-Bickel Syndrome:
Adenosine triphosphate + D-Glucose ⟶ Adenosine diphosphate + Glucose 6-phosphate
- Glycogenosis, Type IB:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Glycogenosis, Type IC:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Glycogenosis, Type IA. Von Gierke Disease:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Warburg Effect:
L-Glutamic acid + NAD + Water ⟶ Ammonia + NADH + Oxoglutaric acid
- Glycolysis:
Adenosine triphosphate + D-Glucose ⟶ Adenosine diphosphate + Glucose 6-phosphate
- Glycolysis I:
Adenosine triphosphate + D-Glucose ⟶ Adenosine diphosphate + Glucose 6-phosphate
- Ethanol Fermentation:
Adenosine triphosphate + D-Glucose ⟶ Adenosine diphosphate + Glucose 6-phosphate
- Glycolysis:
Adenosine triphosphate + D-Glucose ⟶ Adenosine diphosphate + Glucose 6-phosphate
- Gluconeogenesis:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Glycerol Phosphate Shuttle:
Glycerol 3-phosphate + Quinone ⟶ Dihydroxyacetone phosphate + Hydroquinone
- Glycogen Storage Disease Type 1A (GSD1A) or Von Gierke Disease:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Glycogenosis, Type VII. Tarui Disease:
Adenosine triphosphate + D-Glucose ⟶ Adenosine diphosphate + Glucose 6-phosphate
- Phosphoenolpyruvate Carboxykinase Deficiency 1 (PEPCK1):
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Fructose-1,6-diphosphatase Deficiency:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Triosephosphate Isomerase Deficiency:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Fanconi-Bickel Syndrome:
Adenosine triphosphate + D-Glucose ⟶ Adenosine diphosphate + Glucose 6-phosphate
- Glycogenosis, Type IB:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Glycogenosis, Type IC:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Glycogenosis, Type IA. Von Gierke Disease:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Warburg Effect:
L-Glutamic acid + NAD + Water ⟶ Ammonia + NADH + Oxoglutaric acid
- Glycerol Phosphate Shuttle:
Glycerol 3-phosphate + Quinone ⟶ Dihydroxyacetone phosphate + Hydroquinone
- Glycolysis:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Gluconeogenesis:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Warburg Effect:
L-Glutamine + Water ⟶ Ammonia + L-Glutamic acid
- Glycerol Phosphate Shuttle:
Glycerol 3-phosphate + Quinone ⟶ Dihydroxyacetone phosphate + Hydroquinone
- Glycolysis:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Gluconeogenesis:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Warburg Effect:
L-Glutamine + Water ⟶ Ammonia + L-Glutamic acid
- Glycerol Phosphate Shuttle:
Glycerol 3-phosphate + Quinone ⟶ Dihydroxyacetone phosphate + Hydroquinone
- Glycolysis:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Warburg Effect:
L-Glutamine + Water ⟶ Ammonia + L-Glutamic acid
- Glycerol Phosphate Shuttle:
Glycerol 3-phosphate + Quinone ⟶ Dihydroxyacetone phosphate + Hydroquinone
- Glycolysis:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Warburg Effect:
L-Glutamine + Water ⟶ Ammonia + L-Glutamic acid
- Glycogen Storage Disease Type 1A (GSD1A) or Von Gierke Disease:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Glycogenosis, Type VII. Tarui Disease:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Phosphoenolpyruvate Carboxykinase Deficiency 1 (PEPCK1):
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Fructose-1,6-diphosphatase Deficiency:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Triosephosphate Isomerase Deficiency:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Fanconi-Bickel Syndrome:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Glycogenosis, Type IB:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Glycogenosis, Type IC:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Glycogenosis, Type IA. Von Gierke Disease:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Urea Cycle:
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Arginine and Proline Metabolism:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Glutamate Metabolism:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- Ammonia Recycling:
Adenosine triphosphate + L-Aspartic acid + L-Glutamine + Water ⟶ Adenosine monophosphate + L-Asparagine + L-Glutamic acid + Pyrophosphate
- 4-Hydroxybutyric Aciduria/Succinic Semialdehyde Dehydrogenase Deficiency:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- Homocarnosinosis:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- Hyperinsulinism-Hyperammonemia Syndrome:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- Prolidase Deficiency (PD):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Arginine: Glycine Amidinotransferase Deficiency (AGAT Deficiency):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Hyperprolinemia Type II:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Hyperprolinemia Type I:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Prolinemia Type II:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Guanidinoacetate Methyltransferase Deficiency (GAMT Deficiency):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Ornithine Aminotransferase Deficiency (OAT Deficiency):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Argininemia:
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Argininosuccinic Aciduria:
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Citrullinemia Type I:
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Ornithine Transcarbamylase Deficiency (OTC Deficiency):
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Carbamoyl Phosphate Synthetase Deficiency:
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- 2-Hydroxyglutric Aciduria (D and L Form):
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- Creatine Deficiency, Guanidinoacetate Methyltransferase Deficiency:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Hyperornithinemia with Gyrate Atrophy (HOGA):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Hyperornithinemia-Hyperammonemia-Homocitrullinuria [HHH-syndrome]:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- L-Arginine:Glycine Amidinotransferase Deficiency:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Succinic Semialdehyde Dehydrogenase Deficiency:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- Arginine and Proline Metabolism:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Ammonia Recycling:
Adenosine triphosphate + L-Aspartic acid + L-Glutamine + Water ⟶ Adenosine monophosphate + L-Asparagine + L-Glutamic acid + Pyrophosphate
- Glutamate Metabolism:
Adenosine triphosphate + L-Glutamine ⟶ Adenosine monophosphate + Pyrophosphate
- Arginine and Proline Metabolism:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Urea Cycle:
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- 2-Hydroxyglutric Aciduria (D and L Form):
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- 4-Hydroxybutyric Aciduria/Succinic Semialdehyde Dehydrogenase Deficiency:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Arginine: Glycine Amidinotransferase Deficiency (AGAT Deficiency):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Argininemia:
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Argininosuccinic Aciduria:
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Carbamoyl Phosphate Synthetase Deficiency:
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Citrullinemia Type I:
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Guanidinoacetate Methyltransferase Deficiency (GAMT Deficiency):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Homocarnosinosis:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Hyperinsulinism-Hyperammonemia Syndrome:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Hyperprolinemia Type I:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Hyperprolinemia Type II:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Ornithine Aminotransferase Deficiency (OAT Deficiency):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Prolinemia Type II:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Prolidase Deficiency (PD):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Ornithine Transcarbamylase Deficiency (OTC Deficiency):
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Creatine Deficiency, Guanidinoacetate Methyltransferase Deficiency:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Hyperornithinemia with Gyrate Atrophy (HOGA):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Hyperornithinemia-Hyperammonemia-Homocitrullinuria [HHH-syndrome]:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- L-Arginine:Glycine Amidinotransferase Deficiency:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Succinic Semialdehyde Dehydrogenase Deficiency:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Glutamate Metabolism:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Ammonia Recycling:
Adenosine triphosphate + L-Aspartic acid + L-Glutamine + Water ⟶ Adenosine monophosphate + L-Asparagine + L-Glutamic acid + Pyrophosphate
- Arginine and Proline Metabolism:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Urea Cycle:
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Glutamate Metabolism:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Ammonia Recycling:
Adenosine triphosphate + L-Aspartic acid + L-Glutamine + Water ⟶ Adenosine monophosphate + L-Asparagine + L-Glutamic acid + Pyrophosphate
- Arginine and Proline Metabolism:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Urea Cycle:
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Glutamate Metabolism:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Ammonia Recycling:
Adenosine triphosphate + L-Aspartic acid + L-Glutamine + Water ⟶ Adenosine monophosphate + L-Asparagine + L-Glutamic acid + Pyrophosphate
- Glutamate Metabolism:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Ammonia Recycling:
Adenosine triphosphate + L-Aspartic acid + L-Glutamine + Water ⟶ Adenosine monophosphate + L-Asparagine + L-Glutamic acid + Pyrophosphate
- 2-Hydroxyglutric Aciduria (D and L Form):
Adenosine triphosphate + L-Glutamine ⟶ Adenosine monophosphate + Pyrophosphate
- 4-Hydroxybutyric Aciduria/Succinic Semialdehyde Dehydrogenase Deficiency:
Adenosine triphosphate + L-Glutamine ⟶ Adenosine monophosphate + Pyrophosphate
- Arginine: Glycine Amidinotransferase Deficiency (AGAT Deficiency):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Argininemia:
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Argininosuccinic Aciduria:
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Carbamoyl Phosphate Synthetase Deficiency:
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Citrullinemia Type I:
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Guanidinoacetate Methyltransferase Deficiency (GAMT Deficiency):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Homocarnosinosis:
Adenosine triphosphate + L-Glutamine ⟶ Adenosine monophosphate + Pyrophosphate
- Hyperinsulinism-Hyperammonemia Syndrome:
Adenosine triphosphate + L-Glutamine ⟶ Adenosine monophosphate + Pyrophosphate
- Hyperprolinemia Type I:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Hyperprolinemia Type II:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Ornithine Aminotransferase Deficiency (OAT Deficiency):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Prolinemia Type II:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Prolidase Deficiency (PD):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Ornithine Transcarbamylase Deficiency (OTC Deficiency):
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Creatine Deficiency, Guanidinoacetate Methyltransferase Deficiency:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Hyperornithinemia with Gyrate Atrophy (HOGA):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Hyperornithinemia-Hyperammonemia-Homocitrullinuria [HHH-syndrome]:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- L-Arginine:Glycine Amidinotransferase Deficiency:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Succinic Semialdehyde Dehydrogenase Deficiency:
Adenosine triphosphate + L-Glutamine ⟶ Adenosine monophosphate + Pyrophosphate
- Lactose Synthesis:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Congenital Disorder of Glycosylation CDG-IId:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- GLUT-1 Deficiency Syndrome:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Lactose Synthesis:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Congenital Disorder of Glycosylation CDG-IId:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- GLUT-1 Deficiency Syndrome:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Lactose Synthesis:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Lactose Synthesis:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Lactose Synthesis:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Lactose Synthesis:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Congenital Disorder of Glycosylation CDG-IId:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- GLUT-1 Deficiency Syndrome:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Inositol Metabolism:
Oxygen + myo-Inositol ⟶ D-Glucuronic acid + Water
- Inositol Phosphate Metabolism:
1D-myo-Inositol 3-phosphate + Water ⟶ Phosphate + myo-Inositol
- Inositol Metabolism:
Myo-inositol 1-phosphate + Water ⟶ Phosphate + myo-Inositol
- Inositol Metabolism:
Oxygen + myo-Inositol ⟶ D-Glucuronic acid + Water
- Inositol Phosphate Metabolism:
Myo-inositol 1-phosphate + Water ⟶ Phosphate + myo-Inositol
- Inositol Metabolism:
Oxygen + myo-Inositol ⟶ D-Glucuronic acid + Water
- Inositol Phosphate Metabolism:
Myo-inositol 1-phosphate + Water ⟶ Phosphate + myo-Inositol
- Inositol Metabolism:
Oxygen + myo-Inositol ⟶ D-Glucuronic acid + Water
- Inositol Phosphate Metabolism:
Myo-inositol 1-phosphate + Water ⟶ Phosphate + myo-Inositol
- Inositol Metabolism:
Oxygen + myo-Inositol ⟶ D-Glucuronic acid + Water
- Inositol Phosphate Metabolism:
Myo-inositol 1-phosphate + Water ⟶ Phosphate + myo-Inositol
- Inositol Metabolism:
Oxygen + myo-Inositol ⟶ D-Glucuronic acid + Water
- Inositol Phosphate Metabolism:
Myo-inositol 1-phosphate + Water ⟶ Phosphate + myo-Inositol
- Purine Metabolism:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Adenosine Deaminase Deficiency:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Adenylosuccinate Lyase Deficiency:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Gout or Kelley-Seegmiller Syndrome:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Lesch-Nyhan Syndrome (LNS):
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Molybdenum Cofactor Deficiency:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Xanthine Dehydrogenase Deficiency (Xanthinuria):
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Purine Nucleoside Phosphorylase Deficiency:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- AICA-Ribosiduria:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Azathioprine Action Pathway:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Mercaptopurine Action Pathway:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Thioguanine Action Pathway:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Xanthinuria Type I:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Xanthinuria Type II:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Adenine Phosphoribosyltransferase Deficiency (APRT):
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Mitochondrial DNA Depletion Syndrome-3:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Myoadenylate Deaminase Deficiency:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Purine Metabolism:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Adenosine Deaminase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Adenylosuccinate Lyase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- AICA-Ribosiduria:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Gout or Kelley-Seegmiller Syndrome:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Xanthine Dehydrogenase Deficiency (Xanthinuria):
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Lesch-Nyhan Syndrome (LNS):
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Molybdenum Cofactor Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Purine Nucleoside Phosphorylase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Xanthinuria Type I:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Xanthinuria Type II:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Adenine Phosphoribosyltransferase Deficiency (APRT):
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Mitochondrial DNA Depletion Syndrome:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Myoadenylate Deaminase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Purine Metabolism:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Purine Metabolism:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Adenosine Deaminase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Adenylosuccinate Lyase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- AICA-Ribosiduria:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Gout or Kelley-Seegmiller Syndrome:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Xanthine Dehydrogenase Deficiency (Xanthinuria):
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Lesch-Nyhan Syndrome (LNS):
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Molybdenum Cofactor Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Purine Nucleoside Phosphorylase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Xanthinuria Type I:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Xanthinuria Type II:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Adenine Phosphoribosyltransferase Deficiency (APRT):
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Mitochondrial DNA Depletion Syndrome:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Myoadenylate Deaminase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Pyruvate Metabolism:
Acetic acid + Coenzyme A ⟶ Acetyl-CoA + Water
- Leigh Syndrome:
Acetic acid + Coenzyme A ⟶ Acetyl-CoA + Water
- Pyruvate Decarboxylase E1 Component Deficiency (PDHE1 Deficiency):
Acetic acid + Coenzyme A ⟶ Acetyl-CoA + Water
- Pyruvate Dehydrogenase Complex Deficiency:
Acetic acid + Coenzyme A ⟶ Acetyl-CoA + Water
- Primary Hyperoxaluria II, PH2:
Acetic acid + Coenzyme A ⟶ Acetyl-CoA + Water
- Pyruvate Kinase Deficiency:
Acetic acid + Coenzyme A ⟶ Acetyl-CoA + Water
- Pyruvate Metabolism:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Leigh Syndrome:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Pyruvate Dehydrogenase Complex Deficiency:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Pyruvate Decarboxylase E1 Component Deficiency (PDHE1 Deficiency):
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Primary Hyperoxaluria II, PH2:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Pyruvate Kinase Deficiency:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Pyruvate Metabolism:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Pyruvate Metabolism:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Pyruvate Metabolism:
Acetic acid + Coenzyme A ⟶ Acetyl-CoA + Water
- Pyruvate Metabolism:
Acetic acid + Coenzyme A ⟶ Acetyl-CoA + Water
- Leigh Syndrome:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Pyruvate Dehydrogenase Complex Deficiency:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Pyruvate Decarboxylase E1 Component Deficiency (PDHE1 Deficiency):
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Primary Hyperoxaluria II, PH2:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Pyruvate Kinase Deficiency:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Selenoamino Acid Metabolism:
Selenocystathionine + Water ⟶ 2-Ketobutyric acid + Ammonia + Selenocysteine
- Selenoamino Acid Metabolism:
Selenocystathionine + Water ⟶ 2-Ketobutyric acid + Ammonia + Selenocysteine
- Selenoamino Acid Metabolism:
Selenocystathionine + Water ⟶ 2-Ketobutyric acid + Ammonia + Selenocysteine
- Selenoamino Acid Metabolism:
Selenocystathionine + Water ⟶ 2-Ketobutyric acid + Ammonia + Selenocysteine
- Selenoamino Acid Metabolism:
Selenocystathionine + Water ⟶ 2-Ketobutyric acid + Ammonia + Selenocysteine
- Selenoamino Acid Metabolism:
Selenocystathionine + Water ⟶ 2-Ketobutyric acid + Ammonia + Selenocysteine
- Propanoate Metabolism:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Malonic Aciduria:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Methylmalonic Aciduria Due to Cobalamin-Related Disorders:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Malonyl-CoA Decarboxylase Deficiency:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Propanoate Metabolism:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Malonic Aciduria:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Methylmalonic Aciduria Due to Cobalamin-Related Disorders:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Malonyl-CoA Decarboxylase Deficiency:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Propanoate Metabolism:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Propanoate Metabolism:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Propanoate Metabolism:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Propanoate Metabolism:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Malonic Aciduria:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Methylmalonic Aciduria Due to Cobalamin-Related Disorders:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Malonyl-CoA Decarboxylase Deficiency:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Glutathione Metabolism:
Cysteinylglycine + Water ⟶ Glycine + L-Cysteine
- Glutathione Synthetase Deficiency:
Cysteinylglycine + Water ⟶ Glycine + L-Cysteine
- 5-Oxoprolinuria:
Cysteinylglycine + Water ⟶ Glycine + L-Cysteine
- gamma-Glutamyltransferase Deficiency:
Cysteinylglycine + Water ⟶ Glycine + L-Cysteine
- 5-Oxoprolinase Deficiency:
Cysteinylglycine + Water ⟶ Glycine + L-Cysteine
- gamma-Glutamyltranspeptidase Deficiency:
Cysteinylglycine + Water ⟶ Glycine + L-Cysteine
- Glutathione Metabolism:
Glutathione + L-amino acid ⟶ (5-L-Glutamyl)-L-amino acid + Cysteinylglycine
- 5-Oxoprolinuria:
Glutathione + L-amino acid ⟶ (5-L-Glutamyl)-L-amino acid + Cysteinylglycine
- gamma-Glutamyltransferase Deficiency:
Glutathione + L-amino acid ⟶ (5-L-Glutamyl)-L-amino acid + Cysteinylglycine
- Glutathione Synthetase Deficiency:
Glutathione + L-amino acid ⟶ (5-L-Glutamyl)-L-amino acid + Cysteinylglycine
- 5-Oxoprolinase Deficiency:
Glutathione + L-amino acid ⟶ (5-L-Glutamyl)-L-amino acid + Cysteinylglycine
- gamma-Glutamyltranspeptidase Deficiency:
Glutathione + L-amino acid ⟶ (5-L-Glutamyl)-L-amino acid + Cysteinylglycine
- Glutathione Metabolism:
Glutathione + L-amino acid ⟶ (5-L-Glutamyl)-L-amino acid + Cysteinylglycine
- Glutathione Metabolism:
Glutathione + L-amino acid ⟶ (5-L-Glutamyl)-L-amino acid + Cysteinylglycine
- Glutathione Metabolism:
Glutathione + L-amino acid ⟶ (5-L-Glutamyl)-L-amino acid + Cysteinylglycine
- Glutathione Metabolism:
Glutathione + L-amino acid ⟶ (5-L-Glutamyl)-L-amino acid + Cysteinylglycine
- 5-Oxoprolinuria:
Glutathione + L-amino acid ⟶ (5-L-Glutamyl)-L-amino acid + Cysteinylglycine
- gamma-Glutamyltransferase Deficiency:
Glutathione + L-amino acid ⟶ (5-L-Glutamyl)-L-amino acid + Cysteinylglycine
- Glutathione Synthetase Deficiency:
Glutathione + L-amino acid ⟶ (5-L-Glutamyl)-L-amino acid + Cysteinylglycine
- 5-Oxoprolinase Deficiency:
Glutathione + L-amino acid ⟶ (5-L-Glutamyl)-L-amino acid + Cysteinylglycine
- gamma-Glutamyltranspeptidase Deficiency:
Glutathione + L-amino acid ⟶ (5-L-Glutamyl)-L-amino acid + Cysteinylglycine
- Fructose and Mannose Degradation:
D-Fructose 2,6-bisphosphate + Water ⟶ Fructose 6-phosphate + Phosphate
- Fructosuria:
D-Fructose 2,6-bisphosphate + Water ⟶ Fructose 6-phosphate + Phosphate
- Fructose Intolerance, Hereditary:
D-Fructose 2,6-bisphosphate + Water ⟶ Fructose 6-phosphate + Phosphate
- Fructose and Mannose Degradation:
Fructose 1,6-bisphosphate + Water ⟶ Fructose 6-phosphate + Phosphate
- Fructose Intolerance, Hereditary:
Fructose 1,6-bisphosphate + Water ⟶ Fructose 6-phosphate + Phosphate
- Fructosuria:
Adenosine triphosphate + D-Fructose ⟶ Adenosine diphosphate + Fructose 6-phosphate
- Fructose Intolerance, Hereditary:
Adenosine triphosphate + D-Fructose ⟶ Adenosine diphosphate + Fructose 6-phosphate
- Fructose and Mannose Degradation:
Adenosine triphosphate + D-Fructose ⟶ Adenosine diphosphate + Fructose 6-phosphate
- Fructose and Mannose Degradation:
Adenosine triphosphate + D-Fructose ⟶ Adenosine diphosphate + Fructose 6-phosphate
- Fructosuria:
Fructose 1,6-bisphosphate + Water ⟶ Fructose 6-phosphate + Phosphate
- Nicotinate and Nicotinamide Metabolism:
NAD + Water ⟶ Adenosine monophosphate + Nicotinamide ribotide
- Nicotinate and Nicotinamide Metabolism:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- Nicotinate and Nicotinamide Metabolism:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- Nicotinate and Nicotinamide Metabolism:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- Nicotinate and Nicotinamide Metabolism:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- Pyrimidine Metabolism:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- beta-Ureidopropionase Deficiency:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- UMP Synthase Deficiency (Orotic Aciduria):
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- Dihydropyrimidinase Deficiency:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- MNGIE (Mitochondrial Neurogastrointestinal Encephalopathy):
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- Pyrimidine Metabolism:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- beta-Ureidopropionase Deficiency:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- Dihydropyrimidinase Deficiency:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- UMP Synthase Deficiency (Orotic Aciduria):
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- MNGIE (Mitochondrial Neurogastrointestinal Encephalopathy):
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- Pyrimidine Metabolism:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- Pyrimidine Metabolism:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- Pyrimidine Metabolism:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- Pyrimidine Metabolism:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- beta-Ureidopropionase Deficiency:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- Dihydropyrimidinase Deficiency:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- UMP Synthase Deficiency (Orotic Aciduria):
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- MNGIE (Mitochondrial Neurogastrointestinal Encephalopathy):
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- Vitamin B6 Metabolism:
4-Pyridoxic acid ⟶ 2-Methyl-3-hydroxy-5-formylpyridine-4-carboxylate
- Hypophosphatasia:
4-Pyridoxic acid ⟶ 2-Methyl-3-hydroxy-5-formylpyridine-4-carboxylate
- Vitamin B6 Metabolism:
4-Pyridoxic acid ⟶ 2-Methyl-3-hydroxy-5-formylpyridine-4-carboxylate
- Hypophosphatasia:
4-Pyridoxic acid ⟶ 2-Methyl-3-hydroxy-5-formylpyridine-4-carboxylate
- Vitamin B6 Metabolism:
4-Pyridoxic acid ⟶ 2-Methyl-3-hydroxy-5-formylpyridine-4-carboxylate
- Vitamin B6 Metabolism:
4-Pyridoxic acid ⟶ 2-Methyl-3-hydroxy-5-formylpyridine-4-carboxylate
- Vitamin B6 Metabolism:
4-Pyridoxic acid ⟶ 2-Methyl-3-hydroxy-5-formylpyridine-4-carboxylate
- Vitamin B6 Metabolism:
4-Pyridoxic acid ⟶ 2-Methyl-3-hydroxy-5-formylpyridine-4-carboxylate
- Hypophosphatasia:
4-Pyridoxic acid ⟶ 2-Methyl-3-hydroxy-5-formylpyridine-4-carboxylate
- Cysteine Metabolism:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- beta-Mercaptolactate-Cysteine Disulfiduria:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- Cystinosis, Ocular Nonnephropathic:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- Cysteine Metabolism:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- Cystinosis, Ocular Nonnephropathic:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- beta-Mercaptolactate-Cysteine Disulfiduria:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- Cystinosis, Ocular Nonnephropathic:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- Cysteine Metabolism:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- Cysteine Metabolism:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- beta-Mercaptolactate-Cysteine Disulfiduria:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
PharmGKB(0)
2 个相关的物种来源信息
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Yajun Cai, Jianwei Yang, Zhonglyu Ran, Fantong Bu, Xu Chen, Muhammad Shaaban, Qi-An Peng. Optimizing Typha biochar with phosphoric acid modification and ferric chloride impregnation for hexavalent chromium remediation in water and soil.
Chemosphere.
2024 Apr; 354(?):141739. doi:
10.1016/j.chemosphere.2024.141739
. [PMID: 38503383] - Hong-Fu Liu, Liang Long, Zhi-Qiang Zhu, Teng-Fei Wu, Yi-Rui Zhang, Han-Peng Pan, Ai-Jun Ma, Jin-Bao Peng, Yong-Heng Wang, Hao Gao, Xiang-Zhi Zhang. Enantioselective synthesis of α,α-diarylketones by sequential visible light photoactivation and phosphoric acid catalysis.
Science advances.
2023 Jun; 9(24):eadg7754. doi:
10.1126/sciadv.adg7754
. [PMID: 37327329] - Huawei Jia, Hongwei Yu, Jingwen Li, Jing Qi, Zongqiang Zhu, Chengzhi Hu. Trade-off of abiotic stress response in floating macrophytes as affected by nanoplastic enrichment.
Journal of hazardous materials.
2023 Jun; 451(?):131140. doi:
10.1016/j.jhazmat.2023.131140
. [PMID: 36905907] - A M Abdel-Gaber, A Ezzat, M E Mohamed. Fenugreek seed and cape gooseberry leaf extracts as green corrosion inhibitors for steel in the phosphoric acid industry.
Scientific reports.
2022 12; 12(1):22251. doi:
10.1038/s41598-022-26757-z
. [PMID: 36564523] - Razieh Rajestary, Panayiota Xylia, Antonios Chrysargyris, Gianfranco Romanazzi, Nikolaos Tzortzakis. Preharvest Application of Commercial Products Based on Chitosan, Phosphoric Acid Plus Micronutrients, and Orange Essential Oil on Postharvest Quality and Gray Mold Infections of Strawberry.
International journal of molecular sciences.
2022 Dec; 23(24):. doi:
10.3390/ijms232415472
. [PMID: 36555113] - Rania Jradi, Christophe Marvillet, Mohamed Razak Jeday. Analysis and estimation of cross-flow heat exchanger fouling in phosphoric acid concentration plant using response surface methodology (RSM) and artificial neural network (ANN).
Scientific reports.
2022 11; 12(1):20437. doi:
10.1038/s41598-022-24689-2
. [PMID: 36443423] - Marcin Horbowicz, Joanna Szablińska-Piernik, Justyna Góraj-Koniarska, Kensuke Miyamoto, Junichi Ueda, Marian Saniewski. Changes in Polar Metabolites Content during Natural and Methyl-Jasmonate-Promoted Senescence of Ginkgo biloba Leaves.
International journal of molecular sciences.
2021 Dec; 23(1):. doi:
10.3390/ijms23010266
. [PMID: 35008692] - Yong Wang, Wanjun Gao, Yeyun Li, Yu Xiao, Wei Song, Ting Yao, Manhuan Cheng, Wenjuan Wang, Ruyan Hou. Establishment of a HPLC-MS/MS Detection Method for Glyphosate, Glufosinate-Ammonium, and Aminomethyl Phosphoric Acid in Tea and Its Use for Risk Exposure Assessment.
Journal of agricultural and food chemistry.
2021 Jul; 69(28):7969-7978. doi:
10.1021/acs.jafc.1c01757
. [PMID: 34232658] - Olayemi Jola Fakayode, Thabo T I Nkambule. Chromametric and spectroscopic determinations of natural organic matter in water and caffeine/phosphoric acid-containing soft drink using grape (V. vinifera) extract.
Food chemistry.
2021 Jun; 348(?):129146. doi:
10.1016/j.foodchem.2021.129146
. [PMID: 33515945] - Xue Wan, Fei Shen, Jinguang Hu, Mei Huang, Li Zhao, Yongmei Zeng, Dong Tian, Gang Yang, Yanzong Zhang. 3-D hierarchical porous carbon from oxidized lignin by one-step activation for high-performance supercapacitor.
International journal of biological macromolecules.
2021 Jun; 180(?):51-60. doi:
10.1016/j.ijbiomac.2021.03.048
. [PMID: 33727185] - Ya-Nan OuYang, Lu-Xin Zhou, Yue-Xin Jin, Guo-Feng Hou, Peng-Fei Yang, Meng Chen, Zhongmin Tian. Reconstruction and analysis of correlation networks based on GC-MS metabolomics data for hypercholesterolemia.
Biochemical and biophysical research communications.
2021 05; 553(?):1-8. doi:
10.1016/j.bbrc.2021.03.069
. [PMID: 33752091] - Bo Han, Xiang-Hong He, Yan-Qing Liu, Gu He, Cheng Peng, Jun-Long Li. Asymmetric organocatalysis: an enabling technology for medicinal chemistry.
Chemical Society reviews.
2021 Feb; 50(3):1522-1586. doi:
10.1039/d0cs00196a
. [PMID: 33496291] - Biow Ing Sim, Yih Phing Khor, Oi Ming Lai, Chee Beng Yeoh, Yong Wang, Yuanfa Liu, Imededdine Arbi Nehdi, Chin Ping Tan. Mitigation of 3-MCPD esters and glycidyl esters during the physical refining process of palm oil by micro and macro laboratory scale refining.
Food chemistry.
2020 Oct; 328(?):127147. doi:
10.1016/j.foodchem.2020.127147
. [PMID: 32497897] - J L Guerrero, S M Pérez-Moreno, F Mosqueda, M J Gázquez, J P Bolívar. Radiological and physico-chemical characterization of materials from phosphoric acid production plant to assess the workers radiological risks.
Chemosphere.
2020 Aug; 253(?):126682. doi:
10.1016/j.chemosphere.2020.126682
. [PMID: 32283426] - Liangkun Long, Lianqiu Wu, Qunying Lin, Shaojun Ding. Highly Efficient Extraction of Ferulic Acid from Cereal Brans by a New Type A Feruloyl Esterase from Eupenicillium parvum in Combination with Dilute Phosphoric Acid Pretreatment.
Applied biochemistry and biotechnology.
2020 Apr; 190(4):1561-1578. doi:
10.1007/s12010-019-03189-6
. [PMID: 31792788] - Michiel Bastiaensen, Nele Van den Eede, Guanyong Su, Robert J Letcher, Heather M Stapleton, Adrian Covaci. Towards establishing indicative values for metabolites of organophosphate ester contaminants in human urine.
Chemosphere.
2019 Dec; 236(?):124348. doi:
10.1016/j.chemosphere.2019.124348
. [PMID: 31326757] - Pankaj Verma, Narendra G Shah, Sanjay M Mahajani. Effects of acid treatment in jaggery making.
Food chemistry.
2019 Nov; 299(?):125094. doi:
10.1016/j.foodchem.2019.125094
. [PMID: 31301529] - Tobie D Lee, Olivia W Lee, Kyle R Brimacombe, Lu Chen, Rajarshi Guha, Sabrina Lusvarghi, Bethilehem G Tebase, Carleen Klumpp-Thomas, Robert W Robey, Suresh V Ambudkar, Min Shen, Michael M Gottesman, Matthew D Hall. A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
Molecular pharmacology.
2019 11; 96(5):629-640. doi:
10.1124/mol.119.115964
. [PMID: 31515284] - Dejan M Petrović, Anikó Várnai, Maria Dimarogona, Geir Mathiesen, Mats Sandgren, Bjørge Westereng, Vincent G H Eijsink. Comparison of three seemingly similar lytic polysaccharide monooxygenases from Neurospora crassa suggests different roles in plant biomass degradation.
The Journal of biological chemistry.
2019 10; 294(41):15068-15081. doi:
10.1074/jbc.ra119.008196
. [PMID: 31431506] - Helena D F Q Barros, Andressa M Baseggio, Célio F F Angolini, Gláucia M Pastore, Cinthia B B Cazarin, Mario R Marostica-Junior. Influence of different types of acids and pH in the recovery of bioactive compounds in Jabuticaba peel (Plinia cauliflora).
Food research international (Ottawa, Ont.).
2019 10; 124(?):16-26. doi:
10.1016/j.foodres.2019.01.010
. [PMID: 31466635] - Yan Zhang, Zhong Liu, Haitang Liu, Lanfeng Hui, Huimei Wang, Haoyue Liu. Characterization of liquefied products from corn stalk and its biomass components by polyhydric alcohols with phosphoric acid.
Carbohydrate polymers.
2019 Jul; 215(?):170-178. doi:
10.1016/j.carbpol.2019.03.096
. [PMID: 30981342] - Mika Ishigaki, Yumi Hoshino, Yukihiro Ozaki. Phosphoric acid and phosphorylation levels are potential biomarkers indicating developmental competence of matured oocytes.
The Analyst.
2019 Feb; 144(5):1527-1534. doi:
10.1039/c8an01589a
. [PMID: 30663723] - Maximilian Koch, Henning Schiedung, Nina Siebers, Sean McGovern, Diana Hofmann, Harry Vereecken, Wulf Amelung. Quantitative imaging of 33P in plant materials using 14C polymer references.
Analytical and bioanalytical chemistry.
2019 Feb; 411(6):1253-1260. doi:
10.1007/s00216-018-1557-x
. [PMID: 30617405] - Waleed M Hussein, Daniel Feder, Gerhard Schenk, Luke W Guddat, Ross P McGeary. Synthesis and evaluation of novel purple acid phosphatase inhibitors.
MedChemComm.
2019 Jan; 10(1):61-71. doi:
10.1039/c8md00491a
. [PMID: 30774855] - Jaime Moreno-García, Minami Ogawa, C M Lucy Joseph, Juan C Mauricio, Juan Moreno, Teresa García-Martínez. Comparative analysis of intracellular metabolites, proteins and their molecular functions in a flor yeast strain under two enological conditions.
World journal of microbiology & biotechnology.
2018 Dec; 35(1):6. doi:
10.1007/s11274-018-2578-5
. [PMID: 30554283] - Md Jasim Uddin, Sumedha Liyanage, Noureddine Abidi, Harvinder Singh Gill. Physical and Biochemical Characterization of Chemically Treated Pollen Shells for Potential Use in Oral Delivery of Therapeutics.
Journal of pharmaceutical sciences.
2018 12; 107(12):3047-3059. doi:
10.1016/j.xphs.2018.07.028
. [PMID: 30096353] - Dorottya Nagy-Szakal, Dinesh K Barupal, Bohyun Lee, Xiaoyu Che, Brent L Williams, Ellie J R Kahn, Joy E Ukaigwe, Lucinda Bateman, Nancy G Klimas, Anthony L Komaroff, Susan Levine, Jose G Montoya, Daniel L Peterson, Bruce Levin, Mady Hornig, Oliver Fiehn, W Ian Lipkin. Insights into myalgic encephalomyelitis/chronic fatigue syndrome phenotypes through comprehensive metabolomics.
Scientific reports.
2018 07; 8(1):10056. doi:
10.1038/s41598-018-28477-9
. [PMID: 29968805] - Yun Tao, Yinzhu Shang, Jing Li, Jingwen Feng, Zhenyu He, Adrian Covaci, Peng Wang, Jing Luo, Xiang Mao, Bin Shi, Liqin Hu, Dan Luo, Surong Mei. Exposure to organophosphate flame retardants of hotel room attendants in Wuhan City, China.
Environmental pollution (Barking, Essex : 1987).
2018 May; 236(?):626-633. doi:
10.1016/j.envpol.2018.01.079
. [PMID: 29433103] - Moufida Abufarwa, Robert D Voorhees, Venu G Varanasi, Phillip M Campbell, Peter H Buschang. White spot lesions: Does etching really matter?.
Journal of investigative and clinical dentistry.
2018 Feb; 9(1):. doi:
10.1111/jicd.12285
. [PMID: 28762669] - Bruno Leandro Pereira, Aline Rossetto da Luz, Carlos Maurício Lepienski, Irineu Mazzaro, Neide Kazue Kuromoto. Niobium treated by Plasma Electrolytic Oxidation with calcium and phosphorus electrolytes.
Journal of the mechanical behavior of biomedical materials.
2018 01; 77(?):347-352. doi:
10.1016/j.jmbbm.2017.08.010
. [PMID: 28965041] - Rosemary Castorina, Asa Bradman, Heather M Stapleton, Craig Butt, Dylan Avery, Kim G Harley, Robert B Gunier, Nina Holland, Brenda Eskenazi. Current-use flame retardants: Maternal exposure and neurodevelopment in children of the CHAMACOS cohort.
Chemosphere.
2017 Dec; 189(?):574-580. doi:
10.1016/j.chemosphere.2017.09.037
. [PMID: 28963974] - Wael Talaat. Bioanalytical method for the estimation of co-administered esomeprazole, leflunomide and ibuprofen in human plasma and in pharmaceutical dosage forms using micellar liquid chromatography.
Biomedical chromatography : BMC.
2017 May; 31(5):. doi:
10.1002/bmc.3865
. [PMID: 27862093] - Abhishek Mandal, Neera Singh. Optimization of atrazine and imidacloprid removal from water using biochars: Designing single or multi-staged batch adsorption systems.
International journal of hygiene and environmental health.
2017 05; 220(3):637-645. doi:
10.1016/j.ijheh.2017.02.010
. [PMID: 28433639] - Anwesha Bhowmik, Durbadal Ojha, Debayan Goswami, Rashmi Das, Nidhi S Chandra, Tapan K Chatterjee, Amit Chakravarty, Sudipa Chakravarty, Debprasad Chattopadhyay. Inositol hexa phosphoric acid (phytic acid), a nutraceuticals, attenuates iron-induced oxidative stress and alleviates liver injury in iron overloaded mice.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2017 Mar; 87(?):443-450. doi:
10.1016/j.biopha.2016.12.125
. [PMID: 28068635] - Dorota Marszalek, Anna Goldnik, Tomasz Pawinski, Grzegorz Malek, Aleksander Somogi, Anna Mach. SIMULTANEOUS ASSAY OF ARIPIPRAZOLE AND ITS ACTIVE METABOLITE IN SERUM BY HPLC.
Acta poloniae pharmaceutica.
2017 Mar; 74(2):405-411. doi:
NULL
. [PMID: 29624246] - Zengfa Huang, Cheng Cheng, Jing Wang, Hui Wei, Xianzhe Liu, Xinxin Yan, Yan Zhou, Yunlu Liu, Shuhua Yang. Surface Properties and MC3T3-E1 Cell Response of Cortical Bone Allografts Modified with Low-Concentration Phosphoric Acid.
Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology.
2017; 41(4):1572-1583. doi:
10.1159/000470823
. [PMID: 28365682] - Saravanan Devendran, Ahmed M Abdel-Hamid, Anton F Evans, Michael Iakiviak, In Hyuk Kwon, Roderick I Mackie, Isaac Cann. Multiple cellobiohydrolases and cellobiose phosphorylases cooperate in the ruminal bacterium Ruminococcus albus 8 to degrade cellooligosaccharides.
Scientific reports.
2016 10; 6(?):35342. doi:
10.1038/srep35342
. [PMID: 27748409] - Belén Callejón-Leblic, Tamara García-Barrera, Jesús Grávalos-Guzmán, Antonio Pereira-Vega, José Luis Gómez-Ariza. Metabolic profiling of potential lung cancer biomarkers using bronchoalveolar lavage fluid and the integrated direct infusion/ gas chromatography mass spectrometry platform.
Journal of proteomics.
2016 08; 145(?):197-206. doi:
10.1016/j.jprot.2016.05.030
. [PMID: 27255828] - Xianrui Liang, Cui Zhao, Weike Su. A Fast and Reliable UPLC-PAD Fingerprint Analysis of Chimonanthus salicifolius Combined with Chemometrics Methods.
Journal of chromatographic science.
2016 Aug; 54(7):1213-9. doi:
10.1093/chromsci/bmw053
. [PMID: 27226461] - Michael Iakiviak, Saravanan Devendran, Anna Skorupski, Young Hwan Moon, Roderick I Mackie, Isaac Cann. Functional and modular analyses of diverse endoglucanases from Ruminococcus albus 8, a specialist plant cell wall degrading bacterium.
Scientific reports.
2016 07; 6(?):29979. doi:
10.1038/srep29979
. [PMID: 27439730] - Nitesh K Mund, Debabrata Dash, Chitta R Barik, Vaibhav V Goud, Lingaraj Sahoo, Prasannajit Mishra, Nihar R Nayak. Chemical composition, pretreatments and saccharification of Senna siamea (Lam.) H.S. Irwin & Barneby: An efficient biomass producing tree legume.
Bioresource technology.
2016 May; 207(?):205-12. doi:
10.1016/j.biortech.2016.01.118
. [PMID: 26890795] - Gerhard Kernbach-Wighton, Cornelius Hess, Burkhard Madea. [An unusual bodily injury].
Archiv fur Kriminologie.
2016 May; 237(5-6):212-9. doi:
NULL
. [PMID: 27386625] - Lei Yin, Kevin Shengyang Yu, Kun Lu, Xiaozhong Yu. Benzyl butyl phthalate promotes adipogenesis in 3T3-L1 preadipocytes: A High Content Cellomics and metabolomic analysis.
Toxicology in vitro : an international journal published in association with BIBRA.
2016 Apr; 32(?):297-309. doi:
10.1016/j.tiv.2016.01.010
. [PMID: 26820058] - Satin Salehi, Paul Cooper, Anthony Smith, Jack Ferracane. Dentin matrix components extracted with phosphoric acid enhance cell proliferation and mineralization.
Dental materials : official publication of the Academy of Dental Materials.
2016 Mar; 32(3):334-42. doi:
10.1016/j.dental.2015.11.004
. [PMID: 26777093] - Mosaad A Abdel-Wahhab, Ahmed A El-Kady, Aziza M Hassan, Omaima M Abd El-Moneim, Sekena H Abdel-Aziem. Effectiveness of activated carbon and Egyptian montmorillonite in the protection against deoxynivalenol-induced cytotoxicity and genotoxicity in rats.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2015 Sep; 83(?):174-82. doi:
10.1016/j.fct.2015.06.015
. [PMID: 26115597] - Hsiang-Yin Liu, Tzung-Jeng Hwang, I-Lin Tsai, Ching-Hua Kuo. Use of high-conductivity sample solution with sweeping-micellar electrokinetic capillary chromatography for trace-level quantification of paliperidone in human plasma.
Electrophoresis.
2015 Feb; 36(4):534-42. doi:
10.1002/elps.201400230
. [PMID: 25421228] - Eagappanath Thiruppathi, Mark K Larson, Gopinath Mani. Surface modification of CoCr alloy using varying concentrations of phosphoric and phosphonoacetic acids: albumin and fibrinogen adsorption, platelet adhesion, activation, and aggregation studies.
Langmuir : the ACS journal of surfaces and colloids.
2015; 31(1):358-70. doi:
10.1021/la5038712
. [PMID: 25495665] - Luo Fang, Guonong Yang, Yu Song, Fanzhu Li, Nengming Lin. Application of isoabsorption plots generated by high-performance liquid chromatography with diode array detection to the development of multicomponent quantitative analysis of traditional herbal medicines.
Journal of separation science.
2014 Nov; 37(22):3245-52. doi:
10.1002/jssc.201400711
. [PMID: 25146493] - Saksit Imman, Jantima Arnthong, Vorakan Burapatana, Verawat Champreda, Navadol Laosiripojana. Effects of acid and alkali promoters on compressed liquid hot water pretreatment of rice straw.
Bioresource technology.
2014 Nov; 171(?):29-36. doi:
10.1016/j.biortech.2014.08.022
. [PMID: 25181697] - Konstantin O Nagornov, Mikhail V Gorshkov, Anton N Kozhinov, Yury O Tsybin. High-resolution Fourier transform ion cyclotron resonance mass spectrometry with increased throughput for biomolecular analysis.
Analytical chemistry.
2014 Sep; 86(18):9020-8. doi:
10.1021/ac501579h
. [PMID: 25140615] - Andrezza Astafief Ozelin, Ricardo Danil Guiraldo, Rodrigo Varella de Carvalho, Murilo Baena Lopes, Sandrine Bittencourt Berger. Effects of green tea application time on bond strength after enamel bleaching.
Brazilian dental journal.
2014 Sep; 25(5):399-403. doi:
10.1590/0103-6440201300015
. [PMID: 25517774] - Mofoluwake M Ishola, Isroi, Mohammad J Taherzadeh. Effect of fungal and phosphoric acid pretreatment on ethanol production from oil palm empty fruit bunches (OPEFB).
Bioresource technology.
2014 Aug; 165(?):9-12. doi:
10.1016/j.biortech.2014.02.053
. [PMID: 24630370] - Szymon Dziomba, Michał Biernacki, Ilona Olędzka, Elżbieta Skrzydlewska, Tomasz Bączek, Piotr Kowalski. Repetitive injection field-amplified sample stacking for cationic compounds determination.
Talanta.
2014 Jul; 125(?):1-6. doi:
10.1016/j.talanta.2014.02.045
. [PMID: 24840407] - Qingxin Li, Wei Ting Ng, Sze Min Puah, Ravindran Vijay Bhaskar, Loon Siong Soh, Calum MacBeath, Pius Parakattil, Phil Green, Jin Chuan Wu. Efficient production of fermentable sugars from oil palm empty fruit bunch by combined use of acid and whole cell culture-catalyzed hydrolyses.
Biotechnology and applied biochemistry.
2014 Jul; 61(4):426-31. doi:
10.1002/bab.1188
. [PMID: 24329860] - Marcela Tiboni, Adelia Grzybowski, Gizele Rejane Baldo, Edson Flausino Dias, Robert D Tanner, Julia Ann Kornfield, José Domingos Fontana. Thermopressurized diluted phosphoric acid pretreatment of ligno(hemi)cellulose to make free sugars and nutraceutical oligosaccharides.
Journal of industrial microbiology & biotechnology.
2014 Jun; 41(6):957-64. doi:
10.1007/s10295-014-1426-3
. [PMID: 24747989] - Rosana C S Ogoshi, Márcio G Zangeronimo, Jéssica S Dos Reis, Janine França, João P F Santos, Carolina P Pires, Ana F Chizzotti, Adriano C Costa, Lívia G Ferreira, Flávia M O B Saad. Acidifying and yeast extract in diets for adults cats.
Animal science journal = Nihon chikusan Gakkaiho.
2014 May; 85(5):555-61. doi:
10.1111/asj.12166
. [PMID: 24450338] - Mesay M Wolle, G M Mizanur Rahman, H M Skip Kingston, Matt Pamuku. Speciation analysis of arsenic in prenatal and children's dietary supplements using microwave-enhanced extraction and ion chromatography-inductively coupled plasma mass spectrometry.
Analytica chimica acta.
2014 Mar; 818(?):23-31. doi:
10.1016/j.aca.2014.01.060
. [PMID: 24626399] - Oskar L Knittelfelder, Bernd P Weberhofer, Thomas O Eichmann, Sepp D Kohlwein, Gerald N Rechberger. A versatile ultra-high performance LC-MS method for lipid profiling.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2014 Mar; 951-952(?):119-28. doi:
10.1016/j.jchromb.2014.01.011
. [PMID: 24548922] - Wan Ahmad Hafiz Wan Md Adnan, Nur Lisa Zaharan, Mun Hoe Wong, Soo Kun Lim. The effects of intermittent fasting during the month of Ramadan in chronic haemodialysis patients in a tropical climate country.
PloS one.
2014; 9(12):e114262. doi:
10.1371/journal.pone.0114262
. [PMID: 25546434] - Taichi E Takasuka, Johnnie A Walker, Lai F Bergeman, Kirk A Vander Meulen, Shin-ichi Makino, Nathaniel L Elsen, Brian G Fox. Cell-free translation of biofuel enzymes.
Methods in molecular biology (Clifton, N.J.).
2014; 1118(?):71-95. doi:
10.1007/978-1-62703-782-2_5
. [PMID: 24395410] - K Hjaila, R Baccar, M Sarrà, C M Gasol, P Blánquez. Environmental impact associated with activated carbon preparation from olive-waste cake via life cycle assessment.
Journal of environmental management.
2013 Nov; 130(?):242-7. doi:
10.1016/j.jenvman.2013.08.061
. [PMID: 24091159] - Yufeng Hu, Shuangxi Guo, Hongbo Ma, Ning Ye, Xueqin Ren. Preparation and loading buffer study of polyvinyl alcohol-based immobilized Ti4+ affinity chromatography for phosphopeptide enrichment.
Journal of separation science.
2013 Nov; 36(21-22):3563-70. doi:
10.1002/jssc.201300622
. [PMID: 24027161] - Agnieszka Cios, Kamil Kuś, Joanna Szymura-Oleksiak. Determination of linezolid in human serum by reversed-phase high-performance liquid chromatography with ultraviolet and diode array detection.
Acta poloniae pharmaceutica.
2013 Jul; 70(4):631-41. doi:
NULL
. [PMID: 23923387] - Ana K Bedran-Russo, Sriram Ravindran, Anne George. Imaging analysis of early DMP1 mediated dentine remineralization.
Archives of oral biology.
2013 Mar; 58(3):254-60. doi:
10.1016/j.archoralbio.2012.09.007
. [PMID: 23107046] - J M Arroyo, J González, M Ouarti, J M Silván, M L Ruiz del Castillo, F de la Peña Moreno. Malic acid or orthophosphoric acid-heat treatments for protecting sunflower (Helianthus annuus) meal proteins against ruminal degradation and increasing intestinal amino acid supply.
Animal : an international journal of animal bioscience.
2013 Feb; 7(2):223-31. doi:
10.1017/s1751731112001292
. [PMID: 23032153] - Maria S Jiménez, L Rodriguez, Juan R Bertolin, Maria T Gomez, Juan R Castillo. Evaluation of gel electrophoresis techniques and laser ablation-inductively coupled plasma-mass spectrometry for screening analysis of Zn and Cu-binding proteins in plankton.
Analytical and bioanalytical chemistry.
2013 Jan; 405(1):359-68. doi:
10.1007/s00216-012-6461-1
. [PMID: 23070043] - Bo Li, Mei Wang, Ya-Nan Tan, Miao-Miao Tong, Yan-Jun Zhai. [Simultaneous determination of four flavones in root and stem of Cudrania tricuspidata and C. cochinchinensis by HPLC-DAD].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2013 Jan; 38(2):167-70. doi:
"
. [PMID: 23672035] - Y-Y Liu, R J Haynes. Influence of different acid and alkaline cleaning agents on the effects of irrigation of synthetic dairy factory effluent on soil quality, ryegrass growth and nutrient uptake.
Environmental science and pollution research international.
2013 Jan; 20(1):498-507. doi:
10.1007/s11356-012-1020-z
. [PMID: 22707204] - Isroi, Mofoluwake M Ishola, Ria Millati, Siti Syamsiah, Muhammad N Cahyanto, Claes Niklasson, Mohammad J Taherzadeh. Structural changes of oil palm empty fruit bunch (OPEFB) after fungal and phosphoric acid pretreatment.
Molecules (Basel, Switzerland).
2012 Dec; 17(12):14995-5002. doi:
10.3390/molecules171214995
. [PMID: 23247371] - Xi Tang, John Yang. Long-term stability and risk assessment of lead in mill waste treated by soluble phosphate.
The Science of the total environment.
2012 Nov; 438(?):299-303. doi:
10.1016/j.scitotenv.2012.08.054
. [PMID: 23014502] - Dharmendr Matabudul, Kresimir Pucaj, Gordon Bolger, Brigitta Vcelar, Muhammed Majeed, Lawrence Helson. Tissue distribution of (Lipocurc™) liposomal curcumin and tetrahydrocurcumin following two- and eight-hour infusions in Beagle dogs.
Anticancer research.
2012 Oct; 32(10):4359-64. doi:
NULL
. [PMID: 23060559] - Abdolrahim Davari, Soghra Yassaei, Mariam Karandish, Fateme Zarghami. In vitro evaluation of microleakage under ceramic and metal brackets bonded with LED and plasma arc curing.
The journal of contemporary dental practice.
2012 Sep; 13(5):644-9. doi:
10.5005/jp-journals-10024-1202
. [PMID: 23250168] - N Fathabadi, M Vasheghani Farahani, M Moradi, B Hadadi. Estimates of the occupational exposure to tenorm in the phosphoric acid production plant in Iran.
Radiation protection dosimetry.
2012 Sep; 151(3):600-3. doi:
10.1093/rpd/ncs021
. [PMID: 22361352] - S S Oskoee, E J Navimipour, M Bahari, A A Ajami, P A Oskoee, N M Abbasi. Effect of composite resin contamination with powdered and unpowdered latex gloves on its shear bond strength to bovine dentin.
Operative dentistry.
2012 Sep; 37(5):492-500. doi:
10.2341/11-088-l
. [PMID: 22433010] - J C Calveyra, M G Nogueira, J D Kich, L L Biesus, R Vizzotto, L Berno, A Coldebella, L Lopes, N Morés, G J M M Lima, M Cardoso. Effect of organic acids and mannanoligosaccharide on excretion of Salmonella typhimurium in experimentally infected growing pigs.
Research in veterinary science.
2012 Aug; 93(1):46-7. doi:
10.1016/j.rvsc.2011.08.018
. [PMID: 21944831] - William H Tolleson, Lauren S Jackson, Odbert A Triplett, Bharat Aluri, Jack Cappozzo, Katie Banaszewski, Claire W Chang, Kiet T Nguyen. Chemical inactivation of protein toxins on food contact surfaces.
Journal of agricultural and food chemistry.
2012 Jul; 60(26):6627-40. doi:
10.1021/jf301601v
. [PMID: 22690810] - Lijia Xu, Chi-On Chan, Ching-Ching Lau, Zhiling Yu, Daniel K W Mok, Sibao Chen. Simultaneous determination of eight anthraquinones in Semen Cassiae by HPLC-DAD.
Phytochemical analysis : PCA.
2012 Mar; 23(2):110-6. doi:
10.1002/pca.1331
. [PMID: 21618311] - Pingliang Li, Shun He, Tao Tang, Kun Qian, Hanwen Ni, Yongsong Cao. Evaluation of the efficacy of glyphosate plus urea phosphate in the greenhouse and the field.
Pest management science.
2012 Feb; 68(2):170-7. doi:
10.1002/ps.2240
. [PMID: 22002762] - Mohammadreza Hadjmohammadi, Vahid Sharifi. Simultaneous optimization of the resolution and analysis time of flavonoids in reverse phase liquid chromatography using Derringer's desirability function.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2012 Jan; 880(1):34-41. doi:
10.1016/j.jchromb.2011.11.012
. [PMID: 22177786] - Joselito P Quirino, Agnes T Aranas. Micelle to solvent stacking of organic cations in micellar electrokinetic chromatography with sodium dodecyl sulfate.
Journal of chromatography. A.
2011 Oct; 1218(41):7377-83. doi:
10.1016/j.chroma.2011.08.028
. [PMID: 21903217] - R Jason Quinlan, Matt D Sweeney, Leila Lo Leggio, Harm Otten, Jens-Christian N Poulsen, Katja Salomon Johansen, Kristian B R M Krogh, Christian Isak Jørgensen, Morten Tovborg, Annika Anthonsen, Theodora Tryfona, Clive P Walter, Paul Dupree, Feng Xu, Gideon J Davies, Paul H Walton. Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components.
Proceedings of the National Academy of Sciences of the United States of America.
2011 Sep; 108(37):15079-84. doi:
10.1073/pnas.1105776108
. [PMID: 21876164] - Lina Al Attar, Mohammad Al-Oudat, Salwa Kanakri, Youssef Budeir, Hussam Khalily, Ahmad Al Hamwi. Radiological impacts of phosphogypsum.
Journal of environmental management.
2011 Sep; 92(9):2151-8. doi:
10.1016/j.jenvman.2011.03.041
. [PMID: 21530064] - Aziz Aris, Samuel Leblanc. Maternal and fetal exposure to pesticides associated to genetically modified foods in Eastern Townships of Quebec, Canada.
Reproductive toxicology (Elmsford, N.Y.).
2011 May; 31(4):528-33. doi:
10.1016/j.reprotox.2011.02.004
. [PMID: 21338670] - Amit Kumar Nayak, Bibek Laha, Kalyan Kumar Sen. Development of hydroxyapatite-ciprofloxacin bone-implants using 'Quality by design'.
Acta pharmaceutica (Zagreb, Croatia).
2011 Mar; 61(1):25-36. doi:
10.2478/v10007-011-0002-x
. [PMID: 21406341] - Ana Rosa Costa, Américo Bortolazzo Correr, Regina Maria Puppin-Rontani, Silvia Amélia Scudeler Vedovello, Heloísa Cristina Valdrighi, Lourenço Correr-Sobrinho, Mário Vedovello Filho. Effects of thermocycling and light source on the bond strength of metallic brackets to bovine teeth.
Brazilian dental journal.
2011; 22(6):486-9. doi:
10.1590/s0103-64402011000600008
. [PMID: 22189644] - Vasanthakumar SathyaSelvabala, Dinesh Kirupha Selvaraj, Jalagandeeswaran Kalimuthu, Premkumar Manickam Periyaraman, Sivanesan Subramanian. Two-step biodiesel production from Calophyllum inophyllum oil: optimization of modified β-zeolite catalyzed pre-treatment.
Bioresource technology.
2011 Jan; 102(2):1066-72. doi:
10.1016/j.biortech.2010.08.052
. [PMID: 20833536] - Oliver Fiehn, W Timothy Garvey, John W Newman, Kerry H Lok, Charles L Hoppel, Sean H Adams. Plasma metabolomic profiles reflective of glucose homeostasis in non-diabetic and type 2 diabetic obese African-American women.
PloS one.
2010 Dec; 5(12):e15234. doi:
10.1371/journal.pone.0015234
. [PMID: 21170321] - V Stamatis, S Seferlis, V Kamenopoulou, C Potiriadis, V Koukouliou, K Kehagia, C Dagli, S Georgiadis, L Camarinopoulos. Decommissioning a phosphoric acid production plant: a radiological protection case study.
Journal of environmental radioactivity.
2010 Dec; 101(12):1013-23. doi:
10.1016/j.jenvrad.2010.07.002
. [PMID: 20813440] - Vijayalakshmi Ganesh, Navam S Hettiarachchy, Madhuram Ravichandran, Michael G Johnson, Carl L Griffis, Elizabeth M Martin, Jean-Francois Meullenet, Steven C Ricke. Electrostatic sprays of food-grade acids and plant extracts are more effective than conventional sprays in decontaminating Salmonella Typhimurium on spinach.
Journal of food science.
2010 Nov; 75(9):M574-9. doi:
10.1111/j.1750-3841.2010.01859.x
. [PMID: 21535613] - M Kalyva, S Papadimitriou, D Tziafas. Transdentinal stimulation of tertiary dentine formation and intratubular mineralization by growth factors.
International endodontic journal.
2010 May; 43(5):382-92. doi:
10.1111/j.1365-2591.2010.01690.x
. [PMID: 20518931] - Goksu Trakyali, M Oguz Oztoprak. Plant extract ankaferd blood stopper effect on bond strength.
The Angle orthodontist.
2010 May; 80(3):570-4. doi:
10.2319/080809-448.1
. [PMID: 20050754] - Limei Ren, Frank Schuchardt, Yujun Shen, Guoxue Li, Chunping Li. Impact of struvite crystallization on nitrogen losses during composting of pig manure and cornstalk.
Waste management (New York, N.Y.).
2010 May; 30(5):885-92. doi:
10.1016/j.wasman.2009.08.006
. [PMID: 20116232] - Jin-Woo Park, Youn-Jeong Kim, Je-Hee Jang, Tae-Geon Kwon, Yong-Chul Bae, Jo-Young Suh. Effects of phosphoric acid treatment of titanium surfaces on surface properties, osteoblast response and removal of torque forces.
Acta biomaterialia.
2010 Apr; 6(4):1661-70. doi:
10.1016/j.actbio.2009.10.011
. [PMID: 19819355] - Sarah Pascal, David Moussa, Eugen Hnatiuc, Jean-Louis Brisset. Plasma chemical degradation of phosphorous-containing warfare agents simulants.
Journal of hazardous materials.
2010 Mar; 175(1-3):1037-41. doi:
10.1016/j.jhazmat.2009.10.114
. [PMID: 19962821] - Tatsuji Nakamura, Khin Than Myint, Yoshiya Oda. Ethylenediaminetetraacetic acid increases identification rate of phosphoproteomics in real biological samples.
Journal of proteome research.
2010 Mar; 9(3):1385-91. doi:
10.1021/pr900918h
. [PMID: 20099890] - V S Gromova. [Effect of soil radiation pollution on the plant content of 137Cs and biogenic elements].
Gigiena i sanitariia.
2010 Mar; ?(2):42-4. doi:
"
. [PMID: 20491266] - H Fu, P A Machado, T S Hahm, R J Kratochvil, C I Wei, Y M Lo. Recovery of nicotine-free proteins from tobacco leaves using phosphate buffer system under controlled conditions.
Bioresource technology.
2010 Mar; 101(6):2034-42. doi:
10.1016/j.biortech.2009.10.045
. [PMID: 19932614] - Dong Wook Kim, In-Sun Cho, Jin Young Kim, Hae Lin Jang, Gill Sang Han, Hyun-Seung Ryu, Heungsoo Shin, Hyun Suk Jung, Hyungtak Kim, Kug Sun Hong. Simple large-scale synthesis of hydroxyapatite nanoparticles: in situ observation of crystallization process.
Langmuir : the ACS journal of surfaces and colloids.
2010 Jan; 26(1):384-8. doi:
10.1021/la902157z
. [PMID: 19810677] - Binan Lu, Yuetao Liu, Lianhong Yin, Xiaona Wang, Jinyong Peng. Simple and reliable methods for the determination of sixteen marker components for quality control of Daochi pill by HPLC coupled with diode array detection.
Phytochemical analysis : PCA.
2009 Sep; 20(5):385-94. doi:
10.1002/pca.1138
. [PMID: 19533595]