Natamycin (BioDeep_00000002640)
Secondary id: BioDeep_00000405002, BioDeep_00000859234, BioDeep_00001868673
human metabolite Endogenous blood metabolite Chemicals and Drugs Antibiotics natural product
代谢物信息卡片
化学式: C33H47NO13 (665.3047)
中文名称: 纳他霉素
谱图信息:
最多检出来源 Homo sapiens(blood) 78.57%
分子结构信息
SMILES: CC1CC=CC=CC=CC=CC(CC2C(C(CC(O2)(CC(CC3C(O3)C=CC(=O)O1)O)O)O)C(=O)O)OC4C(C(C(C(O4)C)O)N)O
InChI: InChI=1S/C33H47NO13/c1-18-10-8-6-4-3-5-7-9-11-21(45-32-30(39)28(34)29(38)19(2)44-32)15-25-27(31(40)41)22(36)17-33(42,47-25)16-20(35)14-24-23(46-24)12-13-26(37)43-18/h3-9,11-13,18-25,27-30,32,35-36,38-39,42H,10,14-17,34H2,1-2H3,(H,40,41)/b4-3+,7-5+,8-6+,11-9+,13-12+/t18-,19-,20+,21+,22+,23-,24-,25+,27-,28+,29-,30+,32?,33-/m1/s1
描述信息
Natamycin is only found in individuals that have used or taken this drug. It is an amphoteric macrolide antifungal antibiotic from Streptomyces natalensis or S. chattanoogensis. It is used for a variety of fungal infections, mainly topically. [PubChem]Like other polyene antibiotics, Natamycin inhibits fungal growth by binding to sterols. Specifically, Natamycin binds to ergosterol in the plasma membrane, preventing ergosterol-dependent fusion of vacuoles, as well as membrane fusion and fission. This differs from the mechanism of most other polyene antibiotics, which tend to work by altering fungal membrane permeability instead.
Primarily used as a surface treatment to prevent growth of yeasts and moulds, especies on cheese. Permitted agent in USA for surface treatment of cheeses as mould-inhibitor. No reported allergic reactions and it has GRAS status
G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids > G01AA - Antibiotics
A - Alimentary tract and metabolism > A01 - Stomatological preparations > A01A - Stomatological preparations > A01AB - Antiinfectives and antiseptics for local oral treatment
A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07A - Intestinal antiinfectives > A07AA - Antibiotics
D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use > D01AA - Antibiotics
S - Sensory organs > S01 - Ophthalmologicals > S01A - Antiinfectives > S01AA - Antibiotics
D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents
D000890 - Anti-Infective Agents > D000935 - Antifungal Agents
Natamycin (Pimaricin) is a macrolide antibiotic agent produced by several Streptomyces strains. Natamycin inhibits the growth of fungi via inhibition of amino acid and glucose transport across the plasma membrane. Natamycin is a food preservative, an antifungal agent in agriculture, and is widely used for fungal keratitis research[1][2].
同义名列表
24 个代谢物同义名
(1R,3S,5R,7R,8E,12R,14E,16E,18E,20E,22R,24S,25R,26S)-22-{[(3S,4S,5S,6R)-4-amino-3,5-dihydroxy-6-methyloxan-2-yl]oxy}-1,3,26-trihydroxy-12-methyl-10-oxo-6,11,28-trioxatricyclo[22.3.1.0⁵,⁷]octacosa-8,14,16,18,20-pentaene-25-carboxylic acid; Antibiotic a 5283; Antibiotic a-5283; Pimaricin (JP15); Pimaricine; Tennecetin; Pimafucin; NATAMYCIN; Pimaricin; Pimafugin; Natafucin; Myprozine; Mycophyt; Delvocid; Delvolan; CL 12625; Delvopos; Synogil; Tymasil; Natacyn; a 5283; e235; PMR; Natamycin
数据库引用编号
18 个数据库交叉引用编号
- ChEBI: CHEBI:7488
- KEGG: C08073
- PubChem: 4283516
- PubChem: 5281099
- HMDB: HMDB0014964
- Metlin: METLIN43273
- Wikipedia: Natamycin
- MeSH: Natamycin
- foodb: FDB002337
- chemspider: 21242908
- CAS: 7681-93-8
- PMhub: MS000004176
- PubChem: 10273
- 3DMET: B05259
- NIKKAJI: J3.429K
- medchemexpress: HY-B0133
- KNApSAcK: 7488
- LOTUS: LTS0140365
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
0 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
115 个相关的物种来源信息
- 2 - Bacteria: LTS0140365
- 9606 - Homo sapiens: -
- 1883 - Streptomyces: 10.1002/BTPR.1659
- 1883 - Streptomyces: 10.1007/S00203-019-01710-3
- 1883 - Streptomyces: 10.1007/S00253-013-4786-0
- 1883 - Streptomyces: 10.1007/S00253-013-5455-Z
- 1883 - Streptomyces: 10.1007/S00253-017-8440-0
- 1883 - Streptomyces: 10.1007/S00253-019-10131-7
- 1883 - Streptomyces: 10.1007/S10295-013-1370-7
- 1883 - Streptomyces: 10.1007/S11274-013-1561-4
- 1883 - Streptomyces: 10.1007/S12275-013-2321-8
- 1883 - Streptomyces: 10.1016/J.BIORTECH.2018.11.009
- 1883 - Streptomyces: 10.1016/J.ENZMICTEC.2007.08.012
- 1883 - Streptomyces: 10.1016/J.FEBSLET.2014.07.010
- 1883 - Streptomyces: 10.1080/10826068.2017.1365244
- 1883 - Streptomyces: 10.1111/MMI.13583
- 1883 - Streptomyces: 10.1128/AEM.00099-13
- 1883 - Streptomyces: 10.1128/AEM.01849-14
- 1883 - Streptomyces: 10.1128/GENOMEA.01402-17
- 1883 - Streptomyces: 10.1186/S12896-019-0546-2
- 1883 - Streptomyces: 10.1186/S12934-019-1055-7
- 1883 - Streptomyces: 10.3389/FMICB.2018.00316
- 1883 - Streptomyces: 10.4014/JMB.1505.05033
- 1883 - Streptomyces: LTS0140365
- 66876 - Streptomyces chattanoogensis: 10.1002/BTPR.1659
- 66876 - Streptomyces chattanoogensis: 10.1007/S00203-019-01710-3
- 66876 - Streptomyces chattanoogensis: 10.1007/S00253-013-4786-0
- 66876 - Streptomyces chattanoogensis: 10.1007/S00253-013-5455-Z
- 66876 - Streptomyces chattanoogensis: 10.1007/S00253-017-8440-0
- 66876 - Streptomyces chattanoogensis: 10.1007/S00253-019-10131-7
- 66876 - Streptomyces chattanoogensis: 10.1007/S10295-013-1370-7
- 66876 - Streptomyces chattanoogensis: 10.1007/S11274-013-1561-4
- 66876 - Streptomyces chattanoogensis: 10.1007/S12275-013-2321-8
- 66876 - Streptomyces chattanoogensis: 10.1016/J.BIORTECH.2018.11.009
- 66876 - Streptomyces chattanoogensis: 10.1016/J.ENZMICTEC.2007.08.012
- 66876 - Streptomyces chattanoogensis: 10.1016/J.FEBSLET.2014.07.010
- 66876 - Streptomyces chattanoogensis: 10.1080/10826068.2017.1365244
- 66876 - Streptomyces chattanoogensis: 10.1111/MMI.13583
- 66876 - Streptomyces chattanoogensis: 10.1128/AEM.00099-13
- 66876 - Streptomyces chattanoogensis: 10.1128/AEM.01849-14
- 66876 - Streptomyces chattanoogensis: 10.1128/GENOMEA.01402-17
- 66876 - Streptomyces chattanoogensis: 10.1186/S12896-019-0546-2
- 66876 - Streptomyces chattanoogensis: 10.1186/S12934-019-1055-7
- 66876 - Streptomyces chattanoogensis: 10.3389/FMICB.2018.00316
- 66876 - Streptomyces chattanoogensis: 10.4014/JMB.1505.05033
- 66876 - Streptomyces chattanoogensis: LTS0140365
- 553510 - Streptomyces gilvosporeus: 10.1002/BTPR.1659
- 553510 - Streptomyces gilvosporeus: 10.1007/S00203-019-01710-3
- 553510 - Streptomyces gilvosporeus: 10.1007/S00253-013-4786-0
- 553510 - Streptomyces gilvosporeus: 10.1007/S00253-013-5455-Z
- 553510 - Streptomyces gilvosporeus: 10.1007/S00253-017-8440-0
- 553510 - Streptomyces gilvosporeus: 10.1007/S00253-019-10131-7
- 553510 - Streptomyces gilvosporeus: 10.1007/S10295-013-1370-7
- 553510 - Streptomyces gilvosporeus: 10.1007/S11274-013-1561-4
- 553510 - Streptomyces gilvosporeus: 10.1007/S12275-013-2321-8
- 553510 - Streptomyces gilvosporeus: 10.1016/J.BIORTECH.2018.11.009
- 553510 - Streptomyces gilvosporeus: 10.1016/J.ENZMICTEC.2007.08.012
- 553510 - Streptomyces gilvosporeus: 10.1016/J.FEBSLET.2014.07.010
- 553510 - Streptomyces gilvosporeus: 10.1016/J.YMBEN.2016.10.005
- 553510 - Streptomyces gilvosporeus: 10.1080/10826068.2017.1365244
- 553510 - Streptomyces gilvosporeus: 10.1111/MMI.13583
- 553510 - Streptomyces gilvosporeus: 10.1128/AEM.00099-13
- 553510 - Streptomyces gilvosporeus: 10.1128/AEM.01849-14
- 553510 - Streptomyces gilvosporeus: 10.1128/GENOMEA.01402-17
- 553510 - Streptomyces gilvosporeus: 10.1186/S12896-019-0546-2
- 553510 - Streptomyces gilvosporeus: 10.1186/S12934-019-1055-7
- 553510 - Streptomyces gilvosporeus: 10.3389/FMICB.2018.00316
- 553510 - Streptomyces gilvosporeus: 10.4014/JMB.1505.05033
- 553510 - Streptomyces gilvosporeus: LTS0140365
- 47763 - Streptomyces lydicus: 10.1002/BTPR.1659
- 47763 - Streptomyces lydicus: 10.1007/S00203-019-01710-3
- 47763 - Streptomyces lydicus: 10.1007/S00253-013-4786-0
- 47763 - Streptomyces lydicus: 10.1007/S00253-013-5455-Z
- 47763 - Streptomyces lydicus: 10.1007/S00253-017-8440-0
- 47763 - Streptomyces lydicus: 10.1007/S00253-019-10131-7
- 47763 - Streptomyces lydicus: 10.1007/S10295-013-1370-7
- 47763 - Streptomyces lydicus: 10.1007/S11274-013-1561-4
- 47763 - Streptomyces lydicus: 10.1007/S12275-013-2321-8
- 47763 - Streptomyces lydicus: 10.1016/J.BIORTECH.2018.11.009
- 47763 - Streptomyces lydicus: 10.1016/J.ENZMICTEC.2007.08.012
- 47763 - Streptomyces lydicus: 10.1016/J.FEBSLET.2014.07.010
- 47763 - Streptomyces lydicus: 10.1080/10826068.2017.1365244
- 47763 - Streptomyces lydicus: 10.1111/MMI.13583
- 47763 - Streptomyces lydicus: 10.1128/AEM.00099-13
- 47763 - Streptomyces lydicus: 10.1128/AEM.01849-14
- 47763 - Streptomyces lydicus: 10.1128/GENOMEA.01402-17
- 47763 - Streptomyces lydicus: 10.1186/S12896-019-0546-2
- 47763 - Streptomyces lydicus: 10.1186/S12934-019-1055-7
- 47763 - Streptomyces lydicus: 10.3389/FMICB.2018.00316
- 47763 - Streptomyces lydicus: 10.4014/JMB.1505.05033
- 47763 - Streptomyces lydicus: LTS0140365
- 68242 - Streptomyces natalensis: 10.1002/BTPR.1659
- 68242 - Streptomyces natalensis: 10.1007/S00203-019-01710-3
- 68242 - Streptomyces natalensis: 10.1007/S00253-013-4786-0
- 68242 - Streptomyces natalensis: 10.1007/S00253-013-5455-Z
- 68242 - Streptomyces natalensis: 10.1007/S00253-017-8440-0
- 68242 - Streptomyces natalensis: 10.1007/S00253-019-10131-7
- 68242 - Streptomyces natalensis: 10.1007/S10295-013-1370-7
- 68242 - Streptomyces natalensis: 10.1007/S11274-013-1561-4
- 68242 - Streptomyces natalensis: 10.1007/S12275-013-2321-8
- 68242 - Streptomyces natalensis: 10.1016/J.BIORTECH.2018.11.009
- 68242 - Streptomyces natalensis: 10.1016/J.ENZMICTEC.2007.08.012
- 68242 - Streptomyces natalensis: 10.1016/J.FEBSLET.2014.07.010
- 68242 - Streptomyces natalensis: 10.1016/S0040-4039(01)82827-6
- 68242 - Streptomyces natalensis: 10.1080/10826068.2017.1365244
- 68242 - Streptomyces natalensis: 10.1111/MMI.13583
- 68242 - Streptomyces natalensis: 10.1128/AEM.00099-13
- 68242 - Streptomyces natalensis: 10.1128/AEM.01849-14
- 68242 - Streptomyces natalensis: 10.1128/GENOMEA.01402-17
- 68242 - Streptomyces natalensis: 10.1186/S12896-019-0546-2
- 68242 - Streptomyces natalensis: 10.1186/S12934-019-1055-7
- 68242 - Streptomyces natalensis: 10.3389/FMICB.2018.00316
- 68242 - Streptomyces natalensis: 10.4014/JMB.1505.05033
- 68242 - Streptomyces natalensis: LTS0140365
- 2062 - Streptomycetaceae: LTS0140365
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Menglu Wu, Zi-An Deng, Chaoyi Shen, Zhichao Yang, Zihan Cai, Di Wu, Kunsong Chen. Fabrication of antimicrobial PCL/EC nanofibrous films containing natamycin and trans-cinnamic acid by microfluidic blow spinning for fruit preservation.
Food chemistry.
2024 Jun; 442(?):138436. doi:
10.1016/j.foodchem.2024.138436
. [PMID: 38244441] - Yuxuan Cao, Xu Zhang, Xiaoning Song, Wenkui Li, Zheng Ren, Juntao Feng, Zhiqing Ma, Xili Liu, Yong Wang. Efficacy and toxic action of the natural product natamycin against Sclerotinia sclerotiorum.
Pest management science.
2023 Dec; ?(?):. doi:
10.1002/ps.7930
. [PMID: 38087429] - Yuxuan Cao, Xiaoning Song, Guanyou Xu, Xu Zhang, He Yan, Juntao Feng, Zhiqing Ma, Xili Liu, Yong Wang. Study on the Antifungal Activity and Potential Mechanism of Natamycin against Colletotrichum fructicola.
Journal of agricultural and food chemistry.
2023 Nov; ?(?):. doi:
10.1021/acs.jafc.3c05154
. [PMID: 37943656] - Seiya Saito, Fei Wang, Chang-Lin Xiao. Baseline Sensitivity of Mucor piriformis to Natamycin and Efficacy of Natamycin alone and in Combination with Salt and Heat Treatments against Mucor Rot of Stored Mandarin Fruit.
Plant disease.
2023 Jun; ?(?):. doi:
10.1094/pdis-04-23-0796-re
. [PMID: 37272052] - Yujie Du, Yajuan Li, Zhonghuan Tian, Yunjiang Cheng, Chao-An Long. Natamycin as a safe food additive to control postharvest green mould and sour rot in citrus.
Journal of applied microbiology.
2022 Dec; 133(6):3438-3450. doi:
10.1111/jam.15769
. [PMID: 35947063] - Maria Szomek, Peter Reinholdt, Hanna-Loisa Walther, Holger A Scheidt, Peter Müller, Sebastian Obermaier, Bert Poolman, Jacob Kongsted, Daniel Wüstner. Natamycin sequesters ergosterol and interferes with substrate transport by the lysine transporter Lyp1 from yeast.
Biochimica et biophysica acta. Biomembranes.
2022 11; 1864(11):184012. doi:
10.1016/j.bbamem.2022.184012
. [PMID: 35914570] - Jhulia Gelain, Sydney Lykins, Pâmela Franciella Rosa, Alex Teixeira Soares, Madeline Elizabeth Dowling, Guido Schnabel, Louise Larissa May De Mio. Identification and Fungicide Sensitivity of Colletotrichum spp. from Apple Flowers and Fruitlets in Brazil.
Plant disease.
2022 Oct; ?(?):. doi:
10.1094/pdis-01-22-0243-re
. [PMID: 36256738] - Gerónimo Fernández, Mauricio Sbres, Joanna Lado, Elena Pérez-Faggiani. Postharvest sour rot control in lemon fruit by natamycin and an Allium extract.
International journal of food microbiology.
2022 May; 368(?):109605. doi:
10.1016/j.ijfoodmicro.2022.109605
. [PMID: 35255244] - Ahmed Adel Ali Youssef, Narendar Dudhipala, Soumyajit Majumdar. Dual Drug Loaded Lipid Nanocarrier Formulations for Topical Ocular Applications.
International journal of nanomedicine.
2022; 17(?):2283-2299. doi:
10.2147/ijn.s360740
. [PMID: 35611213] - Fei Wang, Seiya Saito, Themis J Michailides, Chang-Lin Xiao. Baseline Sensitivity of Alternaria alternata and A. arborescens to Natamycin and Control of Alternaria Rot on Stored Mandarin Fruit.
Plant disease.
2021 Nov; 105(11):3653-3656. doi:
10.1094/pdis-04-21-0809-re
. [PMID: 34085850] - Daniel Chen, Helga Förster, Kevin Nguyen, James E Adaskaveg. Organic Acid Sanitizers for Natamycin and Other Fungicides in Recirculating Application Systems for Citrus Postharvest Decay Management.
Plant disease.
2021 Oct; 105(10):2907-2913. doi:
10.1094/pdis-01-21-0227-re
. [PMID: 33822660] - Daniel Chen, Helga Fӧrster, James E Adaskaveg. Baseline Sensitivities of Major Citrus, Pome, and Stone Fruits Postharvest Pathogens to Natamycin and Estimation of the Resistance Potential in Penicillium digitatum.
Plant disease.
2021 Aug; 105(8):2114-2121. doi:
10.1094/pdis-07-20-1421-re
. [PMID: 33306429] - Daniel Chen, Helga Förster, James E Adaskaveg. Natamycin, a Biofungicide for Managing Major Postharvest Fruit Decays of Citrus.
Plant disease.
2021 May; 105(5):1408-1414. doi:
10.1094/pdis-08-20-1650-re
. [PMID: 33320038] - Arjun Srirampur, Tarannum Mansoori, Pravalika Kola, Anupama Kalwad, Ashok Kumar Reddy. Dematiaceous Fungal Colonization of the Bandage Contact Lens in a Patient Lost to Follow-up During the COVID-19 Crisis.
Eye & contact lens.
2020 Nov; 46(6):e66-e68. doi:
10.1097/icl.0000000000000751
. [PMID: 33044373] - Assar Ali Shah, Juanzi Wu, Chen Qian, Zhiwei Liu, Muhammad Mobashar, Zhujun Tao, Xiaomin Zhang, Xiaoxian Zhong. Ensiling of whole-plant hybrid pennisetum with natamycin and Lactobacillus plantarum impacts on fermentation characteristics and meta-genomic microbial community at low temperature.
Journal of the science of food and agriculture.
2020 Jun; 100(8):3378-3385. doi:
10.1002/jsfa.10371
. [PMID: 32144784] - S Saito, F Wang, C L Xiao. Efficacy of Natamycin Against Gray Mold of Stored Mandarin Fruit Caused by Isolates of Botrytis cinerea With Multiple Fungicide Resistance.
Plant disease.
2020 Mar; 104(3):787-792. doi:
10.1094/pdis-04-19-0844-re
. [PMID: 31940447] - V A Vainshtein, L N Nikolaevich, G G Sultanova, A A Bagirova, T Dzh Pashazade, V Kh Gasimova, T P Tagi-Zade, Kh M Kasumov. Effect of Chemically Transformed Macrocyclic Polyene Antibiotics on Tumor Cells.
Bulletin of experimental biology and medicine.
2019 Apr; 166(6):735-738. doi:
10.1007/s10517-019-04429-9
. [PMID: 31020586] - Ahmed Khames, Mohammad A Khaleel, Mohamed F El-Badawy, Ahmed O H El-Nezhawy. Natamycin solid lipid nanoparticles - sustained ocular delivery system of higher corneal penetration against deep fungal keratitis: preparation and optimization.
International journal of nanomedicine.
2019; 14(?):2515-2531. doi:
10.2147/ijn.s190502
. [PMID: 31040672] - Stacey E Haack, Kelly L Ivors, Gerald J Holmes, Helga Förster, James E Adaskaveg. Natamycin, a New Biofungicide for Managing Crown Rot of Strawberry Caused by QoI-Resistant Colletotrichum acutatum.
Plant disease.
2018 Sep; 102(9):1687-1695. doi:
10.1094/pdis-12-17-2033-re
. [PMID: 30125151] - Bhanu Priya Awasthi, Kalyan Mitra. In vitro leishmanicidal effects of the anti-fungal drug natamycin are mediated through disruption of calcium homeostasis and mitochondrial dysfunction.
Apoptosis : an international journal on programmed cell death.
2018 08; 23(7-8):420-435. doi:
10.1007/s10495-018-1468-5
. [PMID: 29971703] - Akash Patil, Prit Lakhani, Pranjal Taskar, Kai-Wei Wu, Corinne Sweeney, Bharathi Avula, Yan-Hong Wang, Ikhlas A Khan, Soumyajit Majumdar. Formulation Development, Optimization, and In Vitro-In Vivo Characterization of Natamycin-Loaded PEGylated Nano-Lipid Carriers for Ocular Applications.
Journal of pharmaceutical sciences.
2018 08; 107(8):2160-2171. doi:
10.1016/j.xphs.2018.04.014
. [PMID: 29698725] - Shengtao Sun, Qixue Lui, Lei Han, Qiufei Ma, Siyu He, Xiaohua Li, Hongmin Zhang, Junjie Zhang, Xiaohui Liu, Liya Wang. Identification and Characterization of Fusarium proliferatum, a New Species of Fungi that Cause Fungal Keratitis.
Scientific reports.
2018 03; 8(1):4859. doi:
10.1038/s41598-018-23255-z
. [PMID: 29559666] - Namrata Sharma, Deepali Singhal, Prafulla K Maharana, Rajesh Sinha, Tushar Agarwal, Ashish D Upadhyay, Thirumurthy Velpandian, Gita Satpathy, Jeewan S Titiyal. Comparison of Oral Voriconazole Versus Oral Ketoconazole as an Adjunct to Topical Natamycin in Severe Fungal Keratitis: A Randomized Controlled Trial.
Cornea.
2017 Dec; 36(12):1521-1527. doi:
10.1097/ico.0000000000001365
. [PMID: 28902012] - Huiling Wu, Weicheng Liu, Lingling Shi, Kaiwei Si, Ting Liu, Dan Dong, Taotao Zhang, Juan Zhao, Dewen Liu, Zhaofeng Tian, Yuesen Yue, Hong Zhang, Bai Xuelian, Yong Liang. Comparative Genomic and Regulatory Analyses of Natamycin Production of Streptomyces lydicus A02.
Scientific reports.
2017 08; 7(1):9114. doi:
10.1038/s41598-017-09532-3
. [PMID: 28831190] - Yosra Ben-Fadhel, Sabrina Saltaji, Mohamed Ali Khlifi, Stephane Salmieri, Khanh Dang Vu, Monique Lacroix. Active edible coating and γ-irradiation as cold combined treatments to assure the safety of broccoli florets (Brassica oleracea L.).
International journal of food microbiology.
2017 Jan; 241(?):30-38. doi:
10.1016/j.ijfoodmicro.2016.10.010
. [PMID: 27744210] - Miquel Sintes, Fabio De Moliner, David Caballero-Lima, David W Denning, Nick D Read, Nicola Kielland, Marc Vendrell, Rodolfo Lavilla. Electrophilic, Activation-Free Fluorogenic Reagent for Labeling Bioactive Amines.
Bioconjugate chemistry.
2016 06; 27(6):1430-4. doi:
10.1021/acs.bioconjchem.6b00245
. [PMID: 27248580] - Clotilde Bouaoud, Jérôme G J L Lebouille, Eduardo Mendes, Henriette E A De Braal, Gabriel M H Meesters. Formulation and antifungal performance of natamycin-loaded liposomal suspensions: the benefits of sterol-enrichment.
Journal of liposome research.
2016; 26(2):103-12. doi:
10.3109/08982104.2015.1046079
. [PMID: 26009272] - Huiling Wu, Jinjin Li, Dan Dong, Ting Liu, Taotao Zhang, Dianpeng Zhang, Weicheng Liu. Heterologous coexpression of Vitreoscilla hemoglobin and Bacillus megaterium glucanase in Streptomyces lydicus A02 enhanced its production of antifungal metabolites.
Enzyme and microbial technology.
2015 Dec; 81(?):80-7. doi:
10.1016/j.enzmictec.2015.08.003
. [PMID: 26453475] - Huiling Wu, Weicheng Liu, Dan Dong, Jinjin Li, Dianpeng Zhang, Caige Lu. SlnM gene overexpression with different promoters on natamycin production in Streptomyces lydicus A02.
Journal of industrial microbiology & biotechnology.
2014 Jan; 41(1):163-72. doi:
10.1007/s10295-013-1370-7
. [PMID: 24174215] - Maria I Tsiraki, Ioannis N Savvaidis. Citrus extract or natamycin treatments on 'Tzatziki' - a traditional Greek salad.
Food chemistry.
2014 Jan; 142(?):416-22. doi:
10.1016/j.foodchem.2013.07.087
. [PMID: 24001860] - Yvonne Maria te Welscher, Martin Richard van Leeuwen, Ben de Kruijff, Jan Dijksterhuis, Eefjan Breukink. Polyene antibiotic that inhibits membrane transport proteins.
Proceedings of the National Academy of Sciences of the United States of America.
2012 Jul; 109(28):11156-9. doi:
10.1073/pnas.1203375109
. [PMID: 22733749] - Tomasz Bocer, Ana Zarubica, Annie Roussel, Krzysztof Flis, Tomasz Trombik, Andre Goffeau, Stanislaw Ulaszewski, Giovanna Chimini. The mammalian ABC transporter ABCA1 induces lipid-dependent drug sensitivity in yeast.
Biochimica et biophysica acta.
2012 Mar; 1821(3):373-80. doi:
10.1016/j.bbalip.2011.07.005
. [PMID: 21787882] - Chiaki Kondo, Miwa Aoki, Emi Yamamoto, Yutaka Tonomura, Minoru Ikeda, Masako Kaneto, Jyoji Yamate, Mikinori Torii, Takeki Uehara. Predictive genomic biomarkers for drug-induced nephrotoxicity in mice.
The Journal of toxicological sciences.
2012; 37(4):723-37. doi:
10.2131/jts.37.723
. [PMID: 22863853] - Prakash P Yegneswaran, Vijaya Pai, Indira Bairy, Sulatha Bhandary. Colletotrichum graminicola keratitis: first case report from India.
Indian journal of ophthalmology.
2010 Sep; 58(5):415-7. doi:
10.4103/0301-4738.67058
. [PMID: 20689197] - Yvonne Maria te Welscher, Lynden Jones, Martin Richard van Leeuwen, Jan Dijksterhuis, Ben de Kruijff, Gary Eitzen, Eefjan Breukink. Natamycin inhibits vacuole fusion at the priming phase via a specific interaction with ergosterol.
Antimicrobial agents and chemotherapy.
2010 Jun; 54(6):2618-25. doi:
10.1128/aac.01794-09
. [PMID: 20385867] - Pinar Goc Rasgele, Fisun Kaymak. Chromosome aberrations, micronucleus and sperm head abnormalities in mice treated with natamycin, [corrected] a food preservative.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2010 Mar; 48(3):789-97. doi:
10.1016/j.fct.2009.12.007
. [PMID: 20026162] - Niranjan M Deshpande, Manish G Gangrade, Maharudra B Kekare, Vikas V Vaidya. Determination of free and liposomal amphotericin B in human plasma by liquid chromatography-mass spectroscopy with solid phase extraction and protein precipitation techniques.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2010 Feb; 878(3-4):315-26. doi:
10.1016/j.jchromb.2009.11.036
. [PMID: 20022309] - M R Van Leeuwen, E A Golovina, J Dijksterhuis. The polyene antimycotics nystatin and filipin disrupt the plasma membrane, whereas natamycin inhibits endocytosis in germinating conidia of Penicillium discolor.
Journal of applied microbiology.
2009 Jun; 106(6):1908-18. doi:
10.1111/j.1365-2672.2009.04165.x
. [PMID: 19228256] - Qin Sui, Weicheng Liu, Caige Lu, Ting Liu, Jiyan Qiu, Xuemin Liu. [Extraction and structural identification of the antifungal metabolite of Streptomyces lydicus A02].
Sheng wu gong cheng xue bao = Chinese journal of biotechnology.
2009 Jun; 25(6):840-6. doi:
"
. [PMID: 19777810] - Inbal Avisar, Dov Weinberger, Israel Kremer. [Fusarium keratitis and endophthalmitis treated by intravenous ambisome].
Harefuah.
2009 Jan; 148(1):28-9, 88. doi:
NULL
. [PMID: 19320385] - Yvonne M te Welscher, Hendrik H ten Napel, Miriam Masià Balagué, Cleiton M Souza, Howard Riezman, Ben de Kruijff, Eefjan Breukink. Natamycin blocks fungal growth by binding specifically to ergosterol without permeabilizing the membrane.
The Journal of biological chemistry.
2008 Mar; 283(10):6393-401. doi:
10.1074/jbc.m707821200
. [PMID: 18165687] - Nicole C Scotty, Dennis E Brooks, Crystal D Schuman Rose. In vitro efficacy of an ophthalmic drug combination against corneal pathogens of horses.
American journal of veterinary research.
2008 Jan; 69(1):101-7. doi:
10.2460/ajvr.69.1.101
. [PMID: 18167094] - Kristine A Johansen, Erin E Hugen, Janet B Payeur. Growth of Mycobacterium avium subsp. paratuberculosis in the presence of hexadecylpyridinium chloride, natamycin, and vancomycin.
Journal of food protection.
2006 Apr; 69(4):878-83. doi:
10.4315/0362-028x-69.4.878
. [PMID: 16629033] - Ursula I M Wiehart, Marina Rautenbach, Heinrich C Hoppe. Selective lysis of erythrocytes infected with the trophozoite stage of Plasmodium falciparum by polyene macrolide antibiotics.
Biochemical pharmacology.
2006 Mar; 71(6):779-90. doi:
10.1016/j.bcp.2005.12.012
. [PMID: 16436272] - Matthew A Churchward, Tatiana Rogasevskaia, Jana Höfgen, Jason Bau, Jens R Coorssen. Cholesterol facilitates the native mechanism of Ca2+-triggered membrane fusion.
Journal of cell science.
2005 Oct; 118(Pt 20):4833-48. doi:
10.1242/jcs.02601
. [PMID: 16219690] - Mohamed Ahmed Nasr Mohamed, Lionel Ranjard, Colette Catroux, Gérard Catroux, Alain Hartmann. Effect of natamycin on the enumeration, genetic structure and composition of bacterial community isolated from soils and soybean rhizosphere.
Journal of microbiological methods.
2005 Jan; 60(1):31-40. doi:
10.1016/j.mimet.2004.08.008
. [PMID: 15567222] - Guy J Ben-Simon, Irina S Barequet, Aaron Grinbaum. More than tears in your eyes (Exophiala jeanselmei keratitis).
Cornea.
2002 Mar; 21(2):230-1. doi:
10.1097/00003226-200203000-00023
. [PMID: 11862103] - J E Hoppe, D Friess, D Niethammer. Orointestinal yeast colonization of paediatric oncologic patients during antifungal prophylaxis: results of quantitative culture and Candida serology and comparison of three polyenes.
Mycoses.
1995 Jan; 38(1-2):41-9. doi:
10.1111/j.1439-0507.1995.tb00007.x
. [PMID: 7637681] - H Mukhtar, A Hakkou, R Bonaly. Studies on the activity of Kluyveromyces lactis S-adenosylmethionine: delta 24-sterol methyltransferase in presence of polyenic antifungal agents.
Mycopathologia.
1994 May; 126(2):75-83. doi:
10.1007/bf01146199
. [PMID: 8065434] - W Gehring, W Späte, M Gehse, M Gloor, K J Braun. Results of a combination treatment with natamycin and butylscopolamine in cases of intestinal Candida colonization.
Mycoses.
1990 Mar; 33(3):140-5. doi:
10.1111/myc.1990.33.3.140
. [PMID: 2359419] - C W Haest, J Classen. Formation of flip sites for phospholipids by introduction of channel-forming antibiotics into the membrane of human erythrocytes.
Biomedica biochimica acta.
1987; 46(2-3):S16-20. doi:
"
. [PMID: 2439073] - P Ma, E Willaert, K B Juechter, A R Stevens. A case of keratitis due to Acanthamoeba in New York, New York, and features of 10 cases.
The Journal of infectious diseases.
1981 May; 143(5):662-7. doi:
10.1093/infdis/143.5.662
. [PMID: 6972421] - A C Ellison. Intravenous effects of pimaricin on mycotic endophthalmitis.
Annals of ophthalmology.
1979 Feb; 11(2):157-64. doi:
. [PMID: 312049]
- H A Chapman, J B Hibbs. Modulation of macrophage tumoricidal capability by polyene antibiotics: support for membrane lipid as a regulatory determinant of macrophage function.
Proceedings of the National Academy of Sciences of the United States of America.
1978 Sep; 75(9):4349-53. doi:
10.1073/pnas.75.9.4349
. [PMID: 309132] - Y Kitajima, T Sekiya, Y Nozawa. Freeze-fracture ultrastructural alterations induced by filipin, pimaricin, nystatin and amphotericin B in the plasmia membranes of Epidermophyton, Saccharomyces and red complex-induced membrane lesions.
Biochimica et biophysica acta.
1976 Dec; 455(2):452-65. doi:
10.1016/0005-2736(76)90317-5
. [PMID: 793632] - A W Norman, A M Spielvogel, R G Wong. Polyene antibiotic - sterol interaction.
Advances in lipid research.
1976; 14(?):127-70. doi:
"
. [PMID: 769498] - H H Ho. A selective medium for the isolation of Saprolegnia spp. from freshwater.
Canadian journal of microbiology.
1975 Jul; 21(7):1126. doi:
10.1139/m75-165
. [PMID: 1080071] - C V Dave, A C Parekh. Effect of hamycin on plasma cholesterol of rat.
Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.).
1975 May; 149(1):299-301. doi:
10.3181/00379727-149-38793
. [PMID: 1079948] - D van der Waaij, J M Berghuis. Determination of the colonization resistance of the digestive tract of individual mice.
The Journal of hygiene.
1974 Jun; 72(3):379-87. doi:
10.1017/s0022172400023615
. [PMID: 4602039] - H van Zutphen, R A Demel, A W Norman, L L van Deenen. The action of polyene antibiotics on lipid bilayer membranes in the presence of several cations and anions.
Biochimica et biophysica acta.
1971 Aug; 241(2):310-30. doi:
10.1016/0005-2736(71)90031-9
. [PMID: 5316712] - J F Kuo. Effects of insulin and substances having insulin-like activity on adipose cells: sugar utilization, lipolysis, adenyl cyclase-cyclic AMP system and cyclic AMP-dependent protein kinase.
Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme.
1970; 2(?):Suppl 2:112-5. doi:
"
. [PMID: 4340417] - J F Kuo, E C De Renzo. A comparison of the effects of lipolytic and antilipolytic agents on adenosine 3',5'-monophosphate levels in adipose cells as determined by prior labeling with adenine-8-14C.
The Journal of biological chemistry.
1969 May; 244(9):2252-60. doi:
10.1016/s0021-9258(19)78219-2
. [PMID: 4306506] - J F Kuo. Stimulation of glucose utilization and inhibition of lipolysis by polyene antibiotics in isolated adipose cells.
Archives of biochemistry and biophysics.
1968 Sep; 127(1):406-12. doi:
10.1016/0003-9861(68)90243-9
. [PMID: 4301564] - R Blaschke-Hellmessen. [Epidemiological studies of the occurrence of yeasts in children and their mothers].
Mykosen.
1968 Sep; 11(9):611-6. doi:
NULL
. [PMID: 5312234] - G Weissmann, R Hirschhorn, M Pras, G Sessa, V A Bevans. Studies of lysosomes. 8. The effect of polyene antibiotics on lysosomes.
Biochemical pharmacology.
1967 Jun; 16(6):1057-69. doi:
10.1016/0006-2952(67)90279-1
. [PMID: 5298737]