Thymidine 5'-triphosphate (BioDeep_00000001601)

 

Secondary id: BioDeep_00000405435, BioDeep_00001868470

natural product human metabolite PANOMIX_OTCML-2023 Endogenous


代谢物信息卡片


{[hydroxy({[hydroxy({[(2R,3S,5R)-3-hydroxy-5-(5-methyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1-yl)oxolan-2-yl]methoxy})phosphoryl]oxy})phosphoryl]oxy}phosphonic acid

化学式: C10H17N2O14P3 (481.9893)
中文名称:
谱图信息: 最多检出来源 Homo sapiens(otcml) 23.95%

分子结构信息

SMILES: CC1=CN(C(=O)NC1=O)C2CC(C(O2)COP(=O)(O)OP(=O)(O)OP(=O)(O)O)O
InChI: InChI=1S/C10H17N2O14P3/c1-5-3-12(10(15)11-9(5)14)8-2-6(13)7(24-8)4-23-28(19,20)26-29(21,22)25-27(16,17)18/h3,6-8,13H,2,4H2,1H3,(H,19,20)(H,21,22)(H,11,14,15)(H2,16,17,18)/t6-,7+,8+/m0/s1

描述信息

Thymidine-5-triphosphate, also known as ttp or deoxythymidine 5-triphosphoric acid, is a member of the class of compounds known as pyrimidine 2-deoxyribonucleoside triphosphates. Pyrimidine 2-deoxyribonucleoside triphosphates are pyrimidine nucleotides with a triphosphate group linked to the ribose moiety lacking a hydroxyl group at position 2. Thymidine-5-triphosphate is slightly soluble (in water) and an extremely strong acidic compound (based on its pKa). Thymidine-5-triphosphate can be found in a number of food items such as kohlrabi, garden tomato (variety), cardoon, and star anise, which makes thymidine-5-triphosphate a potential biomarker for the consumption of these food products. Thymidine-5-triphosphate exists in all living species, ranging from bacteria to humans. In humans, thymidine-5-triphosphate is involved in the pyrimidine metabolism. Thymidine-5-triphosphate is also involved in few metabolic disorders, which include beta ureidopropionase deficiency, dihydropyrimidinase deficiency, MNGIE (mitochondrial neurogastrointestinal encephalopathy), and UMP synthase deficiency (orotic aciduria).
Deoxythymidine triphosphate (dTTP) is one of the four nucleoside triphosphates that are used in the in vivo synthesis of DNA. Unlike the other deoxyribonucleoside triphosphates, thymidine triphosphate does not always contain the "deoxy" prefix in its name. The corresponding ribonucleoside triphosphate is called uridine triphosphate. Thymidine 5-triphosphate, also known as TTP or DTHD5ppp, belongs to the class of organic compounds known as pyrimidine 2-deoxyribonucleoside triphosphates. These are pyrimidine nucleotides with a triphosphate group linked to the ribose moiety lacking a hydroxyl group at position 2. Thymidine 5-triphosphate exists in all living species, ranging from bacteria to humans. Outside of the human body, Thymidine 5-triphosphate has been detected, but not quantified in several different foods, such as elliotts blueberries, mamey sapotes, sesames, alliums, and sweet oranges.

同义名列表

31 个代谢物同义名

{[hydroxy({[hydroxy({[(2R,3S,5R)-3-hydroxy-5-(5-methyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1-yl)oxolan-2-yl]methoxy})phosphoryl]oxy})phosphoryl]oxy}phosphonic acid; Thymidine mono(tetrahydrogen triphosphate); Thymidine 5-triphosphate, p-(32)p-labeled; Thymidine 5-triphosphate, trisodium salt; Thymidine 5-triphosphate, magnesium salt; Thymidine-5-triphosphate sodium salt; 2-Deoxythymidine triphosphoric acid; Deoxythymidine 5-triphosphoric acid; Deoxythymidine triphosphoric acid; 2’-Deoxythymidine 5’-triphosphate; 2-Deoxythymidine-5-triphosphate; 2-Deoxythymidine 5-triphosphate; Thymidine 5-triphosphoric acid; Deoxythymidine 5’-triphosphate; THYMIDINE-5-triphosphoric acid; 2’-Deoxythymidine triphosphate; 2-Deoxythymidine triphosphate; Deoxythymidine 5-triphosphate; Deoxythymidine triphosphate; Thymidine 5’-triphosphate; Thymidine 5-triphosphate; THYMIDINE-5-triphosphATE; Thymidine triphosphate; 5-Methyl-dUTP; Deoxy-TTP; DTHD5ppp; 5’-TTP; PPPDT; 5-TTP; dTTP; TTP



数据库引用编号

24 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

85 个相关的代谢反应过程信息。

Reactome(52)

  • DNA Replication: ATP + pre-replicative complex ⟶ ADP + Homologues of p-S,T-ORC1 + pre-replicative complex (Orc1-minus)
  • Synthesis of DNA: ATP + pre-replicative complex ⟶ ADP + Homologues of p-S,T-ORC1 + pre-replicative complex (Orc1-minus)
  • DNA replication initiation: RNA primer:origin duplex:DNA polymerase alpha:primase complex + TTP + dATP + dCTP + dGTP ⟶ RNA primer-DNA primer:origin duplex
  • Cell Cycle: 2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
  • Cell Cycle, Mitotic: 2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
  • S Phase: ATP + pre-replicative complex ⟶ ADP + Homologues of p-S,T-ORC1 + pre-replicative complex (Orc1-minus)
  • Chromosome Maintenance: ATP + PCNA homotrimer + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end ⟶ ADP + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end duplex:PCNA homotrimer
  • Telomere Maintenance: ATP + PCNA homotrimer + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end ⟶ ADP + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end duplex:PCNA homotrimer
  • Extension of Telomeres: ATP + PCNA homotrimer + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end ⟶ ADP + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end duplex:PCNA homotrimer
  • Telomere Extension By Telomerase: TTP + Telomerase RNP Bound and base-paired to the Telomeric Chromosome End + dATP + dCTP + dGTP ⟶ Telomerase RNP:Telomeric Chromosome End with an Additional single Stranded Telomere repeat
  • Telomere C-strand (Lagging Strand) Synthesis: ATP + PCNA homotrimer + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end ⟶ ADP + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end duplex:PCNA homotrimer
  • Telomere C-strand synthesis initiation: RNA primer:G-strand extended telomere end:DNA polymerase alpha:primase complex + TTP + dATP + dCTP + dGTP ⟶ RNA primer-DNA primer:G-strand extended telomere
  • Processive synthesis on the C-strand of the telomere: Processive complex loaded on telomere + TTP + dATP + dCTP + dGTP ⟶ Processive complex loaded on telomere:Okazaki fragment complex
  • Telomere C-strand synthesis initiation: RNA primer:G-strand extended telomere end:POLA:primase + TTP + dATP + dCTP + dGTP ⟶ RNA primer:DNA primer:G-strand extended telomere:POLA:primase
  • Telomere C-strand (Lagging Strand) Synthesis: RNA primer:G-strand extended telomere end:POLA:primase + TTP + dATP + dCTP + dGTP ⟶ RNA primer:DNA primer:G-strand extended telomere:POLA:primase
  • Telomere C-strand synthesis initiation: RNA primer:G-strand extended telomere end:POLA:primase + TTP + dATP + dCTP + dGTP ⟶ RNA primer:DNA primer:G-strand extended telomere:POLA:primase
  • Telomere C-strand synthesis initiation: RNA primer:G-strand extended telomere end:POLA:primase + TTP + dATP + dCTP + dGTP ⟶ RNA primer:DNA primer:G-strand extended telomere:POLA:primase
  • DNA Replication: ATP + Q5N897 ⟶ ADP + phospho-p-CDC6
  • Synthesis of DNA: ATP + Q5N897 ⟶ ADP + phospho-p-CDC6
  • DNA replication initiation: RNA primer:origin duplex:DNA polymerase alpha:primase complex + TTP + dATP + dCTP + dGTP ⟶ RNA primer-DNA primer:origin duplex
  • Cell Cycle: ATP + Q5N897 ⟶ ADP + phospho-p-CDC6
  • Cell Cycle, Mitotic: ATP + Q5N897 ⟶ ADP + phospho-p-CDC6
  • S Phase: ATP + Q5N897 ⟶ ADP + phospho-p-CDC6
  • Chromosome Maintenance: ATP + PCNA homotrimer + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end ⟶ ADP + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end duplex:PCNA homotrimer
  • Telomere Maintenance: ATP + PCNA homotrimer + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end ⟶ ADP + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end duplex:PCNA homotrimer
  • Extension of Telomeres: ATP + PCNA homotrimer + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end ⟶ ADP + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end duplex:PCNA homotrimer
  • Telomere C-strand (Lagging Strand) Synthesis: ATP + PCNA homotrimer + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end ⟶ ADP + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end duplex:PCNA homotrimer
  • Telomere C-strand synthesis initiation: RNA primer:G-strand extended telomere end:DNA polymerase alpha:primase complex + TTP + dATP + dCTP + dGTP ⟶ RNA primer-DNA primer:G-strand extended telomere
  • Processive synthesis on the C-strand of the telomere: Processive complex loaded on telomere + TTP + dATP + dCTP + dGTP ⟶ Processive complex loaded on telomere:Okazaki fragment complex
  • Chromosome Maintenance: RNA primer:G-strand extended telomere end:POLA:primase + TTP + dATP + dCTP + dGTP ⟶ RNA primer:DNA primer:G-strand extended telomere:POLA:primase
  • Telomere Maintenance: RNA primer:G-strand extended telomere end:POLA:primase + TTP + dATP + dCTP + dGTP ⟶ RNA primer:DNA primer:G-strand extended telomere:POLA:primase
  • Extension of Telomeres: RNA primer:G-strand extended telomere end:POLA:primase + TTP + dATP + dCTP + dGTP ⟶ RNA primer:DNA primer:G-strand extended telomere:POLA:primase
  • Telomere C-strand (Lagging Strand) Synthesis: RNA primer:G-strand extended telomere end:POLA:primase + TTP + dATP + dCTP + dGTP ⟶ RNA primer:DNA primer:G-strand extended telomere:POLA:primase
  • Telomere C-strand synthesis initiation: RNA primer:G-strand extended telomere end:POLA:primase + TTP + dATP + dCTP + dGTP ⟶ RNA primer:DNA primer:G-strand extended telomere:POLA:primase
  • Telomere C-strand (Lagging Strand) Synthesis: RNA primer:G-strand extended telomere end:POLA:primase + TTP + dATP + dCTP + dGTP ⟶ RNA primer:DNA primer:G-strand extended telomere:POLA:primase
  • Telomere C-strand synthesis initiation: RNA primer:G-strand extended telomere end:POLA:primase + TTP + dATP + dCTP + dGTP ⟶ RNA primer:DNA primer:G-strand extended telomere:POLA:primase
  • Telomere C-strand synthesis initiation: RNA primer:G-strand extended telomere end:POLA:primase + TTP + dATP + dCTP + dGTP ⟶ RNA primer:DNA primer:G-strand extended telomere:POLA:primase
  • Cell Cycle: ATP + p21,p27 ⟶ ADP + p-T-CDKN1A/B
  • Cell Cycle, Mitotic: ATP + p21,p27 ⟶ ADP + p-T-CDKN1A/B
  • S Phase: ATP + p21,p27 ⟶ ADP + p-T-CDKN1A/B
  • Synthesis of DNA: ATP + PCNA homotrimer + RFC Heteropentamer:RNA primer-DNA primer:origin duplex ⟶ ADP + RFC Heteropentamer:RNA primer-DNA primer:origin duplex:PCNA homotrimer
  • DNA replication initiation: RNA primer:origin duplex:DNA polymerase alpha:primase complex + TTP + dATP + dCTP + dGTP ⟶ RNA primer-DNA primer:origin duplex
  • Chromosome Maintenance: ATP + PCNA homotrimer + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end ⟶ ADP + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end duplex:PCNA homotrimer
  • Telomere Maintenance: ATP + PCNA homotrimer + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end ⟶ ADP + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end duplex:PCNA homotrimer
  • Extension of Telomeres: ATP + PCNA homotrimer + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end ⟶ ADP + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end duplex:PCNA homotrimer
  • Telomere Extension By Telomerase: TTP + Telomerase RNP Bound and base-paired to the Telomeric Chromosome End + dATP + dCTP + dGTP ⟶ Telomerase RNP:Telomeric Chromosome End with an Additional single Stranded Telomere repeat
  • Telomere C-strand (Lagging Strand) Synthesis: ATP + PCNA homotrimer + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end ⟶ ADP + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end duplex:PCNA homotrimer
  • Telomere C-strand synthesis initiation: RNA primer:G-strand extended telomere end:DNA polymerase alpha:primase complex + TTP + dATP + dCTP + dGTP ⟶ RNA primer-DNA primer:G-strand extended telomere
  • DNA Replication: ATP + MCM2-7 ⟶ ADP + p-MCM2-7
  • Processive synthesis on the C-strand of the telomere: Processive complex loaded on telomere + TTP + dATP + dCTP + dGTP ⟶ Processive complex loaded on telomere:Okazaki fragment complex
  • Processive synthesis on the C-strand of the telomere: Processive complex loaded on telomere + TTP + dATP + dCTP + dGTP ⟶ Processive complex loaded on telomere:Okazaki fragment complex
  • Telomere Extension By Telomerase: TTP + Telomerase RNP Bound and base-paired to the Telomeric Chromosome End + dATP + dCTP + dGTP ⟶ Telomerase RNP:Telomeric Chromosome End with an Additional single Stranded Telomere repeat

BioCyc(0)

WikiPathways(1)

Plant Reactome(0)

INOH(2)

PlantCyc(0)

COVID-19 Disease Map(1)

PathBank(29)

PharmGKB(0)

2 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 12 APRT, CMPK2, DCK, DCTD, DHFR, DTYMK, PNP, POLB, RAD51, TK2, TP53, TYMS
Nucleus 11 DCK, DTYMK, DUT, POLB, POLH, RAD51, SAMHD1, TK1, TP53, TYMS, UNG
cytosol 13 APRT, CDA, DCK, DCTD, DHFR, DTYMK, PNP, POLH, RAD51, TK1, TP53, TYMP, TYMS
centrosome 2 RAD51, TP53
nucleoplasm 11 APRT, ATP2B1, CMPK2, DCK, DUT, POLB, POLH, RAD51, SAMHD1, TP53, UNG
Cell membrane 1 ATP2B1
Multi-pass membrane protein 1 ATP2B1
Synapse 1 ATP2B1
glutamatergic synapse 1 ATP2B1
Golgi apparatus 1 POLH
mitochondrial inner membrane 1 TYMS
presynaptic membrane 1 ATP2B1
plasma membrane 2 ATP2B1, SAMHD1
synaptic vesicle membrane 1 ATP2B1
Membrane 2 ATP2B1, TP53
basolateral plasma membrane 1 ATP2B1
extracellular exosome 4 APRT, ATP2B1, DUT, PNP
endoplasmic reticulum 1 TP53
extracellular space 1 PNP
perinuclear region of cytoplasm 1 RAD51
mitochondrion 10 CMPK2, DCK, DHFR, DTYMK, DUT, RAD51, TK2, TP53, TYMS, UNG
protein-containing complex 3 POLB, RAD51, TP53
intracellular membrane-bounded organelle 1 ATP2B1
Secreted 1 PNP
extracellular region 3 APRT, CDA, PNP
Mitochondrion matrix 3 RAD51, TP53, TYMS
mitochondrial matrix 5 DTYMK, RAD51, TK2, TP53, TYMS
transcription regulator complex 1 TP53
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 2 RAD51, TP53
Cytoplasmic vesicle, secretory vesicle, synaptic vesicle membrane 1 ATP2B1
nucleolus 2 RAD51, TP53
Mitochondrion inner membrane 1 TYMS
Cytoplasm, cytoskeleton 1 TP53
microtubule 1 POLB
mitochondrial nucleoid 1 POLH
Nucleus, PML body 1 TP53
PML body 2 RAD51, TP53
lateral plasma membrane 1 ATP2B1
chromatin 2 RAD51, TP53
cell projection 1 ATP2B1
Chromosome 3 POLH, RAD51, SAMHD1
chromosome, telomeric region 1 RAD51
nuclear chromosome 1 RAD51
Basolateral cell membrane 1 ATP2B1
site of double-strand break 4 POLH, RAD51, SAMHD1, TP53
lateral element 1 RAD51
Presynaptic cell membrane 1 ATP2B1
germ cell nucleus 1 TP53
replication fork 2 POLH, TP53
ficolin-1-rich granule lumen 2 CDA, PNP
secretory granule lumen 3 APRT, CDA, PNP
nuclear matrix 1 TP53
transcription repressor complex 1 TP53
male germ cell nucleus 1 RAD51
tertiary granule lumen 1 CDA
immunological synapse 1 ATP2B1
tetraspanin-enriched microdomain 1 SAMHD1
condensed nuclear chromosome 1 RAD51
[Isoform 2]: Nucleus 1 DUT
[Isoform 1]: Nucleus 1 TP53
spindle microtubule 1 POLB
condensed chromosome 1 RAD51
[Isoform 3]: Mitochondrion 1 DUT
site of DNA damage 1 POLH
presynaptic intermediate filament cytoskeleton 1 RAD51
photoreceptor ribbon synapse 1 ATP2B1
nuclear ubiquitin ligase complex 1 RAD51


文献列表

  • Apurba Sarkar, Shreya Ghosh, Rahul Shaw, Madhu Manti Patra, Fatema Calcuttawala, Noyonika Mukherjee, Sujoy K Das Gupta. Mycobacterium tuberculosis thymidylate synthase (ThyX) is a target for plumbagin, a natural product with antimycobacterial activity. PloS one. 2020; 15(2):e0228657. doi: 10.1371/journal.pone.0228657. [PMID: 32017790]
  • Yanhua Li, Zhen Guo, Li Jin, Deqiang Wang, Zengqiang Gao, Xiaodong Su, Haifeng Hou, Yuhui Dong. Mechanism of the allosteric regulation of Streptococcus mutans 2'-deoxycytidylate deaminase. Acta crystallographica. Section D, Structural biology. 2016 07; 72(Pt 7):883-91. doi: 10.1107/s2059798316009153. [PMID: 27377385]
  • Ilaria Dalla Rosa, Yolanda Cámara, Romina Durigon, Chloe F Moss, Sara Vidoni, Gokhan Akman, Lilian Hunt, Mark A Johnson, Sarah Grocott, Liya Wang, David R Thorburn, Michio Hirano, Joanna Poulton, Robert W Taylor, Greg Elgar, Ramon Martí, Peter Voshol, Ian J Holt, Antonella Spinazzola. MPV17 Loss Causes Deoxynucleotide Insufficiency and Slow DNA Replication in Mitochondria. PLoS genetics. 2016 Jan; 12(1):e1005779. doi: 10.1371/journal.pgen.1005779. [PMID: 26760297]
  • Ming-Hsiang Lee, Liya Wang, Zee-Fen Chang. The contribution of mitochondrial thymidylate synthesis in preventing the nuclear genome stress. Nucleic acids research. 2014 Apr; 42(8):4972-84. doi: 10.1093/nar/gku152. [PMID: 24561807]
  • A K Lawrance, L Deng, R Rozen. Methylenetetrahydrofolate reductase deficiency and low dietary folate reduce tumorigenesis in Apc min/+ mice. Gut. 2009 Jun; 58(6):805-11. doi: 10.1136/gut.2007.143107. [PMID: 19174418]
  • Erin Knock, Liyuan Deng, Qing Wu, Andrea K Lawrance, Xiao-ling Wang, Rima Rozen. Strain differences in mice highlight the role of DNA damage in neoplasia induced by low dietary folate. The Journal of nutrition. 2008 Apr; 138(4):653-8. doi: 10.1093/jn/138.4.653. [PMID: 18356316]
  • Yuanzheng Zhang, Frank Maley, Gladys F Maley, Garry Duncan, David D Dunigan, James L Van Etten. Chloroviruses encode a bifunctional dCMP-dCTP deaminase that produces two key intermediates in dTTP formation. Journal of virology. 2007 Jul; 81(14):7662-71. doi: 10.1128/jvi.00186-07. [PMID: 17475641]
  • Sarah Garton, Heather Knight, Gareth J Warren, Marc R Knight, Glenn J Thorlby. crinkled leaves 8--a mutation in the large subunit of ribonucleotide reductase--leads to defects in leaf development and chloroplast division in Arabidopsis thaliana. The Plant journal : for cell and molecular biology. 2007 Apr; 50(1):118-27. doi: 10.1111/j.1365-313x.2007.03035.x. [PMID: 17346262]
  • I M Rusina, A F Makarchikov, E A Makar, V L Kubyshin. [Nucleoside-5'-triphosphate hydrolysis in the liver and kidney of rats with chronic alloxan diabetes]. Biomeditsinskaia khimiia. 2006 Jul; 52(4):364-9. doi: NULL. [PMID: 17044594]
  • Kent Persson, Keith Hamby, Luis A Ugozzoli. Four-color multiplex reverse transcription polymerase chain reaction--overcoming its limitations. Analytical biochemistry. 2005 Sep; 344(1):33-42. doi: 10.1016/j.ab.2005.06.026. [PMID: 16039598]
  • Deliang Cao, Janine J Leffert, James McCabe, Bradford Kim, Giuseppe Pizzorno. Abnormalities in uridine homeostatic regulation and pyrimidine nucleotide metabolism as a consequence of the deletion of the uridine phosphorylase gene. The Journal of biological chemistry. 2005 Jun; 280(22):21169-75. doi: 10.1074/jbc.m412343200. [PMID: 15772079]
  • Nicholas A Boyle, Vivek K Rajwanshi, Marija Prhavc, Guangyi Wang, Patrick Fagan, Fu Chen, Gregory J Ewing, Jennifer L Brooks, Tiffany Hurd, Janet M Leeds, Thomas W Bruice, P Dan Cook. Synthesis of 2',3'-dideoxynucleoside 5'-alpha-P-borano-beta,gamma-(difluoromethylene)triphosphates and their inhibition of HIV-1 reverse transcriptase. Journal of medicinal chemistry. 2005 Apr; 48(7):2695-700. doi: 10.1021/jm040101y. [PMID: 15801860]
  • Guangyi Wang, Nicholas Boyle, Fu Chen, Vasanthakumar Rajappan, Patrick Fagan, Jennifer L Brooks, Tiffany Hurd, Janet M Leeds, Vivek K Rajwanshi, Yi Jin, Marija Prhavc, Thomas W Bruice, P Dan Cook. Synthesis of AZT 5'-triphosphate mimics and their inhibitory effects on HIV-1 reverse transcriptase. Journal of medicinal chemistry. 2004 Dec; 47(27):6902-13. doi: 10.1021/jm040116w. [PMID: 15615539]
  • Chun Hung Ma, Joannie Hui, Janet Tsui Ying Tang, Danny Tze Ming Leung, Yiu Loon Chui, Tai Fai Fok, Pak-Leong Lim. Antibodies to guanosine triphosphate misidentified as anti-double-stranded DNA antibodies in a patient with antinuclear antibody-negative lupus, due to buckling of insolubilized assay DNA. Arthritis and rheumatism. 2004 May; 50(5):1533-8. doi: 10.1002/art.20188. [PMID: 15146423]
  • N Suzuki, Y Nakano. The production of 6-deoxy-L-talan from Actinobacillus actinomycetemcomitans via bacterial coupling in vitro. Oral microbiology and immunology. 2003 Dec; 18(6):401-4. doi: 10.1046/j.0902-0055.2003.00088.x. [PMID: 14622348]
  • Dimitrios Spentzos, Christos Mantzoros, Meredith M Regan, Mary Ellen Morrissey, Stephen Duggan, Stacy Flickner-Garvey, Heather McCormick, William DeWolf, Steve Balk, Glenn J Bubley. Minimal effect of a low-fat/high soy diet for asymptomatic, hormonally naive prostate cancer patients. Clinical cancer research : an official journal of the American Association for Cancer Research. 2003 Aug; 9(9):3282-7. doi: NULL. [PMID: 12960113]
  • Anne-Hélène Quélo, John A Bryant, Jean-Pierre Verbelen. Endoreduplication is not inhibited but induced by aphidicolin in cultured cells of tobacco. Journal of experimental botany. 2002 Apr; 53(369):669-75. doi: 10.1093/jexbot/53.369.669. [PMID: 11886886]
  • Chikako Murakami, Masaharu Takemura, Yuichi Sugiyama, Shinji Kamisuki, Hitomi Asahara, Miho Kawasaki, Tomomi Ishidoh, Stuart Linn, Shonen Yoshida, Fumio Sugawara, Hiromi Yoshida, Kengo Sakaguchi, Yoshiyuki Mizushina. Vitamin A-related compounds, all-trans retinal and retinoic acids, selectively inhibit activities of mammalian replicative DNA polymerases. Biochimica et biophysica acta. 2002 Feb; 1574(1):85-92. doi: 10.1016/s0167-4781(01)00348-7. [PMID: 11955616]
  • A Ziemienowicz, B Tinland, J Bryant, V Gloeckler, B Hohn. Plant enzymes but not Agrobacterium VirD2 mediate T-DNA ligation in vitro. Molecular and cellular biology. 2000 Sep; 20(17):6317-22. doi: 10.1128/mcb.20.17.6317-6322.2000. [PMID: 10938108]
  • D Kumari, K Usdin. Sequencing errors in reactions using labeled terminators. BioTechniques. 1999 Oct; 27(4):648-50. doi: 10.2144/99274bm02. [PMID: 10524297]
  • D Langley, B Pearce. Pyrimidine nucleotide-stimulated thromboxane A2 release from cultured glia. Cellular and molecular neurobiology. 1998 Oct; 18(5):477-86. doi: 10.1023/a:1026323208437. [PMID: 9777248]
  • R A Jacob, D M Gretz, P C Taylor, S J James, I P Pogribny, B J Miller, S M Henning, M E Swendseid. Moderate folate depletion increases plasma homocysteine and decreases lymphocyte DNA methylation in postmenopausal women. The Journal of nutrition. 1998 Jul; 128(7):1204-12. doi: 10.1093/jn/128.7.1204. [PMID: 9649607]
  • E Eber, T Uhlig, C McMenamin, P D Sly. Leflunomide, a novel immunomodulating agent, prevents the development of allergic sensitization in an animal model of allergic asthma. Clinical and experimental allergy : journal of the British Society for Allergy and Clinical Immunology. 1998 Mar; 28(3):376-84. doi: 10.1046/j.1365-2222.1998.00240.x. [PMID: 9543089]
  • U R Mauerer, E L Boulpaep, A S Segal. Properties of an inwardly rectifying ATP-sensitive K+ channel in the basolateral membrane of renal proximal tubule. The Journal of general physiology. 1998 Jan; 111(1):139-60. doi: 10.1085/jgp.111.1.139. [PMID: 9417141]
  • A A Arzumanov, D G Semizarov, L S Victorova, N B Dyatkina, A A Krayevsky. Gamma-phosphate-substituted 2'-deoxynucleoside 5'-triphosphates as substrates for DNA polymerases. The Journal of biological chemistry. 1996 Oct; 271(40):24389-94. doi: 10.1074/jbc.271.40.24389. [PMID: 8798694]
  • C H Halsted, J Villanueva, C J Chandler, S P Stabler, R H Allen, L Muskhelishvili, S J James, L Poirier. Ethanol feeding of micropigs alters methionine metabolism and increases hepatocellular apoptosis and proliferation. Hepatology (Baltimore, Md.). 1996 Mar; 23(3):497-505. doi: 10.1002/hep.510230314. [PMID: 8617429]
  • P Fort, S Vincent. Serum induction of RhoG expression. Methods in enzymology. 1995; 256(?):151-62. doi: 10.1016/0076-6879(95)56020-3. [PMID: 7476429]
  • A L Devico, R Rahman, M G Sarngadharan, F D Veronese. Mechanism of enzyme inhibition mediated by anti-reverse transcriptase antibodies from HIV type 1-infected individuals. AIDS research and human retroviruses. 1994 Aug; 10(8):953-60. doi: 10.1089/aid.1994.10.953. [PMID: 7529034]
  • T Yasumasu, T Ueda, J Uozumi, Y Mihara, Y Koikawa, J Kumazawa. Ultrastructural alterations and DNA synthesis of renal cell nuclei following cisplatin or carboplatin injection in rats. The Journal of pharmacy and pharmacology. 1992 Nov; 44(11):885-7. doi: 10.1111/j.2042-7158.1992.tb03229.x. [PMID: 1361530]
  • L Berk, S W Schalm, R A Heijtink. Zidovudine inhibits hepatitis B virus replication. Antiviral research. 1992 Aug; 19(2):111-8. doi: 10.1016/0166-3542(92)90070-l. [PMID: 1444323]
  • Y Sugimoto, Y Ohe, K Nishio, T Ohmori, T Morikage, Y Fujiwara, N Saijo. Mechanisms of collateral sensitivity to fluorouracil of a cis-diamminedichloroplatinum(II)-resistant human non-small lung cancer cell line. British journal of cancer. 1992 Jun; 65(6):857-64. doi: 10.1038/bjc.1992.181. [PMID: 1319727]
  • B C Schultes, E Fischbach, N Dahlmann. Purification and characterization of two different thymidine-5'-triphosphosphate-hydrolysing enzymes in human serum. Biological chemistry Hoppe-Seyler. 1992 May; 373(5):237-47. doi: 10.1515/bchm3.1992.373.1.237. [PMID: 1320895]
  • S Miscia, A Cataldi, P M Grimley. Early modifications of nucleic acid metabolism and nuclear lipid biosynthesis associated with antiproliferative activity of interferon-alpha on Daudi lymphoma cells. Experimental cell research. 1990 Apr; 187(2):197-202. doi: 10.1016/0014-4827(90)90082-l. [PMID: 2318263]
  • M Neumüller, A R Karlström, C F Källander, J S Gronowitz. Improved assays for DNA-polymerizing enzymes by the use of enzymatically synthesized 5-[125I]iodo-2'-deoxyuridine triphosphate, illustrated by direct quantitation of anti-HIV reverse transcriptase antibody and by serum DNA polymerase analyses. Biotechnology and applied biochemistry. 1990 Feb; 12(1):34-56. doi: . [PMID: 1690011]
  • P Leprince, B Rogister, G Moonen. A colorimetric assay for the simultaneous measurement of plasminogen activators and plasminogen activator inhibitors in serum-free conditioned media from cultured cells. Analytical biochemistry. 1989 Mar; 177(2):341-6. doi: 10.1016/0003-2697(89)90063-8. [PMID: 2499217]
  • T J Van Mouwerik, C A Pangallo, J K Willson, P H Fischer. Augmentation of methotrexate cytotoxicity in human colon cancer cells achieved through inhibition of thymidine salvage by dipyridamole. Biochemical pharmacology. 1987 Mar; 36(6):809-14. doi: 10.1016/0006-2952(87)90168-7. [PMID: 3566784]
  • L M Nutter, S P Grill, Y C Cheng. The sources of thymidine nucleotides for virus DNA synthesis in herpes simplex virus type 2-infected cells. The Journal of biological chemistry. 1985 Oct; 260(24):13272-5. doi: 10.1016/s0021-9258(17)38865-8. [PMID: 2997161]
  • J L Grem, P H Fischer. Augmentation of 5-fluorouracil cytotoxicity in human colon cancer cells by dipyridamole. Cancer research. 1985 Jul; 45(7):2967-72. doi: NULL. [PMID: 4005834]
  • L L Danhauser, Y M Rustum. Potential for selective enhancement of the in vivo metabolism of 1-beta-D-arabinofuranosylcytosine in rats by thymidine pretreatment. Cancer research. 1985 May; 45(5):2002-7. doi: . [PMID: 3986756]
  • N Hasegawa, F Hanaoka, M Yamada. Increased unscheduled DNA synthesis in aged human diploid fibroblasts. Mechanisms of ageing and development. 1984 Jun; 25(3):297-305. doi: 10.1016/0047-6374(84)90003-4. [PMID: 6738123]
  • R D Snyder. Deoxyribonucleoside triphosphate pools in human diploid fibroblasts and their modulation by hydroxyurea and deoxynucleosides. Biochemical pharmacology. 1984 May; 33(9):1515-8. doi: 10.1016/0006-2952(84)90421-0. [PMID: 6732868]
  • N E Olashaw, E D Kress, V J Cristofalo. Thymidine triphosphate synthesis in senescent WI38 cells. Relationship to loss of replicative capacity. Experimental cell research. 1983 Dec; 149(2):547-54. doi: 10.1016/0014-4827(83)90365-8. [PMID: 6641815]
  • N Dahlmann. Human serum thymidine triphosphate nucleotidohydrolase: purification and properties of a new enzyme. Biochemistry. 1982 Dec; 21(26):6634-9. doi: 10.1021/bi00269a004. [PMID: 6297538]
  • M Balinska, W A Samsonoff, J Galivan. Reversibly permeable hepatoma cells in culture. Biochimica et biophysica acta. 1982 Nov; 721(3):253-61. doi: 10.1016/0167-4889(82)90077-5. [PMID: 7171628]
  • T K Shires. Iron-induced DNA damage and synthesis in isolated rat liver nuclei. The Biochemical journal. 1982 Aug; 205(2):321-9. doi: 10.1042/bj2050321. [PMID: 7138506]
  • C F Källander, J S Gronowitz, E G Torfason. Human serum antibodies to varicella-zoster virus thymidine kinase. Infection and immunity. 1982 Apr; 36(1):30-7. doi: 10.1128/iai.36.1.30-37.1982. [PMID: 6176544]
  • H N Baybutt, B A Murray, C K Pearson. Aspects of thymidine metabolism and function in cultured mammalian cells infected with herpes simplex virus type 1. The Journal of general virology. 1982 Apr; 59(Pt 2):223-34. doi: 10.1099/0022-1317-59-2-223. [PMID: 6281368]
  • C T Fang, N Nath, M Pielech, R Y Dodd. A modified technique for the detection of hepatitis B virus-specific DNA polymerase. Journal of virological methods. 1981 Jun; 2(6):349-56. doi: 10.1016/0166-0934(81)90058-6. [PMID: 7021573]
  • G F Kalf. Adventitious binding of 3H-labeled nucleotides to protein during polymerase assays. Journal of biochemical and biophysical methods. 1981 Jun; 4(5-6):247-54. doi: 10.1016/0165-022x(81)90064-6. [PMID: 7252040]
  • J G Lindsay, G P Reid, M P D'Souza. Lectins as biochemical agents for the isolation of sealed membrane vesicles of defined polarity. Biochimica et biophysica acta. 1981 Feb; 640(3):791-801. doi: 10.1016/0005-2736(81)90109-7. [PMID: 7213705]
  • M Y Chou, H Matsumoto, H Fukata, H Fukasawa. Template-specific inhibitor for DNA polymerase isolated from cauliflower inflorescence. Biochimica et biophysica acta. 1981 Jan; 652(1):48-54. doi: 10.1016/0005-2787(81)90207-0. [PMID: 7213735]
  • W Feller, G Schimpff-Weiland, H Follmann. Deoxyribonucleotide biosynthesis in synchronous algae cells. European journal of biochemistry. 1980 Sep; 110(1):85-92. doi: 10.1111/j.1432-1033.1980.tb04843.x. [PMID: 6449366]
  • A Hampton, F Kappler, R R Chawla. Design of species- or isozyme-specific enzyme inhibitors. 1. Effect of thymidine substituents on affinity for the thymidine site of hamster cytoplasmic thymidine kinase. Journal of medicinal chemistry. 1979 Jun; 22(6):621-31. doi: 10.1021/jm00192a005. [PMID: 458818]
  • I M Nilsson, S E Bergentz, U Hedner, K Kullenberg. Gastric fibrinolysis. Thrombosis et diathesis haemorrhagica. 1975 Nov; 34(2):409-18. doi: 10.1055/s-0038-1651400. [PMID: 807]