Classification Term: 2332

Monoalkyl phosphates (ontology term: CHEMONTID:0003458)

Organic compounds containing a phosphate group that is linked to exactly one alkyl chain." []

found 28 associated metabolites at family metabolite taxonomy ontology rank level.

Ancestor: Alkyl phosphates

Child Taxonomies: There is no child term of current ontology term.

Shikimic acid 3-phosphate

(3R,4S,5R)-4,5-dihydroxy-3-(phosphonooxy)cyclohex-1-ene-1-carboxylic acid

C7H11O8P (254.0192)


Shikimic acid 3-phosphate is a member of the class of compounds known as monoalkyl phosphates. Monoalkyl phosphates are organic compounds containing a phosphate group that is linked to exactly one alkyl chain. Shikimic acid 3-phosphate is soluble (in water) and a moderately acidic compound (based on its pKa). Shikimic acid 3-phosphate can be found in a number of food items such as date, hard wheat, common sage, and peppermint, which makes shikimic acid 3-phosphate a potential biomarker for the consumption of these food products. Shikimic acid 3-phosphate exists in E.coli (prokaryote) and yeast (eukaryote).

   

beta-L-Arabinose 1-phosphate

Beta-L-arabinose 1-phosphate

C5H11O8P (230.0192)


KEIO_ID X008

   

Phosphoglycolic acid

Glycolic acid dihydrogen phosphate

C2H5O6P (155.9824)


Phosphoglycolic acid, also known as 2-phosphoglycolate or (phosphonooxy)-acetate, is a member of the class of compounds known as monoalkyl phosphates. Monoalkyl phosphates are organic compounds containing a phosphate group that is linked to exactly one alkyl chain. Phosphoglycolic acid is soluble (in water) and a moderately acidic compound (based on its pKa). Phosphoglycolic acid can be found in a number of food items such as arrowhead, rocket salad (sspecies), roselle, and natal plum, which makes phosphoglycolic acid a potential biomarker for the consumption of these food products. Phosphoglycolic acid can be found primarily throughout most human tissues. Phosphoglycolic acid exists in all living species, ranging from bacteria to humans. Phosphoglycolic acid is a substrate for triose-phosphate isomerase. This compound belongs to the family of Organophosphate Esters. These are organic compounds containing phosphoric acid ester functional group.

   

Mevalonic acid-5P

(3R)-3-Hydroxy-3-methyl-5-(phosphonooxy)pentanoic acid

C6H13O7P (228.0399)


Mevalonic acid-5p, also known as (R)-5-phosphomevalonate or mevalonate-5p, is a member of the class of compounds known as monoalkyl phosphates. Monoalkyl phosphates are organic compounds containing a phosphate group that is linked to exactly one alkyl chain. Thus, mevalonic acid-5p is considered to be a fatty acid lipid molecule. Mevalonic acid-5p is soluble (in water) and a moderately acidic compound (based on its pKa). Mevalonic acid-5p can be found in a number of food items such as rowanberry, common oregano, caraway, and cherry tomato, which makes mevalonic acid-5p a potential biomarker for the consumption of these food products. Mevalonic acid-5p can be found primarily throughout most human tissues. Mevalonic acid-5p exists in all eukaryotes, ranging from yeast to humans. In humans, mevalonic acid-5p is involved in several metabolic pathways, some of which include pamidronate action pathway, rosuvastatin action pathway, pravastatin action pathway, and lovastatin action pathway. Mevalonic acid-5p is also involved in several metabolic disorders, some of which include hypercholesterolemia, lysosomal acid lipase deficiency (wolman disease), hyper-igd syndrome, and mevalonic aciduria. Mevalonic acid-5P (CAS: 1189-94-2), also known as 5-phosphomevalonic acid, belongs to the class of organic compounds known as monoalkyl phosphates. These are organic compounds containing a phosphate group that is linked to exactly one alkyl chain. Within humans, mevalonic acid-5P participates in many enzymatic reactions. In particular, mevalonic acid-5P can be biosynthesized from mevalonate; which is mediated by the enzyme mevalonate kinase. In addition, mevalonic acid-5P can be converted into mevalonic acid-5-pyrophosphate through its interaction with the enzyme phosphomevalonate kinase. In humans, mevalonic acid-5P is involved in the mevalonate pathway. Outside of the human body, mevalonic acid-5P has been detected, but not quantified in, several different foods, such as oriental wheat, devilfish, pepper (spice), redcurrants, and star fruits. This could make mevalonic acid-5P a potential biomarker for the consumption of these foods.

   

Imidazole acetol-phosphate

3-(1H-Imidazol-4-yl)-2-oxopropyl dihydrogen phosphate

C6H9N2O5P (220.0249)


Imidazole acetol-phosphate is involved in the histidine biosynthesis I pathway. Imidazole acetol-phosphate is created by the breakdown of D-erythro-imidazole-glycerol-phosphate into imidazole acetol-phosphate and H2O. Imidazoleglycerol-phosphate dehydratase catalyzes this reaction. Imidazole acetol-phosphate reacts with L-glutamate to produce L-histidinol-phosphate and 2-ketoglutarate. Histidinol-phosphate aminotransferase catalyzes this reaction. Imidazole acetol-phosphate is involved in the histidine biosynthesis I pathway. Imidazole acetol-phosphate is created by the breakdown of D-erythro-imidazole-glycerol-phosphate into imidazole acetol-phosphate and H2O. Imidazoleglycerol-phosphate dehydratase catalyzes this reaction.

   

D-Erythro-imidazole-glycerol-phosphate

[(2R,3S)-2,3-dihydroxy-3-(1H-imidazol-4-yl)propoxy]phosphonic acid

C6H11N2O6P (238.0355)


D-Erythro-imidazole-glycerol-phosphate belongs to the class of organic compounds known as monoalkyl phosphates. These are organic compounds containing a phosphate group that is linked to exactly one alkyl chain. D-Erythro-imidazole-glycerol-phosphate is a very strong basic compound (based on its pKa). Outside of the human body, D-erythro-imidazole-glycerol-phosphate has been detected, but not quantified in, several different foods, such as mammee apples, scarlet beans, grass pea, olives, and bog bilberries. This could make D-erythro-imidazole-glycerol-phosphate a potential biomarker for the consumption of these foods. D-Erythro-imidazole-glycerol-phosphate is an intermediate in histidine metabolism. It is a substrate for imidazoleglycerol-phosphate dehydratase (hisB) and can be generated from phosphoribulosylformimino-AICAR-P. D-Erythro-imidazole-glycerol-phosphate is an intermediate in Histidine metabolism. It is a substrate for imidazoleglycerol-phosphate dehydratase (hisB) and can be generated from Phosphoribulosyl-formimino-AICAR-phosphate then it is converted to Imidazole-acetol phosphate. [HMDB]. D-Erythro-imidazole-glycerol-phosphate is found in many foods, some of which are buffalo currant, fruits, hyacinth bean, and small-leaf linden.

   

triclofos

2,2,2-Trichloroethyl dihydrogen phosphate, sodium salt

C2H4Cl3O4P (227.8913)


N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic

   

2-C-methyl-D-erythritol-4-phosphate

[(2R,3S)-2,3,4-trihydroxy-3-methylbutoxy]phosphonic acid

C5H13O7P (216.0399)


2-c-methyl-d-erythritol-4-phosphate is a member of the class of compounds known as monoalkyl phosphates. Monoalkyl phosphates are organic compounds containing a phosphate group that is linked to exactly one alkyl chain. 2-c-methyl-d-erythritol-4-phosphate is soluble (in water) and a moderately acidic compound (based on its pKa). 2-c-methyl-d-erythritol-4-phosphate can be found in a number of food items such as tea, narrowleaf cattail, chickpea, and rocket salad (sspecies), which makes 2-c-methyl-d-erythritol-4-phosphate a potential biomarker for the consumption of these food products.

   

Iminoerythrose 4-phosphate

[(2R,3S)-2,3-dihydroxy-4-iminobutoxy]phosphonic acid

C4H10NO6P (199.0246)


This compound belongs to the family of Organophosphate Esters. These are organic compounds containing phosphoric acid ester functional group.

   

1-deoxy-L-glycero-tetrulose 4-phosphate

1-Deoxy-L-glycero-tetrulose 4-phosphoric acid

C4H9O6P (184.0137)


1-deoxy-l-glycero-tetrulose 4-phosphate, also known as 3,4-dihydroxy-2-butanone 4-phosphate or 2-hydroxy-3-oxobutyl phosphate, is a member of the class of compounds known as monoalkyl phosphates. Monoalkyl phosphates are organic compounds containing a phosphate group that is linked to exactly one alkyl chain. 1-deoxy-l-glycero-tetrulose 4-phosphate is soluble (in water) and a moderately acidic compound (based on its pKa). 1-deoxy-l-glycero-tetrulose 4-phosphate can be found in a number of food items such as chinese chives, carob, fruits, and cherimoya, which makes 1-deoxy-l-glycero-tetrulose 4-phosphate a potential biomarker for the consumption of these food products. 1-deoxy-l-glycero-tetrulose 4-phosphate exists in E.coli (prokaryote) and yeast (eukaryote).

   

5-(Methylthio)-2,3-dioxopentyl phosphate

{[5-(methylsulfanyl)-2,3-dioxopentyl]oxy}phosphonic acid

C6H11O6PS (242.0014)


5-(Methylthio)-2,3-dioxopentyl phosphate, also known as 1-phospho-2,3-diketo-5-S-methylthiopentane or 2,3-diketo-5-methylthiopentyl-1-phosphate (DK-MTP-1-P), belongs to the class of organic compounds known as monoalkyl phosphates. These are organic compounds containing a phosphate group that is linked to exactly one alkyl chain. 5-(Methylthio)-2,3-dioxopentyl phosphate is slightly soluble (in water) and a moderately acidic compound (based on its pKa). 5-(Methylthio)-2,3-dioxopentyl phosphate exists in all eukaryotes, ranging from yeast to humans. 5-(Methylthio)-2,3-dioxopentyl phosphate is a metabolite involved in the cysteine and methionine metabolism pathway. It is a substrate for both E1 enolase-phosphatase and methylthioribulose-1-phosphate dehydratase. Outside of the human body, 5-(methylthio)-2,3-dioxopentyl phosphate can be found in a number of food items such as lime, pineapple, spearmint, and yautia. This makes 5-(methylthio)-2,3-dioxopentyl phosphate a potential biomarker for the consumption of these food products. 5-(methylthio)-2,3-dioxopentyl phosphate, also known as 1-phospho-2,3-diketo-5-S-methylthiopentane or 2,3-diketo-5-methylthio-1-phosphopentane, is a member of the class of compounds known as monoalkyl phosphates. Monoalkyl phosphates are organic compounds containing a phosphate group that is linked to exactly one alkyl chain. 5-(methylthio)-2,3-dioxopentyl phosphate is slightly soluble (in water) and a moderately acidic compound (based on its pKa). 5-(methylthio)-2,3-dioxopentyl phosphate can be found in a number of food items such as narrowleaf cattail, kumquat, ginseng, and gooseberry, which makes 5-(methylthio)-2,3-dioxopentyl phosphate a potential biomarker for the consumption of these food products. 5-(methylthio)-2,3-dioxopentyl phosphate exists in all eukaryotes, ranging from yeast to humans.

   

Ethylphosphate

Monoethyl phosphate, dipotassium salt

C2H7O4P (126.0082)


Ethylphosphate is produced by the reaction between diethylphosphate and water, with ethanol as a byproduct. [HMDB] Ethylphosphate is produced by the reaction between diethylphosphate and water, with ethanol as a byproduct.

   

Methylphosphate

Monomethyl dihydrogen phosphoric acid

CH5O4P (111.9925)


Methylphosphate, also known as monomethyl phosphate or MMP, belongs to the class of organic compounds known as monoalkyl phosphates. These are organic compounds containing a phosphate group that is linked to exactly one alkyl chain. Methylphosphate is a moderately acidic compound (based on its pKa). Methylphosphate is a methyl ester of phosphoric acid. It is a colourless, nonvolatile liquid, and it has some specialized uses in the production of other compounds.

   

sorbitol 3-phosphate

{[(2S,3R,4R,5R)-1,2,4,5,6-pentahydroxyhexan-3-yl]oxy}phosphonic acid

C6H15O9P (262.0454)


sorbitol 3-phosphate, also known as 3-O-phosphono-D-Glucitol, is classified as a member of the Monoalkyl phosphates. Monoalkyl phosphates are organic compounds containing a phosphate group that is linked to exactly one alkyl chain. sorbitol 3-phosphate is considered to be soluble (in water) and acidic

   

(1-Hydroxy-3-oxopropan-2-yl) dihydrogen phosphate

(1-Hydroxy-3-oxopropan-2-yl) dihydrogen phosphoric acid

C3H7O6P (169.998)


   

(2R,3R,4S,5R)-5-Fluoro-2,3,4-trihydroxy-6-oxohexyl dihydrogen phosphate

(2R,3R,4S,5R)-5-Fluoro-2,3,4-trihydroxy-6-oxohexyl dihydrogen phosphoric acid

C6H12FO8P (262.0254)


   

beta-D-Fructopyranose 1-phosphate

[(2,3,4,5-tetrahydroxyoxan-2-yl)methoxy]phosphonic acid

C6H13O9P (260.0297)


   

2-Deoxy-D-arabino-hexose 6-(dihydrogen phosphate)

2-Deoxy-D-arabino-hexose 6-(dihydrogen phosphoric acid)

C6H13O8P (244.0348)


   

10-(Phosphonooxy)decyl methacrylate

({10-[(2-methylprop-2-enoyl)oxy]decyl}oxy)phosphonic acid

C14H27O6P (322.1545)


   

[(5R)-5-[(1S)-1,2-Dihydroxyethyl]-2,4-dioxooxolan-3-yl] dihydrogen phosphate

[(5R)-5-[(1S)-1,2-Dihydroxyethyl]-2,4-dioxooxolan-3-yl] dihydrogen phosphoric acid

C6H9O9P (255.9984)


   

Aminoethanol phosphate

(1-aminoethoxy)phosphonic acid

C2H8NO4P (141.0191)


   

Methylene diphosphate

[(phosphonooxy)methoxy]phosphonic acid

CH6O8P2 (207.9538)


   

Phosphomevalonic acid

3-Hydroxy-3-methyl-5-(phosphonooxy)pentanoic acid

C6H13O7P (228.0399)


   

Phosphoric acid hydroxymethyl ester

Phosphoric acid hydroxymethyl ester

CH5O5P (127.9875)


   

Tetraisopropylpyrophosphoric acid amide

({[bis(propan-2-yl)amino](propan-2-yloxy)phosphoryl}oxy)(propan-2-yloxy)phosphinic acid

C12H29NO6P2 (345.147)


   

Cyanomethyl dihydrogen phosphate

Cyanomethyl dihydrogen phosphoric acid

C2H4NO4P (136.9878)


   

Shikimate-3-phosphate

4,5-dihydroxy-3-(phosphonooxy)cyclohex-1-ene-1-carboxylic acid

C7H11O8P (254.0192)


   

[(2R)-2-[(1S)-1,2-Dihydroxyethyl]-4,5-dioxooxolan-3-yl] dihydrogen phosphate

[(2R)-2-[(1S)-1,2-Dihydroxyethyl]-4,5-dioxooxolan-3-yl] dihydrogen phosphoric acid

C6H9O9P (255.9984)