(2-Aminoethyl)phosphonic acid (BioDeep_00000408206)
Main id: BioDeep_00000002852
PANOMIX_OTCML-2023 natural product BioNovoGene_Lab2019 Volatile Flavor Compounds
代谢物信息卡片
化学式: C2H8NO3P (125.0241788)
中文名称: 2-氨基乙基膦酸
谱图信息:
最多检出来源 () 0%
分子结构信息
SMILES: C(CP(=O)(O)O)N
InChI: InChI=1S/C2H8NO3P/c3-1-2-7(4,5)6/h1-3H2,(H2,4,5,6)
描述信息
A phosphonic acid in which the hydrogen attached to the phosphorus of phosphonic acid is substituted by a 2-aminoethyl group.
(2-Aminoethyl)phosphonic acid is an endogenous metabolite.
同义名列表
数据库引用编号
17 个数据库交叉引用编号
- ChEBI: CHEBI:15573
- KEGG: C03557
- KEGG: C73847
- PubChem: 339
- ChEMBL: CHEMBL1321977
- MeSH: Aminoethylphosphonic Acid
- CAS: 2041-14-7
- MoNA: MoNA001685
- MetaboLights: MTBLC15573
- PubChem: 6353
- PDB-CCD: P7I
- 3DMET: B00598
- NIKKAJI: J13.761H
- medchemexpress: HY-W006371
- LOTUS: LTS0013798
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-116
- KNApSAcK: 15573
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
0 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
29 个相关的物种来源信息
- 6656 - Arthropoda: LTS0013798
- 2 - Bacteria: LTS0013798
- 7711 - Chordata: LTS0013798
- 5878 - Ciliophora: LTS0013798
- 2759 - Eukaryota: LTS0013798
- 6818 - Euphausia: LTS0013798
- 6819 - Euphausia superba: 10.1271/BBB1961.43.651
- 6819 - Euphausia superba: LTS0013798
- 6817 - Euphausiidae: LTS0013798
- 9604 - Hominidae: LTS0013798
- 9605 - Homo: LTS0013798
- 9606 - Homo sapiens: 10.1038/NBT.2488
- 9606 - Homo sapiens: LTS0013798
- 6681 - Malacostraca: LTS0013798
- 40674 - Mammalia: LTS0013798
- 33208 - Metazoa: LTS0013798
- 10066 - Muridae: LTS0013798
- 10088 - Mus: LTS0013798
- 10090 - Mus musculus: LTS0013798
- 10090 - Mus musculus: NA
- 6020 - Oligohymenophorea: LTS0013798
- 1883 - Streptomyces: LTS0013798
- 68263 - Streptomyces regensis: 10.1021/NP400722M
- 68263 - Streptomyces regensis: LTS0013798
- 2062 - Streptomycetaceae: LTS0013798
- 5890 - Tetrahymena: LTS0013798
- 5908 - Tetrahymena pyriformis: 10.1080/00021369.1962.10858037
- 5908 - Tetrahymena pyriformis: LTS0013798
- 291294 - Tetrahymenidae: LTS0013798
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Andrew R J Murphy, David J Scanlan, Yin Chen, Nathan B P Adams, William A Cadman, Andrew Bottrill, Gary Bending, John P Hammond, Andrew Hitchcock, Elizabeth M H Wellington, Ian D E A Lidbury. Transporter characterisation reveals aminoethylphosphonate mineralisation as a key step in the marine phosphorus redox cycle.
Nature communications.
2021 07; 12(1):4554. doi:
10.1038/s41467-021-24646-z
. [PMID: 34315891] - Nami Tomonaga, Yuki Manabe, Kazuhiko Aida, Tatsuya Sugawara. Dietary ceramide 2-aminoethylphosphonate, a marine sphingophosphonolipid, improves skin barrier function in hairless mice.
Scientific reports.
2020 08; 10(1):13891. doi:
10.1038/s41598-020-70888-0
. [PMID: 32807849] - He Li, Yu Song, Hongwei Zhang, Xuesong Wang, Peixu Cong, Jie Xu, Changhu Xue. Comparative lipid profile of four edible shellfishes by UPLC-Triple TOF-MS/MS.
Food chemistry.
2020 Apr; 310(?):125947. doi:
10.1016/j.foodchem.2019.125947
. [PMID: 31841939] - Nami Tomonaga, Tsuyoshi Tsuduki, Yuki Manabe, Tatsuya Sugawara. Sphingoid bases of dietary ceramide 2-aminoethylphosphonate, a marine sphingolipid, absorb into lymph in rats.
Journal of lipid research.
2019 02; 60(2):333-340. doi:
10.1194/jlr.m085654
. [PMID: 30552287] - Si Zhu, Mengwei Ye, Jilin Xu, Chunyang Guo, Huakun Zheng, Jiabao Hu, Juanjuan Chen, Yajun Wang, Shanliang Xu, Xiaojun Yan. Lipid Profile in Different Parts of Edible Jellyfish Rhopilema esculentum.
Journal of agricultural and food chemistry.
2015 Sep; 63(37):8283-91. doi:
10.1021/acs.jafc.5b03145
. [PMID: 26322863] - Ryan D Ross, Ryan K Roeder. Binding affinity of surface functionalized gold nanoparticles to hydroxyapatite.
Journal of biomedical materials research. Part A.
2011 Oct; 99(1):58-66. doi:
10.1002/jbm.a.33165
. [PMID: 21793197] - Fabienne Le Grand, Edouard Kraffe, Yanic Marty, Ludovic Donaghy, Philippe Soudant. Membrane phospholipid composition of hemocytes in the Pacific oyster Crassostrea gigas and the Manila clam Ruditapes philippinarum.
Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.
2011 Aug; 159(4):383-91. doi:
10.1016/j.cbpa.2011.04.006
. [PMID: 21527350] - Natalia V Zhukova. Lipid classes and fatty acid composition of the tropical nudibranch mollusks Chromodoris sp. and Phyllidia coelestis.
Lipids.
2007 Dec; 42(12):1169-75. doi:
10.1007/s11745-007-3123-8
. [PMID: 17960444] - Thomas Danhorn, Morten Hentzer, Michael Givskov, Matthew R Parsek, Clay Fuqua. Phosphorus limitation enhances biofilm formation of the plant pathogen Agrobacterium tumefaciens through the PhoR-PhoB regulatory system.
Journal of bacteriology.
2004 Jul; 186(14):4492-501. doi:
10.1128/jb.186.14.4492-4501.2004
. [PMID: 15231781] - M Colombatti, F Dosio. Synthesis of monensin derivatives and their effect on the activity of ricin A-chain immunotoxins.
Methods in molecular biology (Clifton, N.J.).
2001; 166(?):55-70. doi:
10.1385/1-59259-114-0:55
. [PMID: 11217376] - J C Carreira, C Jones, R Wait, J O Previato, L Mendonça-Previato. Structural variation in the glycoinositolphospholipids of different strains of Trypanosoma cruzi.
Glycoconjugate journal.
1996 Dec; 13(6):955-66. doi:
10.1007/bf01053191
. [PMID: 8981087] - C H Patterson, J D Smith. Differential modification of activities of the high-affinity and low-affinity insulin receptors of 3T3-L1 fibroblasts by phosphonolipids in vivo.
Biochemical and biophysical research communications.
1996 Nov; 228(1):75-80. doi:
10.1006/bbrc.1996.1618
. [PMID: 8912638] - F P Castronovo, S Kopiwoda, M Peterson. 2-aminoethylphosphonic acid: biodistribution of a naturally occurring phosphonate after labelling with technetium-99m.
Nuclear medicine communications.
1996 Oct; 17(10):902-6. doi:
. [PMID: 8951913]
- R Fathi, Q Huang, G Coppola, W Delaney, R Teasdale, A M Krieg, A F Cook. Oligonucleotides with novel, cationic backbone substituents: aminoethylphosphonates.
Nucleic acids research.
1994 Dec; 22(24):5416-24. doi:
10.1093/nar/22.24.5416
. [PMID: 7816633] - S A Tan, L G Tan. Distribution of ciliatine (2-aminoethylphosphonic acid) and phosphonoalanine (2-amino-3-phosphonopropionic acid) in human tissues.
Clinical physiology and biochemistry.
1989; 7(6):303-9. doi:
. [PMID: 2627760]
- O A Malashina, N A Korovina. [Comparative characteristics of the excretion of the nitrogenous components of phospholipids in diseases of the kidneys with secondary oxaluria in children].
Urologiia i nefrologiia.
1987 Jan; ?(1):22-6. doi:
NULL
. [PMID: 3105148] - L W Stillway, S J Harmon. A procedure for detecting phosphonolipids on thin-layer chromatograms.
Journal of lipid research.
1980 Nov; 21(8):1141-3. doi:
10.1016/s0022-2275(20)34778-7
. [PMID: 6161978] - A Horigane, M Horiguchi, T Matsumoto. Metabolism of 2-amino-3-phosphonopropionic acid in rats.
Biochimica et biophysica acta.
1979 Mar; 572(3):385-94. doi:
10.1016/0005-2760(79)90145-0
. [PMID: 435501] - J C Hurley, T A Bunde, J C Dell, D S Kirkpatrick, S H Bishop. Phosphonoglycoprotein from Metridium senile--heterogeneity of glycoproteins containing aminoethylphosphonic acid.
Comparative biochemistry and physiology. B, Comparative biochemistry.
1977; 58(3):253-9. doi:
10.1016/0305-0491(77)90199-7
. [PMID: 45526] - J C Joseph, T O Henderson. 2-Aminoethylphosphonic acid metabolism in the rat.
Lipids.
1977 Jan; 12(1):75-84. doi:
10.1007/bf02532976
. [PMID: 834125] - S Hasegawa, M Tamari, M Kametaka. Isolation of diacylglyceryl-2-aminoethylphosphonate from bovine liver.
Journal of biochemistry.
1976 Sep; 80(3):531-5. doi:
10.1093/oxfordjournals.jbchem.a131308
. [PMID: 988017] - A J Main, R E Shope, R C Wallis. Characterization of Whitney's Clethrionomy gapperi virus isolates from Massachusetts.
Journal of wildlife diseases.
1976 Apr; 12(2):154-64. doi:
10.7589/0090-3558-12.2.154
. [PMID: 6801] - M Tamari. [Biochemistry of C-P compounds in higher animal system, particularly, on the ciliatine-containing phosphonolipid (author's transl)].
Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.
1976 Jan; 21(1):33-42. doi:
NULL
. [PMID: 766084] - Y Nozawa, H Fukushima, H Iida. Studies on tetrahymena membranes. Modification of surface membrane lipids by replacement of tetrahymanol by exogenous ergosterol in Tetrahymena pyriformis.
Biochimica et biophysica acta.
1975 Oct; 406(2):248-63. doi:
10.1016/0005-2736(75)90008-5
. [PMID: 811256] - T Matsubara. The structure and distribution of ceramide aminoethylphosphonates in the oyster (Ostrea gigas).
Biochimica et biophysica acta.
1975 Jun; 388(3):353-60. doi:
. [PMID: 1137715]
- M Tamari, A Cassaigne, A M Lacoste, E Neuzil. In vivo incorporation of cytidine-monophosphate-ciliatine into rat liver lipids.
Biochimie.
1975; 57(1):97-103. doi:
10.1016/s0300-9084(75)80115-5
. [PMID: 1148325] - C V Viswanathan, H Rosenberg. Isolation of ceramide-monomethylaminoethylphosphonate from the lipids of Tetrahymena pyriformis W.
Journal of lipid research.
1973 May; 14(3):327-30. doi:
10.1016/s0022-2275(20)36891-7
. [PMID: 9704077]