NCBI Taxonomy: 1331807

Raulinoa (ncbi_taxid: 1331807)

found 193 associated metabolites at genus taxonomy rank level.

Ancestor: Zanthoxyloideae

Child Taxonomies: Raulinoa echinata

Linonin

11H,13H-Oxireno(d)pyrano(4,3:3,3a)isobenzofuro(5,4-f)(2)benzopyran-4,6,13(2H,5aH)-trione, 8-(3-furanyl)decahydro-2,2,4a,8a-tetramethyl-, (2aR-(2aalpha,4abeta,4bR,5aalpha,8alpha,8aalpha,10aalpha,10bR*,14aalpha))-

C26H30O8 (470.194058)


Linonin, also known as 7,16-dioxo-7,16-dideoxylimondiol or evodin, is a member of the class of compounds known as limonoids. Limonoids are highly oxygenated, modified terpenoids with a prototypical structure either containing or derived from a precursor with a 4,4,8-trimethyl-17-furanylsteroid skeleton. All naturally occurring citrus limonoids contain a furan ring attached to the D-ring, at C-17, as well as oxygen containing functional groups at C-3, C-4, C-7, C-16 and C-17. Linonin is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Linonin can be found in lemon, which makes linonin a potential biomarker for the consumption of this food product. Limonin is a limonoid, an epoxide, a hexacyclic triterpenoid, a member of furans, an organic heterohexacyclic compound and a lactone. It has a role as a metabolite, an inhibitor and a volatile oil component. Limonin is a natural product found in Citrus tankan, Flacourtia jangomas, and other organisms with data available. Limonin is a triterpenoid compound rich in citrus fruits that has antiviral and antitumor activities. Limonin is a triterpenoid compound rich in citrus fruits that has antiviral and antitumor activities.

   

beta-Sitosterol

(3S,8S,9S,10R,13R,14S,17R)-17-((2R,5R)-5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.386145)


beta-Sitosterol, a main dietary phytosterol found in plants, may have the potential for prevention and therapy for human cancer. Phytosterols are plant sterols found in foods such as oils, nuts, and vegetables. Phytosterols, in the same way as cholesterol, contain a double bond and are susceptible to oxidation, and are characterized by anti-carcinogenic and anti-atherogenic properties (PMID:13129445, 11432711). beta-Sitosterol is a phytopharmacological extract containing a mixture of phytosterols, with smaller amounts of other sterols, bonded with glucosides. These phytosterols are commonly derived from the South African star grass, Hypoxis rooperi, or from species of Pinus and Picea. The purported active constituent is termed beta-sitosterol. Additionally, the quantity of beta-sitosterol-beta-D-glucoside is often reported. Although the exact mechanism of action of beta-sitosterols is unknown, it may be related to cholesterol metabolism or anti-inflammatory effects (via interference with prostaglandin metabolism). Compared with placebo, beta-sitosterol improved urinary symptom scores and flow measures (PMID:10368239). A plant food-based diet modifies the serum beta-sitosterol concentration in hyperandrogenic postmenopausal women. This finding indicates that beta-sitosterol can be used as a biomarker of exposure in observational studies or as a compliance indicator in dietary intervention studies of cancer prevention (PMID:14652381). beta-Sitosterol induces apoptosis and activates key caspases in MDA-MB-231 human breast cancer cells (PMID:12579296). Sitosterol is a member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. It has a role as a sterol methyltransferase inhibitor, an anticholesteremic drug, an antioxidant, a plant metabolite and a mouse metabolite. It is a 3beta-sterol, a stigmastane sterol, a 3beta-hydroxy-Delta(5)-steroid, a C29-steroid and a member of phytosterols. It derives from a hydride of a stigmastane. Active fraction of Solanum trilobatum; reduces side-effects of radiation-induced toxicity. Beta-Sitosterol is a natural product found in Elodea canadensis, Ophiopogon intermedius, and other organisms with data available. beta-Sitosterol is one of several phytosterols (plant sterols) with chemical structures similar to that of cholesterol. Sitosterols are white, waxy powders with a characteristic odor. They are hydrophobic and soluble in alcohols. beta-Sitosterol is found in many foods, some of which are ginseng, globe artichoke, sesbania flower, and common oregano. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

Friedelin

3(2H)-PICENONE, EICOSAHYDRO-4,4A,6B,8A,11,11,12B,14A-OCTAMETHYL-, (4R-(4.ALPHA.,4A.ALPHA.,6A.BETA.,6B.ALPHA.,8A.ALPHA.,12A.ALPHA.,12B.BETA.,14A.ALPHA.,14B.BETA.))-

C30H50O (426.386145)


Friedelin is a pentacyclic triterpenoid that is perhydropicene which is substituted by an oxo group at position 3 and by methyl groups at the 4, 4a, 6b, 8a, 11, 11, 12b, and 14a-positions (the 4R,4aS,6aS,6bR,8aR,12aR,12bS,14aS,14bS-enantiomer). It is the major triterpenoid constituent of cork. It has a role as an anti-inflammatory drug, a non-narcotic analgesic, an antipyretic and a plant metabolite. It is a pentacyclic triterpenoid and a cyclic terpene ketone. Friedelin is a natural product found in Diospyros eriantha, Salacia chinensis, and other organisms with data available. A pentacyclic triterpenoid that is perhydropicene which is substituted by an oxo group at position 3 and by methyl groups at the 4, 4a, 6b, 8a, 11, 11, 12b, and 14a-positions (the 4R,4aS,6aS,6bR,8aR,12aR,12bS,14aS,14bS-enantiomer). It is the major triterpenoid constituent of cork. Friedelin is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Friedelin is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Friedelin can be found in a number of food items such as pomegranate, sugar apple, apple, and mammee apple, which makes friedelin a potential biomarker for the consumption of these food products. Friedelin is a triterpenoid chemical compound found in Azima tetracantha, Orostachys japonica, and Quercus stenophylla. Friedelin is also found in the roots of the Cannabis plant .

   

Kobusin

(3abeta,6abeta)-1beta-(3,4-Dimethoxyphenyl)-4beta-(1,3-benzodioxole-5-yl)tetrahydro-1H,3H-furo[3,4-c]furan

C21H22O6 (370.1416312)


Demethoxyaschantin is a member of the class of furofurans that is tetrahydro-1H,3H-furo[3,4-c]furan-1-yl]-1,3-benzodioxole carrying an additional 3,4-dimethoxyphenyl substituent at position 4. It has a role as a plant metabolite. It is a furofuran, a lignan, a dimethoxybenzene and a member of benzodioxoles. Kobusin is a natural product found in Pandanus utilis, Pandanus boninensis, and other organisms with data available. Kobusin is a bisepoxylignan isolated from the Pnonobio biondii Pamp. Kobusin is an activator of CFTR and CaCCgie chloride channels and a inhibitor of ANO1/CaCC (calcium-activated chloride channel) channel[1][2]. Kobusin is a bisepoxylignan isolated from the Pnonobio biondii Pamp. Kobusin is an activator of CFTR and CaCCgie chloride channels and a inhibitor of ANO1/CaCC (calcium-activated chloride channel) channel[1][2].

   

(+)-Sesamin

1,3-BENZODIOXOLE, 5,5-(TETRAHYDRO-1H,3H-FURO(3,4-C)FURAN-1,4-DIYL)BIS-, (1S-(1.ALPHA.,3A .ALPHA.,4.ALPHA.,6A .ALPHA.))-

C20H18O6 (354.1103328)


(+)-Sesamin, also known as fagarol or sezamin, belongs to the class of organic compounds known as furanoid lignans. These are lignans with a structure that contains either a tetrahydrofuran ring, a furan ring, or a furofuan ring system, that arises from the joining of the two phenylpropanoid units. (+)-Sesamin is an extremely weak basic (essentially neutral) compound (based on its pKa). (+)-Sesamin is found, on average, in the highest concentration within sesames. (+)-Sesamin has also been detected, but not quantified in, several different foods, such as fats and oils, flaxseeds, ginkgo nuts, and ucuhuba. This could make (+)-sesamin a potential biomarker for the consumption of these foods. (+)-sesamin is a lignan that consists of tetrahydro-1H,3H-furo[3,4-c]furan substituted by 1,3-benzodioxole groups at positions 1 and 4 (the 1S,3aR,4S,6aR stereoisomer). Isolated from Cinnamomum camphora, it exhibits cytotoxic activity. It has a role as an antineoplastic agent, a neuroprotective agent and a plant metabolite. It is a lignan, a member of benzodioxoles and a furofuran. Sesamin is a natural product found in Pandanus boninensis, Podolepis rugata, and other organisms with data available. See also: Sesame Oil (part of). A lignan that consists of tetrahydro-1H,3H-furo[3,4-c]furan substituted by 1,3-benzodioxole groups at positions 1 and 4 (the 1S,3aR,4S,6aR stereoisomer). Isolated from Cinnamomum camphora, it exhibits cytotoxic activity. Constituent of sesame oil. (+)-Sesamin is found in many foods, some of which are ginkgo nuts, sesame, flaxseed, and fats and oils. D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents > D000924 - Anticholesteremic Agents D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D020011 - Protective Agents > D000975 - Antioxidants D009676 - Noxae > D000963 - Antimetabolites (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. Sesamin, abundant lignan found in sesame oil, is a potent and selective delta 5 desaturase inhibitor in polyunsaturated fatty acid biosynthesis. Sesamin exerts effective neuroprotection against cerbral ischemia[1][2]. Sesamin, abundant lignan found in sesame oil, is a potent and selective delta 5 desaturase inhibitor in polyunsaturated fatty acid biosynthesis. Sesamin exerts effective neuroprotection against cerbral ischemia[1][2].

   

Eudesmin

eudesmin;(1R,3aα,6aα)-1,4α-Bis(3,4-dimethoxyphenyl)tetrahydro-1H,3H-furo[3,4-c]furan;(1R,3aα,6aα)-1α,4α-Bis(3,4-dimethoxyphenyl)tetrahydro-1H,3H-furo[3,4-c]furan;(3aβ,6aβ)-3β,6β-Bis(3,4-dimethoxyphenyl)tetrahydro-1H,3H-furo[3,4-c]furan;(+)-Pinoresinol dimethyl ether;(1S)-3aβ,4,6,6aβ-Tetrahydro-1β,4β-bis(3,4-dimethoxyphenyl)-1H,3H-furo[3,4-c]furan;Pinoresinol dimethyl ether;NSC 35476

C22H26O6 (386.17292960000003)


(+)-Eudesmin is a lignan. (+)-Eudesmin is a natural product found in Pandanus utilis, Zanthoxylum fagara, and other organisms with data available. Origin: Plant Eudesmin ((-)-Eudesmin) impairs adipogenic differentiation via inhibition of S6K1 signaling pathway. Eudesmin possesses diverse therapeutic effects, including anti-tumor, anti-inflammatory, and anti-bacterial activities[1]. Eudesmin ((-)-Eudesmin) impairs adipogenic differentiation via inhibition of S6K1 signaling pathway. Eudesmin possesses diverse therapeutic effects, including anti-tumor, anti-inflammatory, and anti-bacterial activities[1]. Pinoresinol dimethyl ether ((+)-Eudesmin) is a non-phenolic furofuran lignan isolated from Magnolia biondii with neuritogenic activity. Pinoresinol dimethyl ether ((+)-Eudesmin) can induce neuritis outgrowth from PC12 cells by stimulating up-stream MAPK, PKC and PKA pathways[1][2]. Pinoresinol dimethyl ether ((+)-Eudesmin) is a non-phenolic furofuran lignan isolated from Magnolia biondii with neuritogenic activity. Pinoresinol dimethyl ether ((+)-Eudesmin) can induce neuritis outgrowth from PC12 cells by stimulating up-stream MAPK, PKC and PKA pathways[1][2].

   

Flindersiamine

8-Methoxy-6,7-methylenedioxydictamnine

C14H11NO5 (273.0637196)


   

Germacrene D

(1E,6E,8S)-1-methyl-8-(1-methylethyl)-5-methylidenecyclodeca-1,6-diene

C15H24 (204.18779039999998)


Germacrene d, also known as germacrene d, (s-(e,e))-isomer, is a member of the class of compounds known as germacrane sesquiterpenoids. Germacrane sesquiterpenoids are sesquiterpenoids having the germacrane skeleton, with a structure characterized by a cyclodecane ring substituted with an isopropyl and two methyl groups. Germacrene d can be found in a number of food items such as peppermint, roman camomile, hyssop, and common walnut, which makes germacrene d a potential biomarker for the consumption of these food products.

   

Isomultiflorenol

(3S,6aS,6bS,8aR,14bS)-4,4,6a,6b,8a,11,11,14b-octamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,13,14-tetradecahydropicen-3-ol

C30H50O (426.386145)


Isomultiflorenol is found in fruits. Isomultiflorenol is a constituent of Cucumis species. Constituent of Cucumis subspecies Isomultiflorenol is found in fruits.

   

1-Methyl-2-nonyl-4(1H)-quinolinone

1-Methyl-2-nonyl-4(1H)-quinolinone; 1-Methyl-2-n-nonyl-4(1H) quinolone; 1-Methyl-2-nonyl-4(1H)-quinolone

C19H27NO (285.2092532)


1-Methyl-2-nonyl-4(1H)-quinolinone is a member of quinolines. 1-Methyl-2-nonylquinolin-4(1H)-one is a natural product found in Raulinoa echinata, Tetradium ruticarpum, and other organisms with data available. 1-Methyl-2-nonyl-4(1H)-quinolinone is found in herbs and spices. 1-Methyl-2-nonyl-4(1H)-quinolinone is an alkaloid from Ruta graveolens (rue

   

Limonin

19-(furan-3-yl)-9,9,13,20-tetramethyl-4,8,15,18-tetraoxahexacyclo[11.9.0.0²,⁷.0²,¹⁰.0¹⁴,¹⁶.0¹⁴,²⁰]docosane-5,12,17-trione

C26H30O8 (470.194058)


Limonin is found in citrus. Limonin is isolated from oranges and other citrus fruits (Citrus species). Limonin is a limonoid, and a bitter, white, crystalline substance found in orange and lemon seeds. It is also known as limonoate D-ring-lactone and limonoic acid di-delta-lactone. Chemically, it is a member of the class of compounds known as furanolactones Isolated from oranges and other citrus fruits (Citrus subspecies). Limonin is a triterpenoid compound rich in citrus fruits that has antiviral and antitumor activities. Limonin is a triterpenoid compound rich in citrus fruits that has antiviral and antitumor activities.

   

Bauerenol

4,4,6b,8a,11,12,12b,14b-octamethyl-1,2,3,4,4a,5,6b,7,8,8a,9,10,11,12,12a,12b,13,14,14a,14b-icosahydropicen-3-ol

C30H50O (426.386145)


Bauerenol is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Bauerenol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Bauerenol can be found in fig, which makes bauerenol a potential biomarker for the consumption of this food product.

   

2HP328XN7C

1(3H)-Isobenzofuranone, 3-(3-furanyl)-3a,4,5,6-tetrahydro-3a,7-dimethyl-, (3R-cis)-

C14H16O3 (232.1099386)


Fraxinellone is a member of 2-benzofurans. Fraxinellone is a natural product found in Raulinoa echinata, Melia azedarach, and other organisms with data available. Fraxinellone is isolated from the root bark of the Rutaceae plant, Dictamnus dasycarpus. Fraxinellone is a PD-L1 inhibitor and inhibits HIF-1α protein synthesis without affecting HIF-1α protein degradation. Fraxinellone has the potential to be a valuable candidate for cancer treatment by targeting PD-L1[1]. Fraxinellone is isolated from the root bark of the Rutaceae plant, Dictamnus dasycarpus. Fraxinellone is a PD-L1 inhibitor and inhibits HIF-1α protein synthesis without affecting HIF-1α protein degradation. Fraxinellone has the potential to be a valuable candidate for cancer treatment by targeting PD-L1[1]. Fraxinellone is isolated from the root bark of the Rutaceae plant, Dictamnus dasycarpus. Fraxinellone is a PD-L1 inhibitor and inhibits HIF-1α protein synthesis without affecting HIF-1α protein degradation. Fraxinellone has the potential to be a valuable candidate for cancer treatment by targeting PD-L1[1].

   

sesamin

1,3-Benzodioxole, 5,5-(tetrahydro-1H,3H-furo(3,4-c)furan-1,4-diyl)bis-, (1S-(1.alpha.,3a.alpha.,4.alpha.,6a.alpha.))-

C20H18O6 (354.1103328)


D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents > D000924 - Anticholesteremic Agents D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D020011 - Protective Agents > D000975 - Antioxidants D009676 - Noxae > D000963 - Antimetabolites relative retention time with respect to 9-anthracene Carboxylic Acid is 1.233 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.236 Asarinin is a natural product found in Piper mullesua, Machilus thunbergii, and other organisms with data available. (-)-Asarinin is a natural product found in Zanthoxylum austrosinense, Horsfieldia irya, and other organisms with data available. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. Sesamin, abundant lignan found in sesame oil, is a potent and selective delta 5 desaturase inhibitor in polyunsaturated fatty acid biosynthesis. Sesamin exerts effective neuroprotection against cerbral ischemia[1][2]. Sesamin, abundant lignan found in sesame oil, is a potent and selective delta 5 desaturase inhibitor in polyunsaturated fatty acid biosynthesis. Sesamin exerts effective neuroprotection against cerbral ischemia[1][2].

   
   

2-Nonylquinolin-4(1h)-One

2-Nonylquinolin-4(1h)-One

C18H25NO (271.193604)


   

sitosterol

17-(5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.386145)


A member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

Germacrene D

1,6-Cyclodecadiene, 1-methyl-5-methylene-8-(1-methylethyl)-, [s-(E,E)]-

C15H24 (204.18779039999998)


(-)-germacrene D is a germacrene D. It is an enantiomer of a (+)-germacrene D. (-)-Germacrene D is a natural product found in Teucrium montanum, Stachys obliqua, and other organisms with data available. See also: Clary Sage Oil (part of).

   
   

Fraxinellone

NCGC00385492-01_C14H16O3_(3R,3aR)-3-(3-Furyl)-3a,7-dimethyl-3a,4,5,6-tetrahydro-2-benzofuran-1(3H)-one

C14H16O3 (232.1099386)


Fraxinellone is isolated from the root bark of the Rutaceae plant, Dictamnus dasycarpus. Fraxinellone is a PD-L1 inhibitor and inhibits HIF-1α protein synthesis without affecting HIF-1α protein degradation. Fraxinellone has the potential to be a valuable candidate for cancer treatment by targeting PD-L1[1]. Fraxinellone is isolated from the root bark of the Rutaceae plant, Dictamnus dasycarpus. Fraxinellone is a PD-L1 inhibitor and inhibits HIF-1α protein synthesis without affecting HIF-1α protein degradation. Fraxinellone has the potential to be a valuable candidate for cancer treatment by targeting PD-L1[1]. Fraxinellone is isolated from the root bark of the Rutaceae plant, Dictamnus dasycarpus. Fraxinellone is a PD-L1 inhibitor and inhibits HIF-1α protein synthesis without affecting HIF-1α protein degradation. Fraxinellone has the potential to be a valuable candidate for cancer treatment by targeting PD-L1[1].

   

Limonin

11H,13H-Oxireno(d)pyrano(4,3:3,3a)isobenzofuro(5,4-f)(2)benzopyran-4,6,13(2H,5aH)-trione, 8-(3-furanyl)decahydro-2,2,4a,8a-tetramethyl-, (2aR-(2aalpha,4abeta,4bR,5aalpha,8alpha,8aalpha,10aalpha,10bR*,14aalpha))-

C26H30O8 (470.194058)


Limonin is a limonoid, an epoxide, a hexacyclic triterpenoid, a member of furans, an organic heterohexacyclic compound and a lactone. It has a role as a metabolite, an inhibitor and a volatile oil component. Limonin is a natural product found in Citrus tankan, Flacourtia jangomas, and other organisms with data available. Limonin is a triterpenoid compound rich in citrus fruits that has antiviral and antitumor activities. Limonin is a triterpenoid compound rich in citrus fruits that has antiviral and antitumor activities.

   

1-methyl-2-nonylquinolin-4-one

NCGC00385599-01!1-methyl-2-nonylquinolin-4-one

C19H27NO (285.2092532)


   

1-methyl-2-nonyl-4(1h)-quinolinone

1-methyl-2-nonyl-1,4-dihydroquinolin-4-one

C19H27NO (285.2092532)


   

Planinin

5-[4-(3,4-dimethoxyphenyl)-hexahydrofuro[3,4-c]furan-1-yl]-2H-1,3-benzodioxole

C21H22O6 (370.1416312)


   

Harzol

(3S,8S,9S,10R,13R,14S,17R)-17-[(2R,5R)-5-ethyl-6-methyl-heptan-2-yl]-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.386145)


C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

Isomultiflorenol

Isomultiflorenol

C30H50O (426.386145)


   

(1s,3as,5ar,9ar,9br,11as)-1-[(2s,3s,5r)-5-[(1s)-1-hydroxy-2-methoxy-2-methylpropyl]-2-methoxyoxolan-3-yl]-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,5h,5ah,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-one

(1s,3as,5ar,9ar,9br,11as)-1-[(2s,3s,5r)-5-[(1s)-1-hydroxy-2-methoxy-2-methylpropyl]-2-methoxyoxolan-3-yl]-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,5h,5ah,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-one

C32H52O5 (516.3814542)


   

(1r,2r,7s,10r,13r,14r,20s)-19-(2-hydroxy-5-oxo-2h-furan-3-yl)-9,9,13,20-tetramethyl-4,8,15,18-tetraoxahexacyclo[11.9.0.0²,⁷.0²,¹⁰.0¹⁴,¹⁶.0¹⁴,²⁰]docosane-5,12,17-trione

(1r,2r,7s,10r,13r,14r,20s)-19-(2-hydroxy-5-oxo-2h-furan-3-yl)-9,9,13,20-tetramethyl-4,8,15,18-tetraoxahexacyclo[11.9.0.0²,⁷.0²,¹⁰.0¹⁴,¹⁶.0¹⁴,²⁰]docosane-5,12,17-trione

C26H30O10 (502.183888)


   

8-(furan-3-yl)-3,7-dimethyl-2,9-dioxatricyclo[5.3.0.0¹,³]decan-10-one

8-(furan-3-yl)-3,7-dimethyl-2,9-dioxatricyclo[5.3.0.0¹,³]decan-10-one

C14H16O4 (248.10485359999998)


   

(1s,3as,5as,9ar,9br,11as)-1-[(2r,3r,5r)-5-[(1s)-1-hydroxy-2-methoxy-2-methylpropyl]-2-methoxyoxolan-3-yl]-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,5h,5ah,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-one

(1s,3as,5as,9ar,9br,11as)-1-[(2r,3r,5r)-5-[(1s)-1-hydroxy-2-methoxy-2-methylpropyl]-2-methoxyoxolan-3-yl]-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,5h,5ah,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-one

C32H52O5 (516.3814542)


   

(1s,2r,3r,5r,7s,10s,11r,14r,15s)-15-[(2s,3r,5r)-5-[(1s)-1,2-dihydroxy-2-methylpropyl]-2-methoxyoxolan-3-yl]-3-hydroxy-2,6,6,10-tetramethylpentacyclo[12.3.1.0¹,¹⁴.0²,¹¹.0⁵,¹⁰]octadecan-7-yl 2-(methylamino)benzoate

(1s,2r,3r,5r,7s,10s,11r,14r,15s)-15-[(2s,3r,5r)-5-[(1s)-1,2-dihydroxy-2-methylpropyl]-2-methoxyoxolan-3-yl]-3-hydroxy-2,6,6,10-tetramethylpentacyclo[12.3.1.0¹,¹⁴.0²,¹¹.0⁵,¹⁰]octadecan-7-yl 2-(methylamino)benzoate

C39H59NO7 (653.4291304000001)


   

(1r,3as,4s,6as)-1,4-bis(3,4-dimethoxyphenyl)-hexahydrofuro[3,4-c]furan

(1r,3as,4s,6as)-1,4-bis(3,4-dimethoxyphenyl)-hexahydrofuro[3,4-c]furan

C22H26O6 (386.17292960000003)


   

(3s,6bs,8ar,11s,12r,12bs,14bs)-4,4,6b,8a,11,12,12b,14b-octamethyl-2,3,4a,5,6,7,8,9,10,11,12,12a,13,14-tetradecahydro-1h-picen-3-ol

(3s,6bs,8ar,11s,12r,12bs,14bs)-4,4,6b,8a,11,12,12b,14b-octamethyl-2,3,4a,5,6,7,8,9,10,11,12,12a,13,14-tetradecahydro-1h-picen-3-ol

C30H50O (426.386145)


   

5-[(1s,3ar,4s,6ar)-4-(3,4-dimethoxyphenyl)-hexahydrofuro[3,4-c]furan-1-yl]-2h-1,3-benzodioxole

5-[(1s,3ar,4s,6ar)-4-(3,4-dimethoxyphenyl)-hexahydrofuro[3,4-c]furan-1-yl]-2h-1,3-benzodioxole

C21H22O6 (370.1416312)


   

(1s,2r,3r,5r,7s,10s,11r,14r,15s)-15-[(2r,3r,5r)-5-[(1s)-1,2-dihydroxy-2-methylpropyl]-2-methoxyoxolan-3-yl]-3-hydroxy-2,6,6,10-tetramethylpentacyclo[12.3.1.0¹,¹⁴.0²,¹¹.0⁵,¹⁰]octadecan-7-yl 2-(methylamino)benzoate

(1s,2r,3r,5r,7s,10s,11r,14r,15s)-15-[(2r,3r,5r)-5-[(1s)-1,2-dihydroxy-2-methylpropyl]-2-methoxyoxolan-3-yl]-3-hydroxy-2,6,6,10-tetramethylpentacyclo[12.3.1.0¹,¹⁴.0²,¹¹.0⁵,¹⁰]octadecan-7-yl 2-(methylamino)benzoate

C39H59NO7 (653.4291304000001)


   

(1s,3as,5ar,9ar,9br,11as)-1-[(2r,3s,5r)-5-[(1s)-1,2-dihydroxy-2-methylpropyl]-2-hydroxyoxolan-3-yl]-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,5h,5ah,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-one

(1s,3as,5ar,9ar,9br,11as)-1-[(2r,3s,5r)-5-[(1s)-1,2-dihydroxy-2-methylpropyl]-2-hydroxyoxolan-3-yl]-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,5h,5ah,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-one

C30H48O5 (488.3501558)


   

(1s,3as,5ar,9ar,9br,11as)-1-[(2r,3s,5r)-5-[(1s)-1-hydroxy-2-methoxy-2-methylpropyl]-2-methoxyoxolan-3-yl]-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,5h,5ah,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-one

(1s,3as,5ar,9ar,9br,11as)-1-[(2r,3s,5r)-5-[(1s)-1-hydroxy-2-methoxy-2-methylpropyl]-2-methoxyoxolan-3-yl]-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,5h,5ah,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-one

C32H52O5 (516.3814542)


   

(1s,2r,3r,5r,7s,10s,11r,14r,15s)-15-[(2s,3r,5r)-5-[(1s)-1,2-dihydroxy-2-methylpropyl]-2-hydroxyoxolan-3-yl]-3-hydroxy-2,6,6,10-tetramethylpentacyclo[12.3.1.0¹,¹⁴.0²,¹¹.0⁵,¹⁰]octadecan-7-yl 2-(methylamino)benzoate

(1s,2r,3r,5r,7s,10s,11r,14r,15s)-15-[(2s,3r,5r)-5-[(1s)-1,2-dihydroxy-2-methylpropyl]-2-hydroxyoxolan-3-yl]-3-hydroxy-2,6,6,10-tetramethylpentacyclo[12.3.1.0¹,¹⁴.0²,¹¹.0⁵,¹⁰]octadecan-7-yl 2-(methylamino)benzoate

C38H57NO7 (639.4134812)


   

(1s,3as,9ar)-1-[(3r,5r)-5-(1,2-dihydroxy-2-methylpropyl)-2-hydroxyoxolan-3-yl]-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,5h,5ah,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-one

(1s,3as,9ar)-1-[(3r,5r)-5-(1,2-dihydroxy-2-methylpropyl)-2-hydroxyoxolan-3-yl]-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,5h,5ah,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-one

C30H48O5 (488.3501558)


   

(1s,2r,3r,5r,7s,10s,11r,14r,15s)-15-[(3s,5r)-5-[(1s)-1,2-dihydroxy-2-methylpropyl]-2-hydroxyoxolan-3-yl]-3-hydroxy-2,6,6,10-tetramethylpentacyclo[12.3.1.0¹,¹⁴.0²,¹¹.0⁵,¹⁰]octadecan-7-yl 2-(methylamino)benzoate

(1s,2r,3r,5r,7s,10s,11r,14r,15s)-15-[(3s,5r)-5-[(1s)-1,2-dihydroxy-2-methylpropyl]-2-hydroxyoxolan-3-yl]-3-hydroxy-2,6,6,10-tetramethylpentacyclo[12.3.1.0¹,¹⁴.0²,¹¹.0⁵,¹⁰]octadecan-7-yl 2-(methylamino)benzoate

C38H57NO7 (639.4134812)


   

(1s,3as,5as,9ar,9br,11as)-1-[(2s,3r,5r)-5-[(1s)-1-hydroxy-2-methoxy-2-methylpropyl]-2-methoxyoxolan-3-yl]-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,5h,5ah,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-one

(1s,3as,5as,9ar,9br,11as)-1-[(2s,3r,5r)-5-[(1s)-1-hydroxy-2-methoxy-2-methylpropyl]-2-methoxyoxolan-3-yl]-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,5h,5ah,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-one

C32H52O5 (516.3814542)


   

(1z,6z,8s)-8-isopropyl-1-methyl-5-methylidenecyclodeca-1,6-diene

(1z,6z,8s)-8-isopropyl-1-methyl-5-methylidenecyclodeca-1,6-diene

C15H24 (204.18779039999998)


   

15-[5-(1,2-dihydroxy-2-methylpropyl)-2-methoxyoxolan-3-yl]-3-hydroxy-2,6,6,10-tetramethylpentacyclo[12.3.1.0¹,¹⁴.0²,¹¹.0⁵,¹⁰]octadecan-7-yl 2-(methylamino)benzoate

15-[5-(1,2-dihydroxy-2-methylpropyl)-2-methoxyoxolan-3-yl]-3-hydroxy-2,6,6,10-tetramethylpentacyclo[12.3.1.0¹,¹⁴.0²,¹¹.0⁵,¹⁰]octadecan-7-yl 2-(methylamino)benzoate

C39H59NO7 (653.4291304000001)


   

1-[(1s,3ar,4r,7s,7as)-4-hydroxy-7-isopropyl-4-methyl-octahydroinden-1-yl]ethanone

1-[(1s,3ar,4r,7s,7as)-4-hydroxy-7-isopropyl-4-methyl-octahydroinden-1-yl]ethanone

C15H26O2 (238.1932696)


   

1-[5-(1-hydroxy-2-methoxy-2-methylpropyl)-2-methoxyoxolan-3-yl]-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,5h,5ah,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-one

1-[5-(1-hydroxy-2-methoxy-2-methylpropyl)-2-methoxyoxolan-3-yl]-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,5h,5ah,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-one

C32H52O5 (516.3814542)


   

5-[(3ar,4r,6ar)-4-(2h-1,3-benzodioxol-5-yl)-hexahydrofuro[3,4-c]furan-1-yl]-2h-1,3-benzodioxole

5-[(3ar,4r,6ar)-4-(2h-1,3-benzodioxol-5-yl)-hexahydrofuro[3,4-c]furan-1-yl]-2h-1,3-benzodioxole

C20H18O6 (354.1103328)


   

(1s,2r,3r,5r,7s,10s,11r,14r,15s)-15-[(2r,3s,5r)-5-[(1s)-1,2-dihydroxy-2-methylpropyl]-2-methoxyoxolan-3-yl]-3-hydroxy-2,6,6,10-tetramethylpentacyclo[12.3.1.0¹,¹⁴.0²,¹¹.0⁵,¹⁰]octadecan-7-yl 2-(methylamino)benzoate

(1s,2r,3r,5r,7s,10s,11r,14r,15s)-15-[(2r,3s,5r)-5-[(1s)-1,2-dihydroxy-2-methylpropyl]-2-methoxyoxolan-3-yl]-3-hydroxy-2,6,6,10-tetramethylpentacyclo[12.3.1.0¹,¹⁴.0²,¹¹.0⁵,¹⁰]octadecan-7-yl 2-(methylamino)benzoate

C39H59NO7 (653.4291304000001)


   

(2r,11r)-3-(acetyloxy)-2,7,7,11,16-pentamethyl-5-oxo-15-[(3s)-5-oxooxolan-3-yl]-6-oxatetracyclo[9.7.0.0²,⁸.0¹²,¹⁶]octadec-12-en-10-yl acetate

(2r,11r)-3-(acetyloxy)-2,7,7,11,16-pentamethyl-5-oxo-15-[(3s)-5-oxooxolan-3-yl]-6-oxatetracyclo[9.7.0.0²,⁸.0¹²,¹⁶]octadec-12-en-10-yl acetate

C30H42O8 (530.2879532000001)


   

(3s,6bs,8ar,12bs,14bs)-4,4,6b,8a,11,11,12b,14b-octamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,13,14-tetradecahydropicen-3-ol

(3s,6bs,8ar,12bs,14bs)-4,4,6b,8a,11,11,12b,14b-octamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,13,14-tetradecahydropicen-3-ol

C30H50O (426.386145)


   

1-(4-hydroxy-7-isopropyl-4-methyl-octahydroinden-1-yl)ethanone

1-(4-hydroxy-7-isopropyl-4-methyl-octahydroinden-1-yl)ethanone

C15H26O2 (238.1932696)


   

(1s,3r,7s,8s)-8-(furan-3-yl)-3,7-dimethyl-2,9-dioxatricyclo[5.3.0.0¹,³]decan-10-one

(1s,3r,7s,8s)-8-(furan-3-yl)-3,7-dimethyl-2,9-dioxatricyclo[5.3.0.0¹,³]decan-10-one

C14H16O4 (248.10485359999998)


   

(1s,3as,5ar,9ar,9br,11as)-1-[(2r,3s,5r)-5-[(2s)-3,3-dimethyloxiran-2-yl]-2-hydroxyoxolan-3-yl]-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,5h,5ah,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-one

(1s,3as,5ar,9ar,9br,11as)-1-[(2r,3s,5r)-5-[(2s)-3,3-dimethyloxiran-2-yl]-2-hydroxyoxolan-3-yl]-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,5h,5ah,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-one

C30H46O4 (470.3395916)


   

(1s,3as,9ar,11as)-1-[(3s)-5-(3,3-dimethyloxiran-2-yl)-2-hydroxyoxolan-3-yl]-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,5h,5ah,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-one

(1s,3as,9ar,11as)-1-[(3s)-5-(3,3-dimethyloxiran-2-yl)-2-hydroxyoxolan-3-yl]-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,5h,5ah,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-one

C30H46O4 (470.3395916)


   

2-isopropyl-4a-methyl-8-methylidene-octahydronaphthalene-1,5-diol

2-isopropyl-4a-methyl-8-methylidene-octahydronaphthalene-1,5-diol

C15H26O2 (238.1932696)


   

stigmast-5-en-3-ol, (3β)-

stigmast-5-en-3-ol, (3β)-

C29H50O (414.386145)


   

15-[5-(1,2-dihydroxy-2-methylpropyl)-2-hydroxyoxolan-3-yl]-3-hydroxy-2,6,6,10-tetramethylpentacyclo[12.3.1.0¹,¹⁴.0²,¹¹.0⁵,¹⁰]octadecan-7-yl 2-(methylamino)benzoate

15-[5-(1,2-dihydroxy-2-methylpropyl)-2-hydroxyoxolan-3-yl]-3-hydroxy-2,6,6,10-tetramethylpentacyclo[12.3.1.0¹,¹⁴.0²,¹¹.0⁵,¹⁰]octadecan-7-yl 2-(methylamino)benzoate

C38H57NO7 (639.4134812)


   

(1s,2r,3r,5r,7s,10s,11r,14r,15s)-15-[(2s,3s,5r)-5-[(1s)-1,2-dihydroxy-2-methylpropyl]-2-methoxyoxolan-3-yl]-3-hydroxy-2,6,6,10-tetramethylpentacyclo[12.3.1.0¹,¹⁴.0²,¹¹.0⁵,¹⁰]octadecan-7-yl 2-(methylamino)benzoate

(1s,2r,3r,5r,7s,10s,11r,14r,15s)-15-[(2s,3s,5r)-5-[(1s)-1,2-dihydroxy-2-methylpropyl]-2-methoxyoxolan-3-yl]-3-hydroxy-2,6,6,10-tetramethylpentacyclo[12.3.1.0¹,¹⁴.0²,¹¹.0⁵,¹⁰]octadecan-7-yl 2-(methylamino)benzoate

C39H59NO7 (653.4291304000001)


   

(1s,2s,4ar,5r,8as)-2-isopropyl-4a-methyl-8-methylidene-octahydronaphthalene-1,5-diol

(1s,2s,4ar,5r,8as)-2-isopropyl-4a-methyl-8-methylidene-octahydronaphthalene-1,5-diol

C15H26O2 (238.1932696)


   

3-(furan-3-yl)-3a,7-dimethyl-3,4,5,6-tetrahydro-2-benzofuran-1-one

3-(furan-3-yl)-3a,7-dimethyl-3,4,5,6-tetrahydro-2-benzofuran-1-one

C14H16O3 (232.1099386)


   

2-nonyl-3h-quinolin-4-one

2-nonyl-3h-quinolin-4-one

C18H25NO (271.193604)


   

4,4,6b,8a,11,12,12b,14b-octamethyl-2,3,4a,5,6,7,8,9,10,11,12,12a,13,14-tetradecahydro-1h-picen-3-ol

4,4,6b,8a,11,12,12b,14b-octamethyl-2,3,4a,5,6,7,8,9,10,11,12,12a,13,14-tetradecahydro-1h-picen-3-ol

C30H50O (426.386145)


   

3-(furan-3-yl)-3a,7-dimethyl-4,5-dihydro-3h-2-benzofuran-1,6-dione

3-(furan-3-yl)-3a,7-dimethyl-4,5-dihydro-3h-2-benzofuran-1,6-dione

C14H14O4 (246.0892044)


   

1-[5-(3,3-dimethyloxiran-2-yl)-2-hydroxyoxolan-3-yl]-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,5h,5ah,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-one

1-[5-(3,3-dimethyloxiran-2-yl)-2-hydroxyoxolan-3-yl]-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,5h,5ah,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-one

C30H46O4 (470.3395916)