2,4,6-Trinitrotoluene (BioDeep_00000003649)
Secondary id: BioDeep_00001871362
human metabolite blood metabolite
代谢物信息卡片
化学式: C7H5N3O6 (227.01783500000002)
中文名称: 三硝基甲苯
谱图信息:
最多检出来源 Homo sapiens(blood) 0.37%
分子结构信息
SMILES: CC1=C(C=C(C=C1[N+](=O)[O-])[N+](=O)[O-])[N+](=O)[O-]
InChI: InChI=1S/C7H5N3O6/c1-4-6(9(13)14)2-5(8(11)12)3-7(4)10(15)16/h2-3H,1H3
描述信息
Trinitrotoluene, also known as tnt or S-trinitrotoluol, is a member of the class of compounds known as nitrobenzenes. Nitrobenzenes are compounds containing a nitrobenzene moiety, which consists of a benzene ring with a carbon bearing a nitro group. Trinitrotoluene is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Trinitrotoluene can be found in a number of food items such as parsnip, broccoli, highbush blueberry, and sunburst squash (pattypan squash), which makes trinitrotoluene a potential biomarker for the consumption of these food products. Trinitrotoluene is formally rated as an unfounded non-carcinogenic (IARC 3) potentially toxic compound. Trinitrotoluene (; TNT), or more specifically 2,4,6-trinitrotoluene, is a chemical compound with the formula C6H2(NO2)3CH3. This yellow solid is sometimes used as a reagent in chemical synthesis, but it is best known as an explosive material with convenient handling properties. The explosive yield of TNT is considered to be the standard measure of bombs and other explosives. In chemistry, TNT is used to generate charge transfer salts . In some cases, gastric lavage, activated charcoal, and emetics have been suggested as useful in reducing absorption of the general class of nitro compounds to which 2,4,6-trinitrotoluene belongs (L132) (T3DB).
CONFIDENCE standard compound; INTERNAL_ID 42
D053834 - Explosive Agents
同义名列表
数据库引用编号
19 个数据库交叉引用编号
- ChEBI: CHEBI:46053
- KEGG: C16391
- PubChem: 8376
- HMDB: HMDB0245483
- Metlin: METLIN71179
- DrugBank: DB01676
- ChEMBL: CHEMBL1236345
- Wikipedia: Trinitrotoluene
- MeSH: Trinitrotoluene
- MetaCyc: CPD-9138
- foodb: FDB030299
- chemspider: 8073
- CAS: 118-96-7
- MoNA: UA004205
- PMhub: MS000010712
- PubChem: 47205689
- PDB-CCD: TNL
- NIKKAJI: J2.477E
- RefMet: 2,4,6-Trinitrotoluene
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
90 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(2)
- 2,4,6-trinitrotoluene degradation:
4-hydroxylamino-2,6-dinitrotoluene + A(H2) + H+ ⟶ 4-amino-2,6-dinitrotoluene + A + H2O
- 2,4,6-trinitrotoluene degradation:
4-amino-2,6-dinitrotoluene + UDP-α-D-glucose ⟶ 4-amino-2,6-dinitrotoluene glucoside + H+ + UDP
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(88)
- 2,4,6-trinitrotoluene degradation:
A(H2) + TNT ⟶ 2-methyl-1,5-dinitro-3-nitrosobenzene + A + H2O
- 2,4,6-trinitrotoluene degradation:
A(H2) + TNT ⟶ 2-methyl-1,5-dinitro-3-nitrosobenzene + A + H2O
- 2,4,6-trinitrotoluene degradation:
A(H2) + TNT ⟶ 2-methyl-1,5-dinitro-3-nitrosobenzene + A + H2O
- 2,4,6-trinitrotoluene degradation:
A(H2) + TNT ⟶ 2-methyl-1,5-dinitro-3-nitrosobenzene + A + H2O
- 2,4,6-trinitrotoluene degradation:
4-hydroxylamino-2,6-dinitrotoluene + A(H2) + H+ ⟶ 4-amino-2,6-dinitrotoluene + A + H2O
- 2,4,6-trinitrotoluene degradation:
A(H2) + TNT ⟶ 2-methyl-1,5-dinitro-3-nitrosobenzene + A + H2O
- 2,4,6-trinitrotoluene degradation:
A(H2) + TNT ⟶ 2-methyl-1,5-dinitro-3-nitrosobenzene + A + H2O
- 2,4,6-trinitrotoluene degradation:
A(H2) + TNT ⟶ 2-methyl-1,5-dinitro-3-nitrosobenzene + A + H2O
- 2,4,6-trinitrotoluene degradation:
A(H2) + TNT ⟶ 2-methyl-1,5-dinitro-3-nitrosobenzene + A + H2O
- 2,4,6-trinitrotoluene degradation:
A(H2) + TNT ⟶ 2-methyl-1,5-dinitro-3-nitrosobenzene + A + H2O
- 2,4,6-trinitrotoluene degradation:
A(H2) + TNT ⟶ 2-methyl-1,5-dinitro-3-nitrosobenzene + A + H2O
- 2,4,6-trinitrotoluene degradation:
A(H2) + TNT ⟶ 2-methyl-1,5-dinitro-3-nitrosobenzene + A + H2O
- 2,4,6-trinitrotoluene degradation:
A(H2) + TNT ⟶ 2-methyl-1,5-dinitro-3-nitrosobenzene + A + H2O
- 2,4,6-trinitrotoluene degradation:
A(H2) + TNT ⟶ 2-methyl-1,5-dinitro-3-nitrosobenzene + A + H2O
- 2,4,6-trinitrotoluene degradation:
A(H2) + TNT ⟶ 2-methyl-1,5-dinitro-3-nitrosobenzene + A + H2O
- 2,4,6-trinitrotoluene degradation:
A(H2) + TNT ⟶ 2-methyl-1,5-dinitro-3-nitrosobenzene + A + H2O
- 2,4,6-trinitrotoluene degradation:
A(H2) + TNT ⟶ 2-methyl-1,5-dinitro-3-nitrosobenzene + A + H2O
- 2,4,6-trinitrotoluene degradation:
A(H2) + TNT ⟶ 2-methyl-1,5-dinitro-3-nitrosobenzene + A + H2O
- 2,4,6-trinitrotoluene degradation:
A(H2) + TNT ⟶ 2-methyl-1,5-dinitro-3-nitrosobenzene + A + H2O
- 2,4,6-trinitrotoluene degradation:
A(H2) + TNT ⟶ 2-methyl-1,5-dinitro-3-nitrosobenzene + A + H2O
- 2,4,6-trinitrotoluene degradation:
A(H2) + TNT ⟶ 2-methyl-1,5-dinitro-3-nitrosobenzene + A + H2O
- 2,4,6-trinitrotoluene degradation:
A(H2) + TNT ⟶ 2-methyl-1,5-dinitro-3-nitrosobenzene + A + H2O
- 2,4,6-trinitrotoluene degradation:
A(H2) + TNT ⟶ 2-methyl-1,5-dinitro-3-nitrosobenzene + A + H2O
- 2,4,6-trinitrotoluene degradation:
A(H2) + TNT ⟶ 2-methyl-1,5-dinitro-3-nitrosobenzene + A + H2O
- 2,4,6-trinitrotoluene degradation:
A(H2) + TNT ⟶ 2-methyl-1,5-dinitro-3-nitrosobenzene + A + H2O
- 2,4,6-trinitrotoluene degradation:
A(H2) + TNT ⟶ 2-methyl-1,5-dinitro-3-nitrosobenzene + A + H2O
- 2,4,6-trinitrotoluene degradation:
A(H2) + TNT ⟶ 2-methyl-1,5-dinitro-3-nitrosobenzene + A + H2O
- 2,4,6-trinitrotoluene degradation:
A(H2) + TNT ⟶ 2-methyl-1,5-dinitro-3-nitrosobenzene + A + H2O
- 2,4,6-trinitrotoluene degradation:
A(H2) + TNT ⟶ 2-methyl-1,5-dinitro-3-nitrosobenzene + A + H2O
- 2,4,6-trinitrotoluene degradation:
A(H2) + TNT ⟶ 2-methyl-1,5-dinitro-3-nitrosobenzene + A + H2O
- 2,4,6-trinitrotoluene degradation:
A(H2) + TNT ⟶ 2-methyl-1,5-dinitro-3-nitrosobenzene + A + H2O
- 2,4,6-trinitrotoluene degradation:
A(H2) + TNT ⟶ 2-methyl-1,5-dinitro-3-nitrosobenzene + A + H2O
- 2,4,6-trinitrotoluene degradation:
A(H2) + TNT ⟶ 2-methyl-1,5-dinitro-3-nitrosobenzene + A + H2O
- 2,4,6-trinitrotoluene degradation:
A(H2) + TNT ⟶ 2-methyl-1,5-dinitro-3-nitrosobenzene + A + H2O
- 2,4,6-trinitrotoluene degradation:
A(H2) + TNT ⟶ 2-methyl-1,5-dinitro-3-nitrosobenzene + A + H2O
- 2,4,6-trinitrotoluene degradation:
A(H2) + TNT ⟶ 2-methyl-1,5-dinitro-3-nitrosobenzene + A + H2O
- 2,4,6-trinitrotoluene degradation:
A(H2) + TNT ⟶ 2-methyl-1,5-dinitro-3-nitrosobenzene + A + H2O
- 2,4,6-trinitrotoluene degradation:
A(H2) + TNT ⟶ 2-methyl-1,5-dinitro-3-nitrosobenzene + A + H2O
- 2,4,6-trinitrotoluene degradation:
A(H2) + TNT ⟶ 2-methyl-1,5-dinitro-3-nitrosobenzene + A + H2O
- 2,4,6-trinitrotoluene degradation:
A(H2) + TNT ⟶ 2-methyl-1,5-dinitro-3-nitrosobenzene + A + H2O
- 2,4,6-trinitrotoluene degradation:
A(H2) + TNT ⟶ 2-methyl-1,5-dinitro-3-nitrosobenzene + A + H2O
- 2,4,6-trinitrotoluene degradation:
A(H2) + TNT ⟶ 2-methyl-1,5-dinitro-3-nitrosobenzene + A + H2O
- 2,4,6-trinitrotoluene degradation:
A(H2) + TNT ⟶ 2-methyl-1,5-dinitro-3-nitrosobenzene + A + H2O
- 2,4,6-trinitrotoluene degradation:
A(H2) + TNT ⟶ 2-methyl-1,5-dinitro-3-nitrosobenzene + A + H2O
- 2,4,6-trinitrotoluene degradation:
A(H2) + TNT ⟶ 2-methyl-1,5-dinitro-3-nitrosobenzene + A + H2O
- 2,4,6-trinitrotoluene degradation:
A(H2) + TNT ⟶ 2-methyl-1,5-dinitro-3-nitrosobenzene + A + H2O
- 2,4,6-trinitrotoluene degradation:
A(H2) + TNT ⟶ 2-methyl-1,5-dinitro-3-nitrosobenzene + A + H2O
- 2,4,6-trinitrotoluene degradation:
A(H2) + TNT ⟶ 2-methyl-1,5-dinitro-3-nitrosobenzene + A + H2O
- 2,4,6-trinitrotoluene degradation:
A(H2) + TNT ⟶ 2-methyl-1,5-dinitro-3-nitrosobenzene + A + H2O
- 2,4,6-trinitrotoluene degradation:
A(H2) + TNT ⟶ 2-methyl-1,5-dinitro-3-nitrosobenzene + A + H2O
- 2,4,6-trinitrotoluene degradation:
A(H2) + TNT ⟶ 2-methyl-1,5-dinitro-3-nitrosobenzene + A + H2O
- 2,4,6-trinitrotoluene degradation:
A(H2) + TNT ⟶ 2-methyl-1,5-dinitro-3-nitrosobenzene + A + H2O
- 2,4,6-trinitrotoluene degradation:
A(H2) + TNT ⟶ 2-methyl-1,5-dinitro-3-nitrosobenzene + A + H2O
- 2,4,6-trinitrotoluene degradation:
A(H2) + TNT ⟶ 2-methyl-1,5-dinitro-3-nitrosobenzene + A + H2O
- 2,4,6-trinitrotoluene degradation:
A(H2) + TNT ⟶ 2-methyl-1,5-dinitro-3-nitrosobenzene + A + H2O
- 2,4,6-trinitrotoluene degradation:
A(H2) + TNT ⟶ 2-methyl-1,5-dinitro-3-nitrosobenzene + A + H2O
- 2,4,6-trinitrotoluene degradation:
A(H2) + TNT ⟶ 2-methyl-1,5-dinitro-3-nitrosobenzene + A + H2O
- 2,4,6-trinitrotoluene degradation:
A(H2) + TNT ⟶ 2-methyl-1,5-dinitro-3-nitrosobenzene + A + H2O
- 2,4,6-trinitrotoluene degradation:
A(H2) + TNT ⟶ 2-methyl-1,5-dinitro-3-nitrosobenzene + A + H2O
- 2,4,6-trinitrotoluene degradation:
A(H2) + TNT ⟶ 2-methyl-1,5-dinitro-3-nitrosobenzene + A + H2O
- 2,4,6-trinitrotoluene degradation:
A(H2) + TNT ⟶ 2-methyl-1,5-dinitro-3-nitrosobenzene + A + H2O
- 2,4,6-trinitrotoluene degradation:
A(H2) + TNT ⟶ 2-methyl-1,5-dinitro-3-nitrosobenzene + A + H2O
- 2,4,6-trinitrotoluene degradation:
A(H2) + TNT ⟶ 2-methyl-1,5-dinitro-3-nitrosobenzene + A + H2O
- 2,4,6-trinitrotoluene degradation:
4-amino-2,6-dinitrotoluene + UDP-α-D-glucose ⟶ 4-amino-2,6-dinitrotoluene glucoside + H+ + UDP
- 2,4,6-trinitrotoluene degradation:
A(H2) + TNT ⟶ 2-methyl-1,5-dinitro-3-nitrosobenzene + A + H2O
- 2,4,6-trinitrotoluene degradation:
A(H2) + TNT ⟶ 2-methyl-1,5-dinitro-3-nitrosobenzene + A + H2O
- 2,4,6-trinitrotoluene degradation:
A(H2) + TNT ⟶ 2-methyl-1,5-dinitro-3-nitrosobenzene + A + H2O
- 2,4,6-trinitrotoluene degradation:
A(H2) + TNT ⟶ 2-methyl-1,5-dinitro-3-nitrosobenzene + A + H2O
- 2,4,6-trinitrotoluene degradation:
A(H2) + TNT ⟶ 2-methyl-1,5-dinitro-3-nitrosobenzene + A + H2O
- 2,4,6-trinitrotoluene degradation:
A(H2) + TNT ⟶ 2-methyl-1,5-dinitro-3-nitrosobenzene + A + H2O
- 2,4,6-trinitrotoluene degradation:
A(H2) + TNT ⟶ 2-methyl-1,5-dinitro-3-nitrosobenzene + A + H2O
- 2,4,6-trinitrotoluene degradation:
A(H2) + TNT ⟶ 2-methyl-1,5-dinitro-3-nitrosobenzene + A + H2O
- 2,4,6-trinitrotoluene degradation:
A(H2) + TNT ⟶ 2-methyl-1,5-dinitro-3-nitrosobenzene + A + H2O
- 2,4,6-trinitrotoluene degradation:
A(H2) + TNT ⟶ 2-methyl-1,5-dinitro-3-nitrosobenzene + A + H2O
- 2,4,6-trinitrotoluene degradation:
A(H2) + TNT ⟶ 4-nitroso-2,6-dinitrotoluene + A + H2O
- 2,4,6-trinitrotoluene degradation:
A(H2) + TNT ⟶ 2-methyl-1,5-dinitro-3-nitrosobenzene + A + H2O
- 2,4,6-trinitrotoluene degradation:
A(H2) + TNT ⟶ 2-methyl-1,5-dinitro-3-nitrosobenzene + A + H2O
- 2,4,6-trinitrotoluene degradation:
A(H2) + TNT ⟶ 2-methyl-1,5-dinitro-3-nitrosobenzene + A + H2O
- 2,4,6-trinitrotoluene degradation:
A(H2) + TNT ⟶ 2-methyl-1,5-dinitro-3-nitrosobenzene + A + H2O
- 2,4,6-trinitrotoluene degradation:
A(H2) + TNT ⟶ 2-methyl-1,5-dinitro-3-nitrosobenzene + A + H2O
- 2,4,6-trinitrotoluene degradation:
A(H2) + TNT ⟶ 2-methyl-1,5-dinitro-3-nitrosobenzene + A + H2O
- 2,4,6-trinitrotoluene degradation:
A(H2) + TNT ⟶ 2-methyl-1,5-dinitro-3-nitrosobenzene + A + H2O
- 2,4,6-trinitrotoluene degradation:
A(H2) + TNT ⟶ 2-methyl-1,5-dinitro-3-nitrosobenzene + A + H2O
- 2,4,6-trinitrotoluene degradation:
A(H2) + TNT ⟶ 2-methyl-1,5-dinitro-3-nitrosobenzene + A + H2O
- 2,4,6-trinitrotoluene degradation:
A(H2) + TNT ⟶ 2-methyl-1,5-dinitro-3-nitrosobenzene + A + H2O
- 2,4,6-trinitrotoluene degradation:
A(H2) + TNT ⟶ 4-nitroso-2,6-dinitrotoluene + A + H2O
- 2,4,6-trinitrotoluene degradation:
A(H2) + TNT ⟶ 2-methyl-1,5-dinitro-3-nitrosobenzene + A + H2O
- 2,4,6-trinitrotoluene degradation:
4-hydroxylamino-2,6-dinitrotoluene + A(H2) + H+ ⟶ 4-amino-2,6-dinitrotoluene + A + H2O
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
1 个相关的物种来源信息
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Rujia Chen, Yue Lu, Enying Zhang, Zhiyang Chen, Liexiang Huangfu, Zhihao Zuo, Yu Zhao, Minyan Zhu, Zihui Zhang, Mingli Chuan, Qing Bu, Qianfeng Huang, Hanyao Wang, Yang Xu, Pengcheng Li, Youli Yao, Yong Zhou, Chenwu Xu, Zefeng Yang. The plant streptolysin S (SLS)-associated gene B confers nitroaromatic tolerance and detoxification.
Journal of hazardous materials.
2022 07; 433(?):128779. doi:
10.1016/j.jhazmat.2022.128779
. [PMID: 35364534] - Xu Yang, Jin-Long Lai, Yu Zhang, Xue-Gang Luo. Toxicity analysis of TNT to alfalfa's mineral nutrition and secondary metabolism.
Plant cell reports.
2022 May; 41(5):1273-1284. doi:
10.1007/s00299-022-02856-z
. [PMID: 35305132] - Muhammad Aamir, Sobia Irum, Amer Siddiq, Hafiza Monaza Batool, Nisar Ahmed, Muhammad Hamid Awais, Sadiq Ali. A novel method development and validation for determination of 2,4,6-Trinitrotoluene and its metabolites on LC-MS/MS.
Analytical biochemistry.
2022 02; 638(?):114496. doi:
10.1016/j.ab.2021.114496
. [PMID: 34838816] - Aaron J Beck, Martha Gledhill, Mareike Kampmeier, Caiyan Feng, Christian Schlosser, Jens Greinert, Eric P Achterberg. Explosives compounds from sea-dumped relic munitions accumulate in marine biota.
The Science of the total environment.
2022 Feb; 806(Pt 4):151266. doi:
10.1016/j.scitotenv.2021.151266
. [PMID: 34757098] - Ahsan Habib, Lei Bi, Luhong Wen. Simultaneous detection and quantification of explosives by a modified hollow cathode discharge ion source.
Talanta.
2021 Oct; 233(?):122596. doi:
10.1016/j.talanta.2021.122596
. [PMID: 34215084] - Xu Yang, Yu Zhang, Jin-Long Lai, Xue-Gang Luo, Meng-Wei Han, San-Ping Zhao, Yong-Bing Zhu. Analysis of the biodegradation and phytotoxicity mechanism of TNT, RDX, HMX in alfalfa (Medicago sativa).
Chemosphere.
2021 Oct; 281(?):130842. doi:
10.1016/j.chemosphere.2021.130842
. [PMID: 34023765] - Xu Yang, Jin-Long Lai, Yu Zhang, Xue-Gang Luo, Meng-Wei Han, San-Ping Zhao. Microbial community structure and metabolome profiling characteristics of soil contaminated by TNT, RDX, and HMX.
Environmental pollution (Barking, Essex : 1987).
2021 Sep; 285(?):117478. doi:
10.1016/j.envpol.2021.117478
. [PMID: 34087636] - Jian-Jie Gao, Ri-He Peng, Bo Zhu, Yong-Sheng Tian, Jing Xu, Bo Wang, Xiao-Yan Fu, Hong-Juan Han, Li-Juan Wang, Fu-Jian Zhang, Wen-Hui Zhang, Yong-Dong Deng, Yu- Wang, Zhen-Jun Li, Quan-Hong Yao. Enhanced phytoremediation of TNT and cobalt co-contaminated soil by AfSSB transformed plant.
Ecotoxicology and environmental safety.
2021 Sep; 220(?):112407. doi:
10.1016/j.ecoenv.2021.112407
. [PMID: 34119926] - Etai Shpigel, Benjamin Shemer, Tal Elad, Anat Glozman, Shimshon Belkin. Bacterial bioreporters for the detection of trace explosives: performance enhancement by DNA shuffling and random mutagenesis.
Applied microbiology and biotechnology.
2021 May; 105(10):4329-4337. doi:
10.1007/s00253-021-11290-2
. [PMID: 33942130] - Xu Yang, Jin-Long Lai, Jie Li, Yu Zhang, Xue-Gang Luo, Zhan-Guo Li. Biodegradation and physiological response mechanism of a bacterial strain to 2,4,6-trinitrotoluene contamination.
Chemosphere.
2021 May; 270(?):129280. doi:
10.1016/j.chemosphere.2020.129280
. [PMID: 33418226] - Jennifer S Strehse, Matthias Brenner, Michael Kisiela, Edmund Maser. The explosive trinitrotoluene (TNT) induces gene expression of carbonyl reductase in the blue mussel (Mytilus spp.): a new promising biomarker for sea dumped war relicts?.
Archives of toxicology.
2020 12; 94(12):4043-4054. doi:
10.1007/s00204-020-02931-y
. [PMID: 33094350] - Hong Yang, Huarong Li, Liu Liu, Yang Zhou, Xinping Long. Molecular Simulation Studies on the Interactions of 2,4,6-Trinitrotoluene and Its Metabolites with Lipid Membranes.
The journal of physical chemistry. B.
2019 08; 123(30):6481-6491. doi:
10.1021/acs.jpcb.9b03033
. [PMID: 31282676] - Long Zhang, Elizabeth L Rylott, Neil C Bruce, Stuart E Strand. Genetic modification of western wheatgrass (Pascopyrum smithii) for the phytoremediation of RDX and TNT.
Planta.
2019 Apr; 249(4):1007-1015. doi:
10.1007/s00425-018-3057-9
. [PMID: 30488285] - Shuang Li, Danhua Zhang, Jinglong Liu, Chen Cheng, Long Zhu, Candong Li, Yanli Lu, Sze Shin Low, Bin Su, Qingjun Liu. Electrochemiluminescence on smartphone with silica nanopores membrane modified electrodes for nitroaromatic explosives detection.
Biosensors & bioelectronics.
2019 Mar; 129(?):284-291. doi:
10.1016/j.bios.2018.09.055
. [PMID: 30245166] - Xolani Kevin Peter, Zetu Jiba, Peter Schmitz, Piet Ramaloko, Jonathan Stipinovich. Effects of TNT contaminated soil on vegetation at an explosive range by probing UPLC-qTOF MS profiling method.
Ecotoxicology and environmental safety.
2019 Jan; 167(?):324-330. doi:
10.1016/j.ecoenv.2018.10.019
. [PMID: 30347353] - Jianyu Hu, Chaoqun Wang, Rui Liu, Yingying Su, Yi Lv. Poly(thymine)-CuNPs: Bimodal Methodology for Accurate and Selective Detection of TNT at Sub-PPT Levels.
Analytical chemistry.
2018 12; 90(24):14469-14474. doi:
10.1021/acs.analchem.8b04161
. [PMID: 30458612] - Kurt A Gust, Vijender Chaitankar, Preetam Ghosh, Mitchell S Wilbanks, Xianfeng Chen, Natalie D Barker, Don Pham, Leona D Scanlan, Arun Rawat, Larry G Talent, Michael J Quinn, Christopher D Vulpe, Mohamed O Elasri, Mark S Johnson, Edward J Perkins, Craig A McFarland. Multiple environmental stressors induce complex transcriptomic responses indicative of phenotypic outcomes in Western fence lizard.
BMC genomics.
2018 Dec; 19(1):877. doi:
10.1186/s12864-018-5270-0
. [PMID: 30518325] - Gaurav Dhingra, Pooja Bansal, Nidhi Dhingra, Susheela Rani, Ashok Kumar Malik. Development of a microextraction by packed sorbent with gas chromatography-mass spectrometry method for quantification of nitroexplosives in aqueous and fluidic biological samples.
Journal of separation science.
2018 Feb; 41(3):639-647. doi:
10.1002/jssc.201700470
. [PMID: 29086477] - Karl J Indest, Steven J Everman, James H Lindsay, Carina M Jung, Jared C Smith, Sandra B Newell. Effects of acute exposures of 2,4,6-trinitrotoluene and inorganic lead on the fecal microbiome of the green anole (Anolis carolinensis).
PloS one.
2018; 13(12):e0208281. doi:
10.1371/journal.pone.0208281
. [PMID: 30521592] - Espen Mariussen, Siv Marie Stornes, Kari Oline Bøifot, Bjørn Olav Rosseland, Brit Salbu, Lene Sørlie Heier. Uptake and effects of 2, 4, 6 - trinitrotoluene (TNT) in juvenile Atlantic salmon (Salmo salar).
Aquatic toxicology (Amsterdam, Netherlands).
2018 Jan; 194(?):176-184. doi:
10.1016/j.aquatox.2017.11.016
. [PMID: 29197231] - Tifany L Torralba-Sanchez, Dave T F Kuo, Herbert E Allen, Dominic M Di Toro. Bioconcentration factors and plant-water partition coefficients of munitions compounds in barley.
Chemosphere.
2017 Dec; 189(?):538-546. doi:
10.1016/j.chemosphere.2017.09.052
. [PMID: 28961539] - Chelsea K Katseanes, Mark A Chappell, Bryan G Hopkins, Brian D Durham, Cynthia L Price, Beth E Porter, Lesley F Miller. Multivariate soil fertility relationships for predicting the environmental persistence of 2,4,6-trinitrotoluene (TNT) and 1,3,5-trinitro-1,3,5-tricyclohexane (RDX) among taxonomically distinct soils.
Journal of environmental management.
2017 Dec; 203(Pt 1):383-390. doi:
10.1016/j.jenvman.2017.08.005
. [PMID: 28818710] - Long Zhang, Elizabeth L Rylott, Neil C Bruce, Stuart E Strand. Phytodetoxification of TNT by transplastomic tobacco (Nicotiana tabacum) expressing a bacterial nitroreductase.
Plant molecular biology.
2017 Sep; 95(1-2):99-109. doi:
10.1007/s11103-017-0639-z
. [PMID: 28762129] - Benjamin Shemer, Ori Koshet, Sharon Yagur-Kroll, Shimshon Belkin. Microbial bioreporters of trace explosives.
Current opinion in biotechnology.
2017 06; 45(?):113-119. doi:
10.1016/j.copbio.2017.03.003
. [PMID: 28319855] - Long Zhang, Ryan Routsong, Quyen Nguyen, Elizabeth L Rylott, Neil C Bruce, Stuart E Strand. Expression in grasses of multiple transgenes for degradation of munitions compounds on live-fire training ranges.
Plant biotechnology journal.
2017 05; 15(5):624-633. doi:
10.1111/pbi.12661
. [PMID: 27862819] - Kyriakos Tzafestas, Maria M Razalan, Ivan Gyulev, Aslam M A Mazari, Bengt Mannervik, Elizabeth L Rylott, Neil C Bruce. Expression of a Drosophila glutathione transferase in Arabidopsis confers the ability to detoxify the environmental pollutant, and explosive, 2,4,6-trinitrotoluene.
The New phytologist.
2017 Apr; 214(1):294-303. doi:
10.1111/nph.14326
. [PMID: 27924627] - Stephen M Via, Julie C Zinnert, Donald R Young. Multiple metrics quantify and differentiate responses of vegetation to composition B.
International journal of phytoremediation.
2017 Jan; 19(1):56-64. doi:
10.1080/15226514.2016.1216080
. [PMID: 27483131] - Chelsea K Katseanes, Mark A Chappell, Bryan G Hopkins, Brian D Durham, Cynthia L Price, Beth E Porter, Lesley F Miller. Multivariate functions for predicting the sorption of 2,4,6-trinitrotoluene (TNT) and 1,3,5-trinitro-1,3,5-tricyclohexane (RDX) among taxonomically distinct soils.
Journal of environmental management.
2016 Nov; 182(?):101-110. doi:
10.1016/j.jenvman.2016.07.043
. [PMID: 27454101] - Seok-Young Oh, Hyun-Su Yoon, Tae-Yong Jeong, Sang Don Kim, Dong-Wook Kim. Reduction and persulfate oxidation of nitro explosives in contaminated soils using Fe-bearing materials.
Environmental science. Processes & impacts.
2016 Jul; 18(7):863-71. doi:
10.1039/c6em00223d
. [PMID: 27327861] - Stephen M Via, Julie C Zinnert. Impacts of explosive compounds on vegetation: A need for community scale investigations.
Environmental pollution (Barking, Essex : 1987).
2016 Jan; 208(Pt B):495-505. doi:
10.1016/j.envpol.2015.10.020
. [PMID: 26552520] - Paul T Charles, Jasmine Davis, André A Adams, George P Anderson, Jinny L Liu, Jeffrey R Deschamps, Anne W Kusterbeck. Multi-channeled single chain variable fragment (scFv) based microfluidic device for explosives detection.
Talanta.
2015 Nov; 144(?):439-44. doi:
10.1016/j.talanta.2015.06.039
. [PMID: 26452845] - Graham Noctor. PLANT BIOCHEMISTRY. Lighting the fuse on toxic TNT.
Science (New York, N.Y.).
2015 Sep; 349(6252):1052-3. doi:
10.1126/science.aad0941
. [PMID: 26339013] - Emily J Johnston, Elizabeth L Rylott, Emily Beynon, Astrid Lorenz, Victor Chechik, Neil C Bruce. Monodehydroascorbate reductase mediates TNT toxicity in plants.
Science (New York, N.Y.).
2015 Sep; 349(6252):1072-5. doi:
10.1126/science.aab3472
. [PMID: 26339024] - O Chusova, H Nõlvak, M Odlare, J Truu, M Truu, K Oopkaup, E Nehrenheim. Biotransformation of pink water TNT on the surface of a low-cost adsorbent pine bark.
Biodegradation.
2015 Sep; 26(5):375-86. doi:
10.1007/s10532-015-9740-7
. [PMID: 26142875] - Chien-Hsun Chen, Tsung-Chi Chen, Xiaoyu Zhou, Robert Kline-Schoder, Paul Sorensen, R Graham Cooks, Zheng Ouyang. Design of portable mass spectrometers with handheld probes: aspects of the sampling and miniature pumping systems.
Journal of the American Society for Mass Spectrometry.
2015 Feb; 26(2):240-7. doi:
10.1007/s13361-014-1026-5
. [PMID: 25404157] - Elizabeth L Rylott, Vanda Gunning, Kyriakos Tzafestas, Helen Sparrow, Emily J Johnston, Andrew S Brentnall, Jennifer R Potts, Neil C Bruce. Phytodetoxification of the environmental pollutant and explosive 2,4,6-trinitrotoluene.
Plant signaling & behavior.
2015; 10(1):e977714. doi:
10.4161/15592324.2014.977714
. [PMID: 25654165] - Stephen M Via, Julie C Zinnert, Donald R Young. Differential effects of two explosive compounds on seed germination and seedling morphology of a woody shrub, Morella cerifera.
Ecotoxicology (London, England).
2015 Jan; 24(1):194-201. doi:
10.1007/s10646-014-1372-x
. [PMID: 25336045] - Wusong Dong, Rui Yang, Jian Yang, Jun Yang, Jiawang Ding, Hui Wu, Jing Zhang. Resveratrol pretreatment protects rat hearts from ischemia/reperfusion injury partly via a NALP3 inflammasome pathway.
International journal of clinical and experimental pathology.
2015; 8(8):8731-41. doi:
. [PMID: 26464617]
- Timothy M Mallon, Jose M Ortiz, William H Candler, Gregory Rogers, Richard Hillburn. Investigation of an outbreak of anemia cases at an Army trinitrotoluene munitions production plant from 2004 to 2005 and subsequent surveillance 2005-2013.
Military medicine.
2014 Nov; 179(11):1374-83. doi:
10.7205/milmed-d-14-00278
. [PMID: 25373069] - Olga Chusova, Hiie Nolvak, Emma Nehrenheim, Jaak Truu, Monica Odlare, Kristjan Oopkaup, Marika Truu. Effect of pine bark on the biotransformation of trinitrotoluene and on the bacterial community structure in a batch experiment.
Environmental technology.
2014 Sep; 35(17-20):2456-65. doi:
10.1080/09593330.2014.909888
. [PMID: 25145200] - Artur Reimer, Sharon Yagur-Kroll, Shimshon Belkin, Shantanu Roy, Jan Roelof van der Meer. Escherichia [corrected] coli ribose binding protein based bioreporters revisited.
Scientific reports.
2014 Jul; 4(?):5626. doi:
10.1038/srep05626
. [PMID: 25005019] - Asjad Ali, Julie C Zinnert, Balasubramaniam Muthukumar, Yanhui Peng, Sang-Min Chung, C Neal Stewart. Physiological and transcriptional responses of Baccharis halimifolia to the explosive 'composition B' (RDX/TNT) in amended soil.
Environmental science and pollution research international.
2014; 21(13):8261-70. doi:
10.1007/s11356-014-2764-4
. [PMID: 24687782] - Padmini Das, Dibyendu Sarkar, Konstantinos C Makris, Pravin Punamiya, Rupali Datta. Effectiveness of urea in enhancing the extractability of 2,4,6-trinitrotoluene from chemically variant soils.
Chemosphere.
2013 Nov; 93(9):1811-7. doi:
10.1016/j.chemosphere.2013.06.028
. [PMID: 23835412] - Jacob K Stanley, Edward J Perkins, Tanwir Habib, Jerre G Sims, Pornsawan Chappell, B Lynn Escalon, Mitchell Wilbanks, Natàlia Garcia-Reyero. The good, the bad, and the toxic: approaching hormesis in Daphnia magna exposed to an energetic compound.
Environmental science & technology.
2013 Aug; 47(16):9424-33. doi:
10.1021/es401115q
. [PMID: 23898970] - Mostafa Naderi, Mostafa Ghanei, Majid Shohrati, Amin Saburi, Mahmoud Babaei, Bita Najafian. Systemic complications of trinitrotoluene (TNT) in exposed workers.
Cutaneous and ocular toxicology.
2013 Mar; 32(1):31-4. doi:
10.3109/15569527.2012.699486
. [PMID: 22994931] - E Nehrenheim, O Muter, M Odlare, A Rodriguez, G Cepurnieks, V Bartkevics. Toxicity assessment and biodegradation potential of water-soluble sludge containing 2,4,6-trinitrotoluene.
Water science and technology : a journal of the International Association on Water Pollution Research.
2013; 68(8):1707-14. doi:
10.2166/wst.2013.416
. [PMID: 24185050] - Cloé Desmet, Loic J Blum, Christophe A Marquette. High-throughput multiplexed competitive immunoassay for pollutants sensing in water.
Analytical chemistry.
2012 Dec; 84(23):10267-76. doi:
10.1021/ac302133u
. [PMID: 23106571] - Craig A McFarland, Larry G Talent, Michael J Quinn, Matthew A Bazar, Mitchell S Wilbanks, Mandana Nisanian, Robert M Gogal, Mark S Johnson, Edward J Perkins, Kurt A Gust. Multiple environmental stressors elicit complex interactive effects in the western fence lizard (Sceloporus occidentalis).
Ecotoxicology (London, England).
2012 Nov; 21(8):2372-90. doi:
10.1007/s10646-012-0993-1
. [PMID: 22975894] - Chao Wang, Mark E Fuller, Charles E Schaefer, Dafang Fu, Yan Jin. Modeling the dissolution of various types of mixed energetic residues under different flow conditions.
Journal of hazardous materials.
2012 Oct; 235-236(?):138-43. doi:
10.1016/j.jhazmat.2012.07.035
. [PMID: 22868750] - Ángel Fernández-Bravo, Patricia Lucena, José Javier Laserna. Selective sampling and laser-induced breakdown spectroscopy (LIBS) analysis of organic explosive residues on polymer surfaces.
Applied spectroscopy.
2012 Oct; 66(10):1197-203. doi:
10.1366/12-06697
. [PMID: 23031703] - Zhihua Yang, Julius Pavlov, Athula B Attygalle. Quantification and remote detection of nitro explosives by helium plasma ionization mass spectrometry (HePI-MS) on a modified atmospheric pressure source designed for electrospray ionization.
Journal of mass spectrometry : JMS.
2012 Jul; 47(7):845-52. doi:
10.1002/jms.3026
. [PMID: 22791251] - Pornpimol Kongtip, Smart Preklang, Witaya Yoosook, Suttinun Chantanakul. Exposure to trinitrotoluene and health effects among workers in an artillery and ammunition plant.
Journal of the Medical Association of Thailand = Chotmaihet thangphaet.
2012 Jun; 95 Suppl 6(?):S154-60. doi:
. [PMID: 23130502]
- Chao Wang, Mark E Fuller, Charles Schaefer, Jeffrey L Caplan, Yan Jin. Dissolution of explosive compounds TNT, RDX, and HMX under continuous flow conditions.
Journal of hazardous materials.
2012 May; 217-218(?):187-93. doi:
10.1016/j.jhazmat.2012.03.012
. [PMID: 22480704] - Olga Muter, Katrina Potapova, Baiba Limane, Kristine Sproge, Ida Jakobsone, Guntis Cepurnieks, Vadims Bartkevics. The role of nutrients in the biodegradation of 2,4,6-trinitrotoluene in liquid and soil.
Journal of environmental management.
2012 May; 98(?):51-5. doi:
10.1016/j.jenvman.2011.12.010
. [PMID: 22245864] - Jimmie C Oxley, James L Smith, Louis J Kirschenbaum, Suvarna Marimiganti, Irena Efremenko, Raya Zach, Yehuda Zeiri. Accumulation of explosives in hair--Part 3: Binding site study.
Journal of forensic sciences.
2012 May; 57(3):623-35. doi:
10.1111/j.1556-4029.2011.02020.x
. [PMID: 22235760] - Steffen Ramin, Michael G Weller. Extremely sensitive and selective antibodies against the explosive 2,4,6-trinitrotoluene by rational design of a structurally optimized hapten.
Journal of molecular recognition : JMR.
2012 Feb; 25(2):89-97. doi:
10.1002/jmr.2162
. [PMID: 22290770] - Elaine N Ribeiro, Flávio Teixeira Da Silva, Teresa Cristina Brazil De Paiva. Ecotoxicological evaluation of wastewater from 2.4.6-TNT production.
Journal of environmental science and health. Part A, Toxic/hazardous substances & environmental engineering.
2012; 47(2):184-91. doi:
10.1080/10934529.2012.640550
. [PMID: 22242870] - Adcharee Karnjanapiboonwong, Ruipu Mu, Yuan Yuan, Honglan Shi, Yinfa Ma, Joel G Burken. Plant tissue analysis for explosive compounds in phytoremediation and phytoforensics.
Journal of environmental science and health. Part A, Toxic/hazardous substances & environmental engineering.
2012; 47(14):2219-29. doi:
10.1080/10934529.2012.707540
. [PMID: 22934993] - Waraporn Jiamjitrpanich, Preeda Parkpian, Chongrak Polprasert, François Laurent, Rachain Kosanlavit. The tolerance efficiency of Panicum maximum and Helianthus annuus in TNT-contaminated soil and nZVI-contaminated soil.
Journal of environmental science and health. Part A, Toxic/hazardous substances & environmental engineering.
2012; 47(11):1506-13. doi:
10.1080/10934529.2012.680320
. [PMID: 22702809] - Maria de la Paz Celorio-Mancera, Seung-Joon Ahn, Heiko Vogel, David G Heckel. Transcriptional responses underlying the hormetic and detrimental effects of the plant secondary metabolite gossypol on the generalist herbivore Helicoverpa armigera.
BMC genomics.
2011 Nov; 12(?):575. doi:
10.1186/1471-2164-12-575
. [PMID: 22111916] - Chao Wang, Volha Lazouskaya, Mark E Fuller, Jeffrey L Caplan, Charles E Schaefer, Yan Jin. Dissolution of microscale energetic residues in saturated porous media: visualization and quantification at the pore-scale by spectral confocal microscopy.
Environmental science & technology.
2011 Oct; 45(19):8352-8. doi:
10.1021/es201649k
. [PMID: 21861475] - Elizabeth L Rylott, Maria V Budarina, Ann Barker, Astrid Lorenz, Stuart E Strand, Neil C Bruce. Engineering plants for the phytoremediation of RDX in the presence of the co-contaminating explosive TNT.
The New phytologist.
2011 Oct; 192(2):405-13. doi:
10.1111/j.1469-8137.2011.03807.x
. [PMID: 21729248] - Elizabeth L Rylott, Astrid Lorenz, Neil C Bruce. Biodegradation and biotransformation of explosives.
Current opinion in biotechnology.
2011 Jun; 22(3):434-40. doi:
10.1016/j.copbio.2010.10.014
. [PMID: 21094036] - Sigrid Husar, Franz Berthiller, Shozo Fujioka, Wilfried Rozhon, Mamoona Khan, Florian Kalaivanan, Luisa Elias, Gillian S Higgins, Yi Li, Rainer Schuhmacher, Rudolf Krska, Hideharu Seto, Fabian E Vaistij, Dianna Bowles, Brigitte Poppenberger. Overexpression of the UGT73C6 alters brassinosteroid glucoside formation in Arabidopsis thaliana.
BMC plant biology.
2011 Mar; 11(?):51. doi:
10.1186/1471-2229-11-51
. [PMID: 21429230] - Youping Deng, Sharon A Meyer, Xin Guan, Barbara Lynn Escalon, Junmei Ai, Mitchell S Wilbanks, Ruth Welti, Natàlia Garcia-Reyero, Edward J Perkins. Analysis of common and specific mechanisms of liver function affected by nitrotoluene compounds.
PloS one.
2011 Feb; 6(2):e14662. doi:
10.1371/journal.pone.0014662
. [PMID: 21346803] - Yunhua Chi, Yansong Cheng, Jeevanandam Vanitha, Nadimuthu Kumar, Rengasamy Ramamoorthy, Srinivasan Ramachandran, Shu-Ye Jiang. Expansion mechanisms and functional divergence of the glutathione s-transferase family in sorghum and other higher plants.
DNA research : an international journal for rapid publication of reports on genes and genomes.
2011 Feb; 18(1):1-16. doi:
10.1093/dnares/dsq031
. [PMID: 21169340] - E Nehrenheim, M Odlare, B Allard. Retention of 2,4,6-trinitrotoluene and heavy metals from industrial waste water by using the low cost adsorbent pine bark in a batch experiment.
Water science and technology : a journal of the International Association on Water Pollution Research.
2011; 64(10):2052-8. doi:
10.2166/wst.2011.603
. [PMID: 22105128] - Neil J Rowan. Defining established and emerging microbial risks in the aquatic environment: current knowledge, implications, and outlooks.
International journal of microbiology.
2011; 2011(?):462832. doi:
10.1155/2011/462832
. [PMID: 20976256] - Kevin J Morey, Mauricio S Antunes, Kirk D Albrecht, Tessa A Bowen, Jared F Troupe, Keira L Havens, June I Medford. Developing a synthetic signal transduction system in plants.
Methods in enzymology.
2011; 497(?):581-602. doi:
10.1016/b978-0-12-385075-1.00025-1
. [PMID: 21601104] - Youping Deng, David R Johnson, Xin Guan, Choo Y Ang, Junmei Ai, Edward J Perkins. In vitro gene regulatory networks predict in vivo function of liver.
BMC systems biology.
2010 Nov; 4(?):153. doi:
10.1186/1752-0509-4-153
. [PMID: 21073692] - Premysl Landa, Helena Storchova, Jan Hodek, Radomira Vankova, Radka Podlipna, Petr Marsik, Jaroslava Ovesna, Tomas Vanek. Transferases and transporters mediate the detoxification and capacity to tolerate trinitrotoluene in Arabidopsis.
Functional & integrative genomics.
2010 Nov; 10(4):547-59. doi:
10.1007/s10142-010-0176-1
. [PMID: 20532806] - Jennifer M Duringer, A Morrie Craig, David J Smith, Rufus L Chaney. Uptake and transformation of soil [14C]-trinitrotoluene by cool-season grasses.
Environmental science & technology.
2010 Aug; 44(16):6325-30. doi:
10.1021/es903671n
. [PMID: 20666491] - Bibin Paulose, Suganthi Kandasamy, Om Parkash Dhankher. Expression profiling of Crambe abyssinica under arsenate stress identifies genes and gene networks involved in arsenic metabolism and detoxification.
BMC plant biology.
2010 Jun; 10(?):108. doi:
10.1186/1471-2229-10-108
. [PMID: 20546591] - Padmini Das, Rupali Datta, Konstantinos C Makris, Dibyendu Sarkar. Vetiver grass is capable of removing TNT from soil in the presence of urea.
Environmental pollution (Barking, Essex : 1987).
2010 May; 158(5):1980-3. doi:
10.1016/j.envpol.2009.12.011
. [PMID: 20047780] - Rudy Huis, Simon Hawkins, Godfrey Neutelings. Selection of reference genes for quantitative gene expression normalization in flax (Linum usitatissimum L.).
BMC plant biology.
2010 Apr; 10(?):71. doi:
10.1186/1471-2229-10-71
. [PMID: 20403198] - Heather C Rowe, Justin W Walley, Jason Corwin, Eva K-F Chan, Katayoon Dehesh, Daniel J Kliebenstein. Deficiencies in jasmonate-mediated plant defense reveal quantitative variation in Botrytis cinerea pathogenesis.
PLoS pathogens.
2010 Apr; 6(4):e1000861. doi:
10.1371/journal.ppat.1000861
. [PMID: 20419157] - David Weisman, Merianne Alkio, Adán Colón-Carmona. Transcriptional responses to polycyclic aromatic hydrocarbon-induced stress in Arabidopsis thaliana reveal the involvement of hormone and defense signaling pathways.
BMC plant biology.
2010 Apr; 10(?):59. doi:
10.1186/1471-2229-10-59
. [PMID: 20377843] - Ralph Kissen, Per Winge, Diem Hong Thi Tran, Tommy S Jørstad, Trond R Størseth, Tone Christensen, Atle M Bones. Transcriptional profiling of an Fd-GOGAT1/GLU1 mutant in Arabidopsis thaliana reveals a multiple stress response and extensive reprogramming of the transcriptome.
BMC genomics.
2010 Mar; 11(?):190. doi:
10.1186/1471-2164-11-190
. [PMID: 20307264] - Laura B Brentner, Sachiyo T Mukherji, Susan A Walsh, Jerald L Schnoor. Localization of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4,6-trinitrotoluene (TNT) in poplar and switchgrass plants using phosphor imager autoradiography.
Environmental pollution (Barking, Essex : 1987).
2010 Feb; 158(2):470-5. doi:
10.1016/j.envpol.2009.08.022
. [PMID: 19782446] - Konstantinos C Makris, Dibyendu Sarkar, Rupali Datta. Coupling indigenous biostimulation and phytoremediation for the restoration of 2,4,6-trinitrotoluene-contaminated sites.
Journal of environmental monitoring : JEM.
2010 Feb; 12(2):399-403. doi:
10.1039/b908162c
. [PMID: 20145878] - John Mitchell. Small molecule immunosensing using surface plasmon resonance.
Sensors (Basel, Switzerland).
2010; 10(8):7323-46. doi:
10.3390/s100807323
. [PMID: 22163605] - Murali R Rao, Matthew D Halfhill, Laura G Abercrombie, Priya Ranjan, Jason M Abercrombie, Julia S Gouffon, Arnold M Saxton, C Neal Stewart. Phytoremediation and phytosensing of chemical contaminants, RDX and TNT: identification of the required target genes.
Functional & integrative genomics.
2009 Nov; 9(4):537-47. doi:
10.1007/s10142-009-0125-z
. [PMID: 19543758] - Ashok V Bankar, Ameeta R Kumar, Smita S Zinjarde. Environmental and industrial applications of Yarrowia lipolytica.
Applied microbiology and biotechnology.
2009 Oct; 84(5):847-65. doi:
10.1007/s00253-009-2156-8
. [PMID: 19669134] - Emily R Beynon, Zoe C Symons, Rosamond G Jackson, Astrid Lorenz, Elizabeth L Rylott, Neil C Bruce. The role of oxophytodienoate reductases in the detoxification of the explosive 2,4,6-trinitrotoluene by Arabidopsis.
Plant physiology.
2009 Sep; 151(1):253-61. doi:
10.1104/pp.109.141598
. [PMID: 19605548] - Suzanne C Bell, Melissa Gayton-Ely, Corey M Nida. Bioassays for bomb-makers: proof of concept.
Analytical and bioanalytical chemistry.
2009 Sep; 395(2):401-9. doi:
10.1007/s00216-009-2851-4
. [PMID: 19484462] - Martina McGuinness, David Dowling. Plant-associated bacterial degradation of toxic organic compounds in soil.
International journal of environmental research and public health.
2009 08; 6(8):2226-47. doi:
10.3390/ijerph6082226
. [PMID: 19742157] - Husain Qayyum, Husain Maroof, Kulshrestha Yasha. Remediation and treatment of organopollutants mediated by peroxidases: a review.
Critical reviews in biotechnology.
2009; 29(2):94-119. doi:
10.1080/07388550802685306
. [PMID: 19514892] - Yan Zhang, Xiaoxiao Ma, Sichun Zhang, Chengdui Yang, Zheng Ouyang, Xinrong Zhang. Direct detection of explosives on solid surfaces by low temperature plasma desorption mass spectrometry.
The Analyst.
2009 Jan; 134(1):176-81. doi:
10.1039/b816230a
. [PMID: 19082190] - M Gogoberidze, G Zaalishvili, M Ramishvili, M Gogava, N Chelidze. [Ultrastructural study of TNT effect on the callus cells and the cells of intact plants of Yucca gloriosa L].
TSitologiia i genetika.
2009 Jan; 43(1):23-7. doi:
"
. [PMID: 19663311] - Jason D Harper, Nicholas A Charipar, Christopher C Mulligan, Xinrong Zhang, R Graham Cooks, Zheng Ouyang. Low-temperature plasma probe for ambient desorption ionization.
Analytical chemistry.
2008 Dec; 80(23):9097-104. doi:
10.1021/ac801641a
. [PMID: 19551980] - Fernando Gandia-Herrero, Astrid Lorenz, Tony Larson, Ian A Graham, Dianna J Bowles, Elizabeth L Rylott, Neil C Bruce. Detoxification of the explosive 2,4,6-trinitrotoluene in Arabidopsis: discovery of bifunctional O- and C-glucosyltransferases.
The Plant journal : for cell and molecular biology.
2008 Dec; 56(6):963-74. doi:
10.1111/j.1365-313x.2008.03653.x
. [PMID: 18702669] - Olga Muter, Aleksandrs Versilovskis, Rita Scherbaka, Mara Grube, Dzidra Zarina. Effect of plant extract on the degradation of nitroaromatic compounds by soil microorganisms.
Journal of industrial microbiology & biotechnology.
2008 Nov; 35(11):1539-43. doi:
10.1007/s10295-008-0455-1
. [PMID: 18712534] - Nari Talaty, Christopher C Mulligan, Dina R Justes, Ayanna U Jackson, Robert J Noll, R Graham Cooks. Fabric analysis by ambient mass spectrometry for explosives and drugs.
The Analyst.
2008 Nov; 133(11):1532-40. doi:
10.1039/b807934j
. [PMID: 18936830] - Pieter Van Dillewijn, José L Couselo, Elena Corredoira, Antonio Delgado, Rolf-Michael Wittich, Antonio Ballester, Juan L Ramos. Bioremediation of 2,4,6-trinitrotoluene by bacterial nitroreductase expressing transgenic aspen.
Environmental science & technology.
2008 Oct; 42(19):7405-10. doi:
10.1021/es801231w
. [PMID: 18939578] - Laura B Brentner, Sachiyo T Mukherji, Kate M Merchie, Jong Moon Yoon, Jerald L Schnoor, Benoit Van Aken. Expression of glutathione S-transferases in poplar trees (Populus trichocarpa) exposed to 2,4,6-trinitrotoluene (TNT).
Chemosphere.
2008 Oct; 73(5):657-62. doi:
10.1016/j.chemosphere.2008.07.059
. [PMID: 18774158] - Norka E Paden, Ernest E Smith, Ronald J Kendall. Acute toxicity of 2,4,6-trinitrotoluene, 2,4-dinitrotoluene, and 2,6-dinitrotoluene in the adult bullfrog (Lithobates catesbeiana).
Bulletin of environmental contamination and toxicology.
2008 Jun; 80(6):487-91. doi:
10.1007/s00128-008-9467-9
. [PMID: 18551238] - Craig A McFarland, Michael J Quinn, Matthew A Bazar, Amera K Remick, Larry G Talent, Mark S Johnson. Toxicity of oral exposure to 2,4,6-trinitrotoluene in the western fence lizard (Sceloporus occidentalis).
Environmental toxicology and chemistry.
2008 May; 27(5):1102-11. doi:
10.1897/07-312.1
. [PMID: 18419183] - Emma R Travis, Neil C Bruce, Susan J Rosser. Microbial and plant ecology of a long-term TNT-contaminated site.
Environmental pollution (Barking, Essex : 1987).
2008 May; 153(1):119-26. doi:
10.1016/j.envpol.2007.07.015
. [PMID: 17825462] - Brittany R Flokstra, Benoit Van Aken, Jerald L Schnoor. Microtox toxicity test: detoxification of TNT and RDX contaminated solutions by poplar tissue cultures.
Chemosphere.
2008 May; 71(10):1970-6. doi:
10.1016/j.chemosphere.2007.12.020
. [PMID: 18400248]