3,4',7-Trihydroxyflavone (BioDeep_00000003595)

Main id: BioDeep_00000398537

 

human metabolite PANOMIX_OTCML-2023


代谢物信息卡片


3,7-Dihydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one

化学式: C15H10O5 (270.052821)
中文名称: 5-脱氧莰非醇
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: c1(ccc2c(c1)oc(c(c2=O)O)c1ccc(cc1)O)O
InChI: InChI=1S/C15H10O5/c16-9-3-1-8(2-4-9)15-14(19)13(18)11-6-5-10(17)7-12(11)20-15/h1-7,16-17,19H

描述信息

3,4,7-Trihydroxyflavone is found in chickpea. 3,4,7-Trihydroxyflavone is isolated from Cicer arietinum (chickpea).
Isolated from Cicer arietinum (chickpea). 3,4,7-Trihydroxyflavone is found in chickpea, lentils, and pulses.
3,7,4'-Trihydroxyflavone, isolated from Rhus javanica var. roxburghiana, is a flavonoid with DNA strand-scission activity[1].
3,7,4'-Trihydroxyflavone, isolated from Rhus javanica var. roxburghiana, is a flavonoid with DNA strand-scission activity[1].

同义名列表

11 个代谢物同义名

3,7-Dihydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one; 3,7-dihydroxy-2-(4-hydroxyphenyl)-4H-chromen-4-one; 3,7,4-trihydroxyflavone; 3,7,4-Trihydroxyflavone; 3,4,7-Trihydroxyflavone; 4,7-Dihydroxyflavonol; 5-Deoxykaempferol; RESOKAEMPFEROL; Resokaempherol; 5-Deoxykampferol; 3,7,4'-Trihydroxyflavone



数据库引用编号

16 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

22 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Myeong Hyeon Park, In Sook Kim, Sun-A Kim, Chun-Soo Na, Cheol Yi Hong, Mi-Sook Dong, Hye Hyun Yoo. Inhibitory effect of Rhus verniciflua Stokes extract on human aromatase activity; butin is its major bioactive component. Bioorganic & medicinal chemistry letters. 2014 Apr; 24(7):1730-3. doi: 10.1016/j.bmcl.2014.02.039. [PMID: 24630560]
  • S Saponara, E Carosati, P Mugnai, G Sgaragli, F Fusi. The flavonoid scaffold as a template for the design of modulators of the vascular Ca(v) 1.2 channels. British journal of pharmacology. 2011 Nov; 164(6):1684-97. doi: 10.1111/j.1476-5381.2011.01476.x. [PMID: 21557738]
  • Phongsak Innok, Thitima Rukachaisirikul, Souwalak Phongpaichit, Apichart Suksamrarn. Fuscacarpans A-C, new pterocarpans from the stems of Erythrina fusca. Fitoterapia. 2010 Sep; 81(6):518-23. doi: 10.1016/j.fitote.2010.01.009. [PMID: 20079815]
  • Chun-Nan Lin, Hui-Ling Chen, Ming-Hong Yen. Flavonoids with DNA strand-scission activity from Rhus javanica var. roxburghiana. Fitoterapia. 2008 Jan; 79(1):32-6. doi: 10.1016/j.fitote.2007.07.008. [PMID: 17855017]
  • M Abou-Shoer, G E Ma, X H Li, N M Koonchanok, R L Geahlen, C J Chang. Flavonoids from Koelreuteria henryi and other sources as protein-tyrosine kinase inhibitors. Journal of natural products. 1993 Jun; 56(6):967-9. doi: 10.1021/np50096a027. [PMID: 8350096]