NCBI Taxonomy: 170436
Udotea (ncbi_taxid: 170436)
found 62 associated metabolites at genus taxonomy rank level.
Ancestor: Udoteae
Child Taxonomies: Udotea luna, Udotea dotyi, Udotea dixonii, Udotea looensis, Udotea norrisii, Udotea argentea, Udotea javensis, Udotea spinulosa, Udotea geppiorum, Udotea flabellum, Udotea tenuifolia, Udotea xishaensis, Udotea unistratea, Udotea abbottiorum, Udotea cyathiformis, Udotea conglutinata, Udotea fragilifolia, Udotea occidentalis, unclassified Udotea
trans-zeatin riboside
C15H21N5O5 (351.15426160000004)
Trans-zeatin riboside, also known as (E)-N-(4-hydroxy-3-methyl-2-butenyl)adenosine or 9-beta-D-ribofuranosyl-trans-zeatin, is a member of the class of compounds known as purine nucleosides. Purine nucleosides are compounds comprising a purine base attached to a ribosyl or deoxyribosyl moiety. Trans-zeatin riboside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Trans-zeatin riboside can be found in a number of food items such as winter squash, plains prickly pear, dill, and common buckwheat, which makes trans-zeatin riboside a potential biomarker for the consumption of these food products. D006133 - Growth Substances > D010937 - Plant Growth Regulators > D003583 - Cytokinins Acquisition and generation of the data is financially supported in part by CREST/JST. trans-Zeatinriboside is a type of cytokinin precursor, acts as a major long-distance signalling form in xylem vessels, regulates leaf size and meristem activity-related traits. trans-Zeatinriboside is a type of cytokinin precursor, acts as a major long-distance signalling form in xylem vessels, regulates leaf size and meristem activity-related traits. trans-Zeatinriboside is a type of cytokinin precursor, acts as a major long-distance signalling form in xylem vessels, regulates leaf size and meristem activity-related traits.
Fucosterol
Characteristic sterol of seaweeds; isolated from bladderwrack Fucus vesiculosus. Fucosterol is found in lemon grass and coconut. Fucosterol is found in coconut. Characteristic sterol of seaweeds; isolated from bladderwrack Fucus vesiculosu Fucosterol is a sterol isolated from algae, seaweed or diatoms.?Fucosterol exhibits various biological activities, including antioxidant, anti-adipogenic, blood cholesterol reducing, anti-diabetic and anti-cancer activities[1][2]. Fucosterol regulates adipogenesis via inhibition of?PPARα?and?C/EBPα?expression and can be used for anti-obesity agents development research[1]. Fucosterol is a sterol isolated from algae, seaweed or diatoms.?Fucosterol exhibits various biological activities, including antioxidant, anti-adipogenic, blood cholesterol reducing, anti-diabetic and anti-cancer activities[1][2]. Fucosterol regulates adipogenesis via inhibition of?PPARα?and?C/EBPα?expression and can be used for anti-obesity agents development research[1].
Clionasterol
Clionasterol is a triterpenoid isolated from the Indian marine red alga Gracilaria edulis, the sponge Veronica aerophoba and the Kenyan Marine Green. Macroalga Halimeda macroloba. It is a potent inhibitor of complement component C1. (PMID 12624828). D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites
Betaine
Betaine or trimethylglycine is a methylated derivative of glycine. It functions as a methyl donor in that it carries and donates methyl functional groups to facilitate necessary chemical processes. The donation of methyl groups is important to proper liver function, cellular replication, and detoxification reactions. Betaine also plays a role in the manufacture of carnitine and serves to protect the kidneys from damage. Betaine has also been of interest for its role in osmoregulation. As a drug, betaine hydrochloride has been used as a source of hydrochloric acid in the treatment of hypochlorhydria. Betaine has also been used in the treatment of liver disorders, for hyperkalemia, for homocystinuria, and for gastrointestinal disturbances. (From Martindale, The Extra Pharmacopoeia, 30th Ed, p1341). Betaine is found in many foods, some of which are potato puffs, poppy, hazelnut, and garden cress. Betaine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=107-43-7 (retrieved 2024-06-28) (CAS RN: 107-43-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Fucosterol
A 3beta-sterol consisting of stigmastan-3beta-ol with double bonds at positions 5 and 24(28). (3b,5a,24(28)e)-stigmasta-7,24(28)-dien-3-ol belongs to stigmastanes and derivatives class of compounds. Those are sterol lipids with a structure based on the stigmastane skeleton, which consists of a cholestane moiety bearing an ethyl group at the carbon atom C24 (3b,5a,24(28)e)-stigmasta-7,24(28)-dien-3-ol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). (3b,5a,24(28)e)-stigmasta-7,24(28)-dien-3-ol can be found in horseradish tree and sunflower, which makes (3b,5a,24(28)e)-stigmasta-7,24(28)-dien-3-ol a potential biomarker for the consumption of these food products. Fucosterol is a sterol isolated from algae, seaweed or diatoms.?Fucosterol exhibits various biological activities, including antioxidant, anti-adipogenic, blood cholesterol reducing, anti-diabetic and anti-cancer activities[1][2]. Fucosterol regulates adipogenesis via inhibition of?PPARα?and?C/EBPα?expression and can be used for anti-obesity agents development research[1]. Fucosterol is a sterol isolated from algae, seaweed or diatoms.?Fucosterol exhibits various biological activities, including antioxidant, anti-adipogenic, blood cholesterol reducing, anti-diabetic and anti-cancer activities[1][2]. Fucosterol regulates adipogenesis via inhibition of?PPARα?and?C/EBPα?expression and can be used for anti-obesity agents development research[1].
clionasterol
A member of the class of phytosterols that is poriferast-5-ene carrying a beta-hydroxy substituent at position 3. D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites