SN38 glucuronide (BioDeep_00001869507)

Main id: BioDeep_00000008634

 


代谢物信息卡片


SN38 glucuronide

化学式: C28H28N2O11 (568.1693)
中文名称:
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: CCC1=C2CN3C(=CC4=C(C3=O)COC(=O)C4(CC)O)C2=NC5=C1C=C(C=C5)OC6C(C(C(C(O6)C(=O)O)O)O)O
InChI: InChI=1S/C28H28N2O11/c1-3-12-13-7-11(40-26-22(33)20(31)21(32)23(41-26)25(35)36)5-6-17(13)29-19-14(12)9-30-18(19)8-16-15(24(30)34)10-39-27(37)28(16,38)4-2/h5-8,20-23,26,31-33,38H,3-4,9-10H2,1-2H3,(H,35,36)/t20-,21-,22+,23-,26+,28-/m0/s1

描述信息

同义名列表

1 个代谢物同义名

SN38 glucuronide



数据库引用编号

7 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

0 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 5 ABCB1, CES1, CES2, CYP3A4, TLR4
Peripheral membrane protein 1 ACHE
Endosome membrane 1 TLR4
Endoplasmic reticulum membrane 4 CYP3A4, UGT1A1, UGT1A7, UGT1A9
Mitochondrion membrane 1 ABCG2
Nucleus 5 ACHE, CES1, DLST, TACSTD2, TOP1
cytosol 4 CES1, CES2, DLST, TACSTD2
mitochondrial membrane 1 ABCG2
nucleoplasm 3 ABCG2, DLST, TOP1
Cell membrane 6 ABCB1, ABCC1, ABCG2, ACHE, SLCO1B1, TLR4
Multi-pass membrane protein 7 ABCB1, ABCC1, ABCC2, ABCC3, ABCG2, SLC45A2, SLCO1B1
Synapse 1 ACHE
cell surface 4 ABCB1, ABCC2, ACHE, TLR4
Golgi apparatus 1 ACHE
neuromuscular junction 1 ACHE
plasma membrane 9 ABCB1, ABCC1, ABCC2, ABCC3, ABCG2, ACHE, SLCO1B1, TLR4, UGT1A1
Membrane 15 ABCB1, ABCC1, ABCC2, ABCC3, ABCG2, ACHE, CYP3A4, DLST, SLC45A2, SLCO1B1, TACSTD2, TLR4, UGT1A1, UGT1A7, UGT1A9
apical plasma membrane 4 ABCB1, ABCC1, ABCC2, ABCG2
basolateral plasma membrane 3 ABCC1, ABCC3, SLCO1B1
extracellular exosome 4 ABCB1, ABCC1, CES2, TACSTD2
endoplasmic reticulum 5 CES1, CES2, UGT1A1, UGT1A7, UGT1A9
extracellular space 4 ACHE, CSF3, IFNA1, TACSTD2
lysosomal lumen 1 CSF3
perinuclear region of cytoplasm 3 ACHE, TLR4, UGT1A1
intercellular canaliculus 1 ABCC2
mitochondrion 1 DLST
intracellular membrane-bounded organelle 2 CES2, CYP3A4
Microsome membrane 1 CYP3A4
Single-pass type I membrane protein 2 TACSTD2, TLR4
Secreted 3 ACHE, CSF3, IFNA1
extracellular region 2 ACHE, CSF3
Single-pass membrane protein 3 UGT1A1, UGT1A7, UGT1A9
Mitochondrion matrix 1 DLST
mitochondrial matrix 1 DLST
Extracellular side 1 ACHE
external side of plasma membrane 1 TLR4
perikaryon 1 TOP1
nucleolus 1 TOP1
Melanosome membrane 1 SLC45A2
P-body 1 TOP1
Early endosome 1 TLR4
Apical cell membrane 3 ABCB1, ABCC2, ABCG2
Cytoplasm, perinuclear region 1 UGT1A1
Membrane raft 1 ABCG2
basement membrane 1 ACHE
lateral plasma membrane 2 ABCC1, TACSTD2
Cell projection, ruffle 1 TLR4
ruffle 1 TLR4
receptor complex 1 TLR4
phagocytic cup 1 TLR4
Chromosome 1 TOP1
brush border membrane 1 ABCG2
Nucleus, nucleolus 1 TOP1
Basolateral cell membrane 2 ABCC3, SLCO1B1
Lipid-anchor, GPI-anchor 1 ACHE
fibrillar center 1 TOP1
Lipid droplet 2 CES1, CES2
Nucleus, nucleoplasm 1 TOP1
side of membrane 1 ACHE
basal plasma membrane 4 ABCC1, ABCC3, SLCO1B1, TACSTD2
lipopolysaccharide receptor complex 1 TLR4
endoplasmic reticulum lumen 2 CES1, CES2
male germ cell nucleus 1 TOP1
oxoglutarate dehydrogenase complex 1 DLST
synaptic cleft 1 ACHE
Basal cell membrane 2 ABCC3, SLCO1B1
protein-DNA complex 1 TOP1
external side of apical plasma membrane 2 ABCB1, ABCG2
oxidoreductase complex 1 DLST
endocytic vesicle lumen 1 CSF3
endoplasmic reticulum chaperone complex 1 UGT1A1
oxoadipate dehydrogenase complex 1 DLST
[Isoform H]: Cell membrane 1 ACHE
cytochrome complex 1 UGT1A1


文献列表

  • Akitomo Yokokawa, Shun Kaneko, Sayuri Endo, Yuki Minowa, Hideaki Ayukawa, Ryohei Hirano, Fumio Nagashima, Daisuke Naruge, Naohiro Okano, Takaaki Kobayashi, Kirio Kawai, Junji Furuse, Takashi Furuta, Hiromi Shibasaki. Effect of UGT1A1, CYP3A and CES Activities on the Pharmacokinetics of Irinotecan and its Metabolites in Patients with UGT1A1 Gene Polymorphisms. European journal of drug metabolism and pharmacokinetics. 2021 Mar; 46(2):317-324. doi: 10.1007/s13318-021-00675-3. [PMID: 33619631]
  • Chalirmporn Atasilp, Pichai Chansriwong, Ekapob Sirachainan, Thanyanan Reungwetwattana, Apichaya Puangpetch, Santirhat Prommas, Suwannee Sirilerttrakul, Budsaba Rerkarmnuaychoke, Sansanee Wongwaisayawan, Chonlaphat Sukasem. Determination of irinotecan, SN-38 and SN-38 glucuronide using HPLC/MS/MS: Application in a clinical pharmacokinetic and personalized medicine in colorectal cancer patients. Journal of clinical laboratory analysis. 2018 Jan; 32(1):. doi: 10.1002/jcla.22217. [PMID: 28393405]
  • Takaaki Kodawara, Takashi Higashi, Yutaka Negoro, Yukio Kamitani, Toshiaki Igarashi, Kyohei Watanabe, Hitoshi Tsukamoto, Ryoichi Yano, Mikio Masada, Hiromichi Iwasaki, Toshiaki Nakamura. The Inhibitory Effect of Ciprofloxacin on the β-Glucuronidase-mediated Deconjugation of the Irinotecan Metabolite SN-38-G. Basic & clinical pharmacology & toxicology. 2016 May; 118(5):333-7. doi: 10.1111/bcpt.12511. [PMID: 26518357]
  • Sumit Basu, Min Zeng, Taijun Yin, Song Gao, Ming Hu. Development and validation of an UPLC-MS/MS method for the quantification of irinotecan, SN-38 and SN-38 glucuronide in plasma, urine, feces, liver and kidney: Application to a pharmacokinetic study of irinotecan in rats. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2016 Mar; 1015-1016(?):34-41. doi: 10.1016/j.jchromb.2016.02.012. [PMID: 26894853]
  • Sander A Huisman, Peter de Bruijn, Inge M Ghobadi Moghaddam-Helmantel, Jan N M IJzermans, Erik A C Wiemer, Ron H J Mathijssen, Ron W F de Bruin. Fasting protects against the side effects of irinotecan treatment but does not affect anti-tumour activity in mice. British journal of pharmacology. 2016 Mar; 173(5):804-14. doi: 10.1111/bph.13317. [PMID: 26332723]
  • Romain Coriat, Sandrine J Faivre, Olivier Mir, Chantal Dreyer, Stanislas Ropert, Mohammed Bouattour, Robert Desjardins, François Goldwasser, Eric Raymond. Pharmacokinetics and safety of DTS-108, a human oligopeptide bound to SN-38 with an esterase-sensitive cross-linker in patients with advanced malignancies: a Phase I study. International journal of nanomedicine. 2016 ; 11(?):6207-6216. doi: 10.2147/ijn.s110274. [PMID: 27920527]
  • Mélanie Rouleau, Joannie Roberge, Sarah-Ann Falardeau, Lyne Villeneuve, Chantal Guillemette. The relative protein abundance of UGT1A alternative splice variants as a key determinant of glucuronidation activity in vitro. Drug metabolism and disposition: the biological fate of chemicals. 2013 Apr; 41(4):694-7. doi: 10.1124/dmd.112.050468. [PMID: 23360619]
  • Tomoharu Yokooji, Yoshihiro Kawabe, Nobuhiro Mori, Teruo Murakami. Effect of genistein, a natural soy isoflavone, on the pharmacokinetics and intestinal toxicity of irinotecan hydrochloride in rats. The Journal of pharmacy and pharmacology. 2013 Feb; 65(2):280-91. doi: 10.1111/j.2042-7158.2012.01592.x. [PMID: 23278696]
  • Xiaohong Chen, Cody J Peer, Raul Alfaro, Tian Tian, Shawn D Spencer, William D Figg. Quantification of irinotecan, SN38, and SN38G in human and porcine plasma by ultra high-performance liquid chromatography-tandem mass spectrometry and its application to hepatic chemoembolization. Journal of pharmaceutical and biomedical analysis. 2012 Mar; 62(?):140-8. doi: 10.1016/j.jpba.2012.01.008. [PMID: 22305081]
  • Giuseppe Corona, Caterina Elia, Bruno Casetta, Giuseppe Toffoli. Fast liquid chromatography-tandem mass spectrometry method for routine assessment of irinotecan metabolic phenotype. Therapeutic drug monitoring. 2010 Oct; 32(5):638-46. doi: 10.1097/ftd.0b013e3181ec3bf5. [PMID: 20683392]
  • Yukiko Maeda, Akinobu Hamada, Emiko Sanematsu, Ji-ichro Sasaki, Koji Yokoo, Asumi Hira, Hideyuki Saito. Co-administration of irinotecan decreases the plasma concentration of an active metabolite of amrubicin, amrubicinol in rats. Cancer chemotherapy and pharmacology. 2010 Apr; 65(5):953-9. doi: 10.1007/s00280-009-1102-x. [PMID: 19697031]
  • Lie-Chwen Lin, Meng-Nan Wang, Tung-Hu Tsai. Food-drug interaction of (-)-epigallocatechin-3-gallate on the pharmacokinetics of irinotecan and the metabolite SN-38. Chemico-biological interactions. 2008 Aug; 174(3):177-82. doi: 10.1016/j.cbi.2008.05.033. [PMID: 18579105]
  • Ze-Ping Hu, Xiao-Xia Yang, Xiao Chen, Jie Cao, Eli Chan, Wei Duan, Min Huang, Xue-Qing Yu, Jing-Yuan Wen, Shu-Feng Zhou. A mechanistic study on altered pharmacokinetics of irinotecan by St. John's wort. Current drug metabolism. 2007 Feb; 8(2):157-71. doi: 10.2174/138920007779815995. [PMID: 17305494]
  • Dagmar E Ettlinger, Markus Mitterhauser, Wolfgang Wadsak, Eva Ostermann, André Farkouh, Johann Schueller, Martin Czejka. In vivo disposition of irinotecan (CPT-11) and its metabolites in combination with the monoclonal antibody cetuximab. Anticancer research. 2006 Mar; 26(2B):1337-41. doi: . [PMID: 16619542]
  • Martin Czejka, Johannes Schueller, Katharina Hauer, Eva Ostermann. Pharmacokinetics and metabolism of irinotecan combined with capecitabine in patients with advanced colorectal cancer. Anticancer research. 2005 Jul; 25(4):2985-90. doi: NULL. [PMID: 16080556]
  • Tatsuya Itoh, Shirou Itagaki, Kentaro Sasaki, Takeshi Hirano, Isao Takemoto, Ken Iseki. Pharmacokinetic modulation of irinotecan metabolites by sulphobromophthalein in rats. The Journal of pharmacy and pharmacology. 2004 Jun; 56(6):809-12. doi: 10.1211/0022357023420. [PMID: 15231047]
  • Gianluca Masi, Alfredo Falcone, Antonello Di Paolo, Giacomo Allegrini, Romano Danesi, Cecilia Barbara, Samanta Cupini, Mario Del Tacca. A phase I and pharmacokinetic study of irinotecan given as a 7-day continuous infusion in metastatic colorectal cancer patients pretreated with 5-fluorouracil or raltitrexed. Clinical cancer research : an official journal of the American Association for Cancer Research. 2004 Mar; 10(5):1657-63. doi: 10.1158/1078-0432.ccr-1585-3. [PMID: 15014016]
  • Shinsuke Natsui, Michio Maruyama, Takanori Ochiai, Kumi Hasegawa, Itaru Takashima, Takeshi Nagahama, Masakazu Ebuchi. [Pharmacokinetic study of CPT-11, SN-38 and SN-38 glucuronide in the ascites, plasma and bile after intraperitoneal administration of CPT-11]. Gan to kagaku ryoho. Cancer & chemotherapy. 2002 Nov; 29(12):2188-90. doi: . [PMID: 12484033]
  • K Nakatomi, M Yoshikawa, M Oka, Y Ikegami, S Hayasaka, K Sano, K Shiozawa, S Kawabata, H Soda, T Ishikawa, S Tanabe, S Kohno. Transport of 7-ethyl-10-hydroxycamptothecin (SN-38) by breast cancer resistance protein ABCG2 in human lung cancer cells. Biochemical and biophysical research communications. 2001 Nov; 288(4):827-32. doi: 10.1006/bbrc.2001.5850. [PMID: 11688982]
  • J M Gornet, F Lokiec, J C Duclos-Vallee, D Azoulay, F Goldwasser. Severe CPT-11-induced diarrhea in presence of FK-506 following liver transplantation for hepatocellular carcinoma. Anticancer research. 2001 Nov; 21(6A):4203-6. doi: NULL. [PMID: 11911319]
  • . . . . doi: . [PMID: 18797458]