N-Acetylmuramate (BioDeep_00000003358)
Secondary id: BioDeep_00001868680
human metabolite
代谢物信息卡片
化学式: C11H19NO8 (293.1111)
中文名称: 2-乙酰氨基-2-脱氧-3-o-[d-1-羧基乙基]-d-吡喃葡萄糖, N-乙酰胞壁酸
谱图信息:
最多检出来源 Homo sapiens(feces) 14.42%
分子结构信息
SMILES: CC(=O)NC1C(O)OC(CO)C(O)C1OC(C)C(=O)O
InChI: InChI=1S/C11H19NO8/c1-4(10(16)17)19-9-7(12-5(2)14)11(18)20-6(3-13)8(9)15/h4,6-9,11,13,15,18H,3H2,1-2H3,(H,12,14)(H,16,17)/t4-,6-,7-,8-,9-,11?/m1/s1
描述信息
This compound belongs to the family of N-acyl-alpha-hexosamines. These are carbohydrate derivatives containing a hexose moeity in which the oxygen atom is replaced by an n-acyl group.
KEIO_ID A191
同义名列表
17 个代谢物同义名
(2R)-2-{[(3R,4R,5S,6R)-2,5-dihydroxy-3-[(1-hydroxyethylidene)amino]-6-(hydroxymethyl)oxan-4-yl]oxy}propanoic acid; 2-Acetamido-4-O-(1-carboxyethyl)-2-deoxyglucose, (beta-D)-isomer; 2-ACETAMIDO-2-DEOXY-3-O-[D-1-CARBOXYETHYL]-D-GLUCOPYRANOSE; 2-Acetamido-3-O-((S)-1-carboxyethyl)-2-deoxy-D-glucose; 2-Acetamido-4-O-(1-carboxyethyl)-2-deoxyglucose; N-Acetyl-D-muramoic acid; (+)-N-Acetylmuramic acid; N-Acetylisomuramic acid; N-Acetyl-Muramic Acid; N-Acetyl-D-muramoate; n-acetylmuramic acid; N-Acetyl-D-muramate; Acetylmuramic acid; N-Acetylmuramate; 4-O-NAcMur; N-Acetylmuramate; (+)-N-Acetylmuramic acid
数据库引用编号
30 个数据库交叉引用编号
- ChEBI: CHEBI:47965
- ChEBI: CHEBI:21615
- KEGG: C02713
- PubChem: 5462244
- PubChem: 542212
- HMDB: HMDB0060493
- Metlin: METLIN3421
- Wikipedia: N-Acetylmuramic_acid
- chemspider: 4575341
- CAS: 2245794-62-9
- CAS: 10597-89-4
- CAS: 61633-75-8
- MoNA: KO000289
- MoNA: KO000291
- MoNA: KO000287
- MoNA: KO000290
- MoNA: KO002366
- MoNA: KO002363
- MoNA: KO000288
- MoNA: KO002365
- MoNA: KO002367
- MoNA: KO002364
- PMhub: MS000009539
- ChEBI: CHEBI:181907
- PubChem: 5676
- PDB-CCD: AMU
- PDB-CCD: MUB
- 3DMET: B04861
- NIKKAJI: J227.021H
- KNApSAcK: 181907
分类词条
相关代谢途径
Reactome(5)
BioCyc(0)
PlantCyc(0)
代谢反应
34 个相关的代谢反应过程信息。
Reactome(33)
- Immune System:
Rap1 cAMP-GEFs + cAMP ⟶ Rap1 cAMP-GEFs:cAMP
- Innate Immune System:
Cl- + H+ + H2O2 ⟶ H2O + HOCl
- Antimicrobial peptides:
Fe3+ + LCN2:2,5DHBA ⟶ LCN2:2,5DHBA:Fe3+
- Immune System:
Rap1 cAMP-GEFs + cAMP ⟶ Rap1 cAMP-GEFs:cAMP
- Innate Immune System:
TLR4:TLR6 + oxLDL:CD36 ⟶ TLR4:TLR6:CD36:oxLDL
- Antimicrobial peptides:
Fe3+ + LCN2:2,5DHBA ⟶ LCN2:2,5DHBA:Fe3+
- Immune System:
Rap1 cAMP-GEFs + cAMP ⟶ Rap1 cAMP-GEFs:cAMP
- Innate Immune System:
TLR4:TLR6 + oxLDL:CD36 ⟶ TLR4:TLR6:CD36:oxLDL
- Antimicrobial peptides:
Fe3+ + LCN2:2,5DHBA ⟶ LCN2:2,5DHBA:Fe3+
- Immune System:
cAMP ⟶ Rap1 cAMP-GEFs:cAMP
- Innate Immune System:
Cl- + H+ + H2O2 ⟶ H2O + HOCl
- Antimicrobial peptides:
H2O + LYZ:PGN ⟶ MurNAc:Peptide + betaGlcNAc
- Immune System:
Epac + cAMP ⟶ RAPGEF3:cAMP complex
- Innate Immune System:
Cl- + H+ + H2O2 ⟶ H2O + HOCl
- Antimicrobial peptides:
H2O + LYZ:PGN ⟶ MurNAc:Peptide + betaGlcNAc
- Immune System:
Rap1 cAMP-GEFs + cAMP ⟶ Rap1 cAMP-GEFs:cAMP
- Innate Immune System:
Cl- + H+ + H2O2 ⟶ H2O + HOCl
- Antimicrobial peptides:
Fe3+ + LCN2:2,5DHBA ⟶ LCN2:2,5DHBA:Fe3+
- Immune System:
Rap1 cAMP-GEFs + cAMP ⟶ Rap1 cAMP-GEFs:cAMP
- Innate Immune System:
TLR4:TLR6 + oxLDL:CD36 ⟶ TLR4:TLR6:CD36:oxLDL
- Antimicrobial peptides:
Fe3+ + LCN2:2,5DHBA ⟶ LCN2:2,5DHBA:Fe3+
- Immune System:
Rap1 cAMP-GEFs + cAMP ⟶ Rap1 cAMP-GEFs:cAMP
- Innate Immune System:
TLR4:TLR6 + oxLDL:CD36 ⟶ TLR4:TLR6:CD36:oxLDL
- Antimicrobial peptides:
Fe3+ + LCN2:2,5DHBA ⟶ LCN2:2,5DHBA:Fe3+
- Immune System:
Rap1 cAMP-GEFs + cAMP ⟶ Rap1 cAMP-GEFs:cAMP
- Innate Immune System:
TLR4:TLR6 + oxLDL:CD36 ⟶ TLR4:TLR6:CD36:oxLDL
- Antimicrobial peptides:
Fe3+ + LCN2:2,5DHBA ⟶ LCN2:2,5DHBA:Fe3+
- Immune System:
Rap1 cAMP-GEFs + cAMP ⟶ Rap1 cAMP-GEFs:cAMP
- Innate Immune System:
TLR4:TLR6 + oxLDL:CD36 ⟶ TLR4:TLR6:CD36:oxLDL
- Antimicrobial peptides:
Fe3+ + LCN2:2,5DHBA ⟶ LCN2:2,5DHBA:Fe3+
- Immune System:
Rap1 cAMP-GEFs + cAMP ⟶ Rap1 cAMP-GEFs:cAMP
- Innate Immune System:
Cl- + H+ + H2O2 ⟶ H2O + HOCl
- Antimicrobial peptides:
H2O + LYZ:PGN ⟶ MurNAc:Peptide + betaGlcNAc
BioCyc(0)
WikiPathways(1)
- Peptidoglycan cytoplasmic synthesis and recycling pathways:
D-glucosamine-6-phosphate ⟶ Fructose-6-phosphate
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
1 个相关的物种来源信息
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Ashlyn S Hillman, Stephen N Hyland, Kimberly A Wodzanowski, DeVonte L Moore, Sushanta Ratna, Andrew Jemas, Liam-Michael D Sandles, Timothy Chaya, Arit Ghosh, Joseph M Fox, Catherine L Grimes. Minimalist Tetrazine N-Acetyl Muramic Acid Probes for Rapid and Efficient Labeling of Commensal and Pathogenic Peptidoglycans in Living Bacterial Culture and During Macrophage Invasion.
Journal of the American Chemical Society.
2024 Mar; 146(10):6817-6829. doi:
10.1021/jacs.3c13644
. [PMID: 38427023] - Sébastien Crépin, Elizabeth N Ottosen, Katharina Peters, Sara N Smith, Stephanie D Himpsl, Waldemar Vollmer, Harry L T Mobley. The lytic transglycosylase MltB connects membrane homeostasis and in vivo fitness of Acinetobacter baumannii.
Molecular microbiology.
2018 09; 109(6):745-762. doi:
10.1111/mmi.14000
. [PMID: 29884996] - Hathairat Rachniyom, Atsuko Matsumoto, Yuki Inahashi, Akira Take, Yoko Takahashi, Arinthip Thamchaipenet. Actinomadura barringtoniae sp. nov., an endophytic actinomycete isolated from the roots of Barringtonia acutangula (L.) Gaertn.
International journal of systematic and evolutionary microbiology.
2018 May; 68(5):1584-1590. doi:
10.1099/ijsem.0.002714
. [PMID: 29543147] - Ausra Gaidelyte, Virginija Cvirkaite-Krupovic, Rimantas Daugelavicius, Jaana K H Bamford, Dennis H Bamford. The entry mechanism of membrane-containing phage Bam35 infecting Bacillus thuringiensis.
Journal of bacteriology.
2006 Aug; 188(16):5925-34. doi:
10.1128/jb.00107-06
. [PMID: 16885461] - Jeya Nadesalingam, Alister W Dodds, Kenneth B M Reid, Nades Palaniyar. Mannose-binding lectin recognizes peptidoglycan via the N-acetyl glucosamine moiety, and inhibits ligand-induced proinflammatory effect and promotes chemokine production by macrophages.
Journal of immunology (Baltimore, Md. : 1950).
2005 Aug; 175(3):1785-94. doi:
10.4049/jimmunol.175.3.1785
. [PMID: 16034120] - Yves Bourne, Corinne Houlès Astoul, Véronique Zamboni, Willy J Peumans, Laurence Menu-Bouaouiche, Els J M Van Damme, Annick Barre, Pierre Rougé. Structural basis for the unusual carbohydrate-binding specificity of jacalin towards galactose and mannose.
The Biochemical journal.
2002 May; 364(Pt 1):173-80. doi:
10.1042/bj3640173
. [PMID: 11988090] - E Bokma, G A van Koningsveld, M Jeronimus-Stratingh, J J Beintema. Hevamine, a chitinase from the rubber tree Hevea brasiliensis, cleaves peptidoglycan between the C-1 of N-acetylglucosamine and C-4 of N-acetylmuramic acid and therefore is not a lysozyme.
FEBS letters.
1997 Jul; 411(2-3):161-3. doi:
10.1016/s0014-5793(97)00682-0
. [PMID: 9271197] - A Ayouba, C Chatelain, P Rougé. Legume lectins interact with muramic acid and N-acetylmuramic acid.
FEBS letters.
1991 Sep; 289(1):102-4. doi:
10.1016/0014-5793(91)80918-s
. [PMID: 1893996] - H Harz, K Burgdorf, J V Höltje. Isolation and separation of the glycan strands from murein of Escherichia coli by reversed-phase high-performance liquid chromatography.
Analytical biochemistry.
1990 Oct; 190(1):120-8. doi:
10.1016/0003-2697(90)90144-x
. [PMID: 2285138]