NCBI Taxonomy: 134440

Gersemia fruticosa (ncbi_taxid: 134440)

found 90 associated metabolites at species taxonomy rank level.

Ancestor: Gersemia

Child Taxonomies: none taxonomy data.

Prostaglandin E2

(5Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]hept-5-enoic acid

C20H32O5 (352.2249622)


The naturally occurring prostaglandin E2 (PGE2) is known in medicine as dinoprostone, and it is the most common and most biologically active of the mammalian prostaglandins. It has important effects during labour and also stimulates osteoblasts to release factors which stimulate bone resorption by osteoclasts (a type of bone cell that removes bone tissue by removing the bones mineralized matrix). PGE2 is also the prostaglandin that ultimately induces fever. PGE2 has been shown to increase vasodilation and cAMP production, enhance the effects of bradykinin and histamine, and induce uterine contractions and platelet aggregation. PGE2 is also responsible for maintaining the open passageway of the fetal ductus arteriosus, decreasing T-cell proliferation and lymphocyte migration, and activating the secretion of IL-1α and IL-2. PGE2 exhibits both pro- and anti-inflammatory effects, particularly on dendritic cells (DC). Depending on the nature of maturation signals, PGE2 has different and sometimes opposite effects on DC biology. PGE2 exerts an inhibitory action, reducing the maturation of DC and their ability to present antigen. PGE2 has also been shown to stimulate DC and promote IL-12 production when given in combination with TNF-alpha. PGE2 is an environmentally bioactive substance. Its action is prolonged and sustained by other factors especially IL-10. It modulates the activities of professional DC by acting on their differentiation, maturation, and their ability to secrete cytokines. PGE2 is a potent inducer of IL-10 in bone marrow-derived DC (BM-DC). PGE2-induced IL-10 is a key regulator of the BM-DC pro-inflammatory phenotype (PMID:16978535). Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent and are able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis through receptor-mediated G-protein linked signalling pathways. Dinoprostone is a naturally occurring prostaglandin E2 (PGE2) and the most common and most biologically active of the mammalian prostaglandins. It has important effects in labour and also stimulates osteoblasts to release factors which stimulate bone resorption by osteoclasts (a type of bone cell that removes bone tissue by removing the bones mineralized matrix). PGE2 has been shown to increase vasodilation and cAMP production, to enhance the effects of bradykinin and histamine, induction of uterine contractions and of platelet aggregation. PGE2 is also responsible for maintaining the open passageway of the fetal ductus arteriosus; decreasing T-cell proliferation and lymphocyte migration and activating the secretion of IL-1α and IL-2. PGE2 exhibits both pro- and anti-inflammatory effects, particularly on dendritic cells (DC). Depending on the nature of maturation signals, PGE2 has different and sometimes opposite effects on DC biology. PGE2 exerts an inhibitory action, reducing the maturation of DC and their ability to present antigen. PGE2 has also been shown to stimulate DC and promote IL-12 production when given in combination with TNF-alpha. PGE2 is an environmentally bioactive substance. Its action is prolonged and sustained by other factors especially IL-10. It modulates the activities of professional DC by acting on their differentiation, maturation and their ability to secrete cytokines. PGE2 is a potent inducer of IL-10 in bone marrow-derived DC (BM-DC), and PGE2-induced IL-10 is a key regulator of the BM-DC pro-inflammatory phenotype. (PMID: 16978535) G - Genito urinary system and sex hormones > G02 - Other gynecologicals > G02A - Uterotonics > G02AD - Prostaglandins Chemical was purchased from CAY14010, (Lot 0410966-34); Diagnostic ions: 351.8, 333.1, 271.1, 188.9 D012102 - Reproductive Control Agents > D010120 - Oxytocics C78568 - Prostaglandin Analogue Prostaglandin E2 (PGE2) is a hormone-like substance that participate in a wide range of body functions such as the contraction and relaxation of smooth muscle, the dilation and constriction of blood vessels, control of blood pressure, and modulation of inflammation.

   

Prostaglandin F2alpha

(5E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]hept-5-enoic acid

C20H34O5 (354.2406114)


Prostaglandin F2a (PGF2) is one of the earliest discovered and most common prostaglandins. It is actively biosynthesized in various organs of mammals and exhibits a variety of biological activities, including contraction of pulmonary arteries. It is used in medicine to induce labor and as an abortifacient. PGF2a binds to the Prostaglandin F2 receptor (PTGFR) which is a member of the G-protein coupled receptor family. PGF2-alpha mediates luteolysis. Luteolysis is the structural and functional degradation of the corpus luteum (CL) that occurs at the end of the luteal phase of both the estrous and menstrual cycles in the absence of pregnancy. PGF2 may also be involved in modulating intraocular pressure and smooth muscle contraction in the uterus and gastrointestinal tract sphincters. PGF2 is mainly synthesized directly from PGH2 by PGH2 9,11-endoperoxide reductase. A small amount of PGF2 is also produced from PGE2 by PGE2 9-ketoreductase. A PGF2 epimer has been reported to exhibit various biological activities, and its levels are increased in bronchoalveolar lavage fluid, plasma, and urine in patients with mastocytosis and bronchial asthma. PGF2 is synthesized from PGD2 by PGD2 11-ketoreductase. (PMID: 16475787). Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. Prostaglandin F2a (PGF2) is one of the earliest discovered and most common prostaglandins. It is actively biosynthesized in various organs of mammals and exhibits a variety of biological activities, including contraction of pulmonary arteries. It is used in medicine to induce labor and as an abortifacient. PGF2a binds to the Prostaglandin F2 receptor (PTGFR) which is a member of the G-protein coupled receptor family. PGF2-alpha mediates luteolysis. Luteolysis is the structural and functional degradation of the corpus luteum (CL) that occurs at the end of the luteal phase of both the estrous and menstrual cycles in the absence of pregnancy. PGF2 may also be involved in modulating intraocular pressure and smooth muscle contraction in the uterus and gastrointestinal tract sphincters. PGF2 is mainly synthesized directly from PGH2 by PGH2 9,11-endoperoxide reductase. A small amount of PGF2 is also produced from PGE2 by PGE2 9-ketoreductase. A PGF2 epimer has been reported to exhibit various biological activities, and its levels are increased in bronchoalveolar lavage fluid, plasma, and urine in patients with mastocytosis and bronchial asthma. PGF2 is synthesized from PGD2 by PGD2 11-ketoreductase. (PMID: 16475787) G - Genito urinary system and sex hormones > G02 - Other gynecologicals > G02A - Uterotonics > G02AD - Prostaglandins Chemical was purchased from CAY16010 (Lot 171332-126); Diagnostic ions: 353.2, 309.2, 281.1, 253.0, 193.1 D012102 - Reproductive Control Agents > D000019 - Abortifacient Agents D012102 - Reproductive Control Agents > D010120 - Oxytocics C78568 - Prostaglandin Analogue KEIO_ID P066 Dinoprost (Prostaglandin F2α) is an orally active, potent prostaglandin F (PGF) receptor (FP receptor) agonist. Dinoprost is a luteolytic hormone produced locally in the endometrial luminal epithelium and corpus luteum (CL). Dinoprost plays a key role in the onset and progression of labour[1][2].

   

Prostaglandin D2

(5Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]hept-5-enoic acid

C20H32O5 (352.2249622)


Prostaglandin D2 (or PGD2) is a prostaglandin that is actively produced in various organs such as the brain, spleen, thymus, bone marrow, uterus, ovary, oviduct, testis, prostate and epididymis, and is involved in many physiological events. PGD2 binds to the prostaglandin D2 receptor (PTGDR) which is a G-protein-coupled receptor. Its activity is mainly mediated by G-S proteins that stimulate adenylate cyclase resulting in an elevation of intracellular cAMP and Ca2+. PGD2 promotes sleep; regulates body temperature, olfactory function, hormone release, and nociception in the central nervous system; prevents platelet aggregation; and induces vasodilation and bronchoconstriction. PGD2 is also released from mast cells as an allergic and inflammatory mediator. Prostaglandin H2 is an unstable intermediate formed from PGG2 by the action of cyclooxygenase (COX) in the arachidonate cascade. In mammalian systems, it is efficiently converted into more stable arachidonate metabolites, such as PGD2, PGE2, PGF2a by the action of three groups of enzymes, PGD synthases (PGDS), PGE synthases and PGF synthases, respectively. PGDS catalyzes the isomerization of PGH2 to PGD2. Two types of PGD2 synthase are known. Lipocalin-type PGD synthase is present in cerebrospinal fluid, seminal plasma and may play an important role in male reproduction. Another PGD synthase, hematopoietic PGD synthase is present in the spleen, fallopian tube, endometrial gland cells, extravillous trophoblasts and villous trophoblasts, and perhaps plays an important role in female reproduction. Recent studies demonstrate that PGD2 is probably involved in multiple aspects of inflammation through its dual receptor systems, DP and CRTH2. (PMID:12148545)Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. Prostaglandin D2 (or PGD2) is a prostaglandin that is actively produced in various organs such as the brain, spleen, thymus, bone marrow, uterus, ovary, oviduct, testis, prostate and epididymis, and is involved in many physiological events. PGD2 binds to the prostaglandin D2 receptor (PTGDR) which is a G-protein-coupled receptor. Its activity is mainly mediated by G-S proteins that stimulate adenylate cyclase resulting in an elevation of intracellular cAMP and Ca2+. PGD2 promotes sleep; regulates body temperature, olfactory function, hormone release, and nociception in the central nervous system; prevents platelet aggregation; and induces vasodilation and bronchoconstriction. PGD2 is also released from mast cells as an allergic and inflammatory mediator. Chemical was purchased from CAY 12010, (Lot 0436713-1); Diagnostic ions: 351.1, 333.0, 271.3, 233.1, 189.1

   

11(R)-HETE

11-Hydroxy-5,8,12,14-eicosatetraenoic acid, (S)-(e,Z,Z,Z)-isomer

C20H32O3 (320.23513219999995)


11(R)-HETE is produced from arachidonic acid by both COX-1 and COX-2 (cyclooxygenases). Using a model of intestinal epithelial cells that express the COX-2 permanently, 11(R)-HETE is produced upon stimulation. However, 11(R)-HETE is not detected in intact cells. Endothelial cells release several factors which influence vascular tone, leukocyte function and platelet aggregation; 11(R)-HETE is one of these factors. (PMID: 15964853, 8555273) [HMDB] 11(R)-HETE is produced from arachidonic acid by both COX-1 and COX-2 (cyclooxygenases). Using a model of intestinal epithelial cells that express the COX-2 permanently, 11(R)-HETE is produced upon stimulation. However, 11(R)-HETE is not detected in intact cells. Endothelial cells release several factors which influence vascular tone, leukocyte function and platelet aggregation; 11(R)-HETE is one of these factors. (PMID: 15964853, 8555273).

   

15-Keto-prostaglandin F2a

(5Z)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E)-3-oxooct-1-en-1-yl]cyclopentyl]hept-5-enoic acid

C20H32O5 (352.2249622)


15-Keto-prostaglandin F2a is the oxidized product of prostaglandin F2a by 15-hydroxyprostaglandin dehydrogenase, which is present in lung, kidney, placenta and other tissues and catalyzes the NAD- or NADP-dependent dehydrogenation of 15-dydroxyl group. 15-Keto-prostaglandin F2a is further metabolized by its delta13-reduction, beta-oxidation and omega oxidation. The ultimate metabolite is 5a,7a-dihydroxy-11-keto-tetranorprosta-1,16-dioic acid, and excreted in urine. Prostaglandin F2a (PGF2) is one of the earliest discovered and most common prostaglandins is actively biosynthesized in various organs of mammals and exhibits a variety of biological activities, including contraction of pulmonary arteries. PGF2 is mainly synthesized directly from PGH2 by PGH2 9,11-endoperoxide reductase. A small amount of PGF2 is also produced from PGE2 by PGE2 9-ketoreductase. A PGF2 epimer has been reported to exhibit various biological activities, and its levels are increased in bronchoalveolar lavage fluid, plasma, and urine in patients with mastocytosis and bronchial asthma. PGF2 is synthesized from PGD2 by PGD2 11-ketoreductase. (PMID: 16475787, 184496, 5951401, 12432938)Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. 15-Keto-prostaglandin F2a is the oxidized product of prostaglandin F2a by 15-hydroxyprostaglandin dehydrogenase, which is present in lung, kidney, placenta and other tissues and catalyzes the NAD- or NADP-dependent dehydrogenation of 15-dydroxyl group. 15-Keto-prostaglandin F2a is further metabolized by its delta13-reduction, beta-oxidation and omega oxidation. The ultimate metabolite is 5a,7a-dihydroxy-11-keto-tetranorprosta-1,16-dioic acid, and excreted in urine. Prostaglandin F2a (PGF2) is one of the earliest discovered and most common prostaglandins is actively biosynthesized in various organs of mammals and exhibits a variety of biological activities, including contraction of pulmonary arteries. PGF2 is mainly synthesized directly from PGH2 by PGH2 9,11-endoperoxide reductase. A small amount of PGF2 is also produced from PGE2 by PGE2 9-ketoreductase. A PGF2 epimer has been reported to exhibit various biological activities, and its levels are increased in bronchoalveolar lavage fluid, plasma, and urine in patients with mastocytosis and bronchial asthma. PGF2 is synthesized from PGD2 by PGD2 11-ketoreductase. (PMID: 16475787, 184496, 5951401, 12432938)

   

8(R)-HETE

(5Z,9E,11Z,14Z)-(8R)-8-Hydroxyeicosa-5,9,11,14-tetraenoic acid

C20H32O3 (320.23513219999995)


A HETE having an (8R)-hydroxy group and (5Z)-, (9E)-, (11Z)- and (14Z)-double bonds.

   

24-Nor-9,11-seco-11-acetoxy-3,6-dihydroxycholest-7,22-dien-9-one

3beta,6alpha-dihydroxy-11-acetoxy-24-nor-9,11-seco-cholest-7,22E-diene-9-one

C28H44O5 (460.3188574)


   

Cyclosin

9S,11R,15S-trihydroxy-5Z,13E-prostadienoic acid

C20H34O5 (354.24061140000003)


G - Genito urinary system and sex hormones > G02 - Other gynecologicals > G02A - Uterotonics > G02AD - Prostaglandins D012102 - Reproductive Control Agents > D000019 - Abortifacient Agents D012102 - Reproductive Control Agents > D010120 - Oxytocics C78568 - Prostaglandin Analogue Dinoprost (Prostaglandin F2α) is an orally active, potent prostaglandin F (PGF) receptor (FP receptor) agonist. Dinoprost is a luteolytic hormone produced locally in the endometrial luminal epithelium and corpus luteum (CL). Dinoprost plays a key role in the onset and progression of labour[1][2].

   

Prostin E2

9-oxo-11R,15S-dihydroxy-5Z,13E-prostadienoic acid

C20H32O5 (352.2249622)


G - Genito urinary system and sex hormones > G02 - Other gynecologicals > G02A - Uterotonics > G02AD - Prostaglandins D012102 - Reproductive Control Agents > D010120 - Oxytocics C78568 - Prostaglandin Analogue Prostaglandin E2 (PGE2) is a hormone-like substance that participate in a wide range of body functions such as the contraction and relaxation of smooth muscle, the dilation and constriction of blood vessels, control of blood pressure, and modulation of inflammation.

   

Prostaglandin D2

(5Z,13E,15S)-9alpha,15-Dihydroxy-11-oxoprosta-5,13-dienoate

C20H32O5 (352.2249622)


A member of the class of prostaglandins D that is prosta-5,13-dien-1-oic acid substituted by hydroxy groups at positions 9 and 15 and an oxo group at position 11 (the 5Z,9alpha,13E,15S- stereoisomer).

   

15k-PGF2a

9S,11R-dihydroxy-15-oxo-5Z,13E-prostadienoic acid

C20H32O5 (352.2249622)


   

Dinoprostone

Dinoprostone

C20H32O5 (352.2249622)


G - Genito urinary system and sex hormones > G02 - Other gynecologicals > G02A - Uterotonics > G02AD - Prostaglandins D012102 - Reproductive Control Agents > D010120 - Oxytocics C78568 - Prostaglandin Analogue Prostaglandin E2 (PGE2) is a hormone-like substance that participate in a wide range of body functions such as the contraction and relaxation of smooth muscle, the dilation and constriction of blood vessels, control of blood pressure, and modulation of inflammation.

   

Dinoprost

tromethamine

C20H34O5 (354.24061140000003)


G - Genito urinary system and sex hormones > G02 - Other gynecologicals > G02A - Uterotonics > G02AD - Prostaglandins D012102 - Reproductive Control Agents > D000019 - Abortifacient Agents D012102 - Reproductive Control Agents > D010120 - Oxytocics C78568 - Prostaglandin Analogue Dinoprost (Prostaglandin F2α) is an orally active, potent prostaglandin F (PGF) receptor (FP receptor) agonist. Dinoprost is a luteolytic hormone produced locally in the endometrial luminal epithelium and corpus luteum (CL). Dinoprost plays a key role in the onset and progression of labour[1][2].

   

15-keto-PGF2alpha

15-oxoprostaglandin F2α

C20H32O5 (352.2249622)


   

11R-HETE

(5Z,8Z,12E,14Z)-(11R)-Hydroxyeicosa-5,8,12,14-tetraenoic acid

C20H32O3 (320.23513219999995)


An 11-HETE in which the chiral centre at position 11 has R-configuration.

   

3beta,6alpha-dihydroxy-11-acetoxy-24-nor-9,11-seco-cholest-7,22E-diene-9-one

3beta,6alpha-dihydroxy-11-acetoxy-24-nor-9,11-seco-cholest-7,22E-diene-9-one

C28H44O5 (460.3188574)


   

Prostaglandin E2

Prostaglandin E2

C20H32O5 (352.2249622)


Prostaglandin F2alpha in which the hydroxy group at position 9 has been oxidised to the corresponding ketone. Prostaglandin E2 is the most common and most biologically potent of mammalian prostaglandins.

   

2-[2-(4,6-dihydroxy-8a-methyl-1-oxo-4,4a,5,6,7,8-hexahydronaphthalen-2-yl)-1-methyl-5-(5-methylhex-3-en-2-yl)cyclopentyl]acetaldehyde

2-[2-(4,6-dihydroxy-8a-methyl-1-oxo-4,4a,5,6,7,8-hexahydronaphthalen-2-yl)-1-methyl-5-(5-methylhex-3-en-2-yl)cyclopentyl]acetaldehyde

C26H40O4 (416.29264400000005)


   

2-[(1r,2r,5r)-2-[(4s,4as,6s,8as)-4,6-dihydroxy-8a-methyl-1-oxo-4,4a,5,6,7,8-hexahydronaphthalen-2-yl]-1-methyl-5-[(2r,3e)-5-methylhex-3-en-2-yl]cyclopentyl]ethyl acetate

2-[(1r,2r,5r)-2-[(4s,4as,6s,8as)-4,6-dihydroxy-8a-methyl-1-oxo-4,4a,5,6,7,8-hexahydronaphthalen-2-yl]-1-methyl-5-[(2r,3e)-5-methylhex-3-en-2-yl]cyclopentyl]ethyl acetate

C28H44O5 (460.3188574)


   

7-(acetyloxy)-1-(3,6-dihydroxy-6-methylheptan-2-yl)-9a,11a-dimethyl-tetradecahydro-1h-cyclopenta[a]phenanthren-5-yl acetate

7-(acetyloxy)-1-(3,6-dihydroxy-6-methylheptan-2-yl)-9a,11a-dimethyl-tetradecahydro-1h-cyclopenta[a]phenanthren-5-yl acetate

C31H52O6 (520.3763692)


   

(5z)-7-[(1s,4r,5r,6r)-6-[(1e,3s)-3-hydroperoxyoct-1-en-1-yl]-2,3-dioxabicyclo[2.2.1]heptan-5-yl]hept-5-enoic acid

(5z)-7-[(1s,4r,5r,6r)-6-[(1e,3s)-3-hydroperoxyoct-1-en-1-yl]-2,3-dioxabicyclo[2.2.1]heptan-5-yl]hept-5-enoic acid

C20H32O6 (368.2198772)


   

7-[3,5-dihydroxy-2-(3-oxooct-1-en-1-yl)cyclopentyl]hept-5-enoic acid

7-[3,5-dihydroxy-2-(3-oxooct-1-en-1-yl)cyclopentyl]hept-5-enoic acid

C20H32O5 (352.2249622)


   

2-[2-(4,6-dihydroxy-8a-methyl-1-oxo-4,4a,5,6,7,8-hexahydronaphthalen-2-yl)-1-methyl-5-(5-methylhex-3-en-2-yl)cyclopentyl]ethyl acetate

2-[2-(4,6-dihydroxy-8a-methyl-1-oxo-4,4a,5,6,7,8-hexahydronaphthalen-2-yl)-1-methyl-5-(5-methylhex-3-en-2-yl)cyclopentyl]ethyl acetate

C28H44O5 (460.3188574)


   

(1r,2r,5s,7s,9r,10r,11r,12r,15r,16r)-2,16-dimethyl-15-[(2r)-6-methylhept-5-en-2-yl]-8-oxapentacyclo[9.7.0.0²,⁷.0⁷,⁹.0¹²,¹⁶]octadecane-5,10-diol

(1r,2r,5s,7s,9r,10r,11r,12r,15r,16r)-2,16-dimethyl-15-[(2r)-6-methylhept-5-en-2-yl]-8-oxapentacyclo[9.7.0.0²,⁷.0⁷,⁹.0¹²,¹⁶]octadecane-5,10-diol

C27H44O3 (416.3290274)


   

(1r,3ar,3br,4r,5s,5as,7r,9ar,9br,11ar)-9a,11a-dimethyl-1-[(2r)-6-methylhept-5-en-2-yl]-tetradecahydro-1h-cyclopenta[a]phenanthrene-4,5,7-triol

(1r,3ar,3br,4r,5s,5as,7r,9ar,9br,11ar)-9a,11a-dimethyl-1-[(2r)-6-methylhept-5-en-2-yl]-tetradecahydro-1h-cyclopenta[a]phenanthrene-4,5,7-triol

C27H46O3 (418.34467659999996)


   

(6r)-6-[(1r,3ar,3br,7s,9ar,9br,11ar)-7-hydroxy-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]-2-methylhept-2-en-4-one

(6r)-6-[(1r,3ar,3br,7s,9ar,9br,11ar)-7-hydroxy-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]-2-methylhept-2-en-4-one

C27H42O2 (398.3184632)


   

(12e)-11-hydroxyicosa-5,8,12,14-tetraenoic acid

(12e)-11-hydroxyicosa-5,8,12,14-tetraenoic acid

C20H32O3 (320.23513219999995)


   

9a,11a-dimethyl-1-(6-methylhept-5-en-2-yl)-tetradecahydro-1h-cyclopenta[a]phenanthrene-4,5,7-triol

9a,11a-dimethyl-1-(6-methylhept-5-en-2-yl)-tetradecahydro-1h-cyclopenta[a]phenanthrene-4,5,7-triol

C27H46O3 (418.34467659999996)


   

2-[(1r,2r,5r)-2-[(4s,4as,6s,8as)-4,6-dihydroxy-8a-methyl-1-oxo-4,4a,5,6,7,8-hexahydronaphthalen-2-yl]-1-methyl-5-[(2r,3e)-6-methylhept-3-en-2-yl]cyclopentyl]ethyl acetate

2-[(1r,2r,5r)-2-[(4s,4as,6s,8as)-4,6-dihydroxy-8a-methyl-1-oxo-4,4a,5,6,7,8-hexahydronaphthalen-2-yl]-1-methyl-5-[(2r,3e)-6-methylhept-3-en-2-yl]cyclopentyl]ethyl acetate

C29H46O5 (474.3345066)


   

(1r,3ar,3br,5s,5ar,7r,9ar,9bs,11as)-7-(acetyloxy)-1-[(2s,3s)-3,6-dihydroxy-6-methylheptan-2-yl]-9a,11a-dimethyl-tetradecahydro-1h-cyclopenta[a]phenanthren-5-yl acetate

(1r,3ar,3br,5s,5ar,7r,9ar,9bs,11as)-7-(acetyloxy)-1-[(2s,3s)-3,6-dihydroxy-6-methylheptan-2-yl]-9a,11a-dimethyl-tetradecahydro-1h-cyclopenta[a]phenanthren-5-yl acetate

C31H52O6 (520.3763692)


   

7-[6-(3-hydroperoxyoct-1-en-1-yl)-2,3-dioxabicyclo[2.2.1]heptan-5-yl]hept-5-enoic acid

7-[6-(3-hydroperoxyoct-1-en-1-yl)-2,3-dioxabicyclo[2.2.1]heptan-5-yl]hept-5-enoic acid

C20H32O6 (368.2198772)


   

2,16-dimethyl-15-(6-methylhept-5-en-2-yl)-8-oxapentacyclo[9.7.0.0²,⁷.0⁷,⁹.0¹²,¹⁶]octadecane-5,10-diol

2,16-dimethyl-15-(6-methylhept-5-en-2-yl)-8-oxapentacyclo[9.7.0.0²,⁷.0⁷,⁹.0¹²,¹⁶]octadecane-5,10-diol

C27H44O3 (416.3290274)


   

2-[(1r,2r,5r)-2-[(4s,4as,6s,8as)-4,6-dihydroxy-8a-methyl-1-oxo-4,4a,5,6,7,8-hexahydronaphthalen-2-yl]-1-methyl-5-[(2r,3e)-5-methylhex-3-en-2-yl]cyclopentyl]acetaldehyde

2-[(1r,2r,5r)-2-[(4s,4as,6s,8as)-4,6-dihydroxy-8a-methyl-1-oxo-4,4a,5,6,7,8-hexahydronaphthalen-2-yl]-1-methyl-5-[(2r,3e)-5-methylhex-3-en-2-yl]cyclopentyl]acetaldehyde

C26H40O4 (416.29264400000005)


   

(9e)-8-hydroxyicosa-5,9,11,14-tetraenoic acid

(9e)-8-hydroxyicosa-5,9,11,14-tetraenoic acid

C20H32O3 (320.23513219999995)


   

2-[2-(4,6-dihydroxy-8a-methyl-1-oxo-4,4a,5,6,7,8-hexahydronaphthalen-2-yl)-1-methyl-5-(6-methylhept-3-en-2-yl)cyclopentyl]ethyl acetate

2-[2-(4,6-dihydroxy-8a-methyl-1-oxo-4,4a,5,6,7,8-hexahydronaphthalen-2-yl)-1-methyl-5-(6-methylhept-3-en-2-yl)cyclopentyl]ethyl acetate

C29H46O5 (474.3345066)


   

7-[5-hydroxy-2-(3-hydroxyoct-1-en-1-yl)-3-oxocyclopentyl]hept-5-enoic acid

7-[5-hydroxy-2-(3-hydroxyoct-1-en-1-yl)-3-oxocyclopentyl]hept-5-enoic acid

C20H32O5 (352.2249622)


   

6-{7-hydroxy-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl}-2-methylhept-2-en-4-one

6-{7-hydroxy-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl}-2-methylhept-2-en-4-one

C27H42O2 (398.3184632)