NCBI Taxonomy: 325713

Diplotaenia (ncbi_taxid: 325713)

found 120 associated metabolites at genus taxonomy rank level.

Ancestor: Cachrys clade

Child Taxonomies: Diplotaenia turcica, Diplotaenia damavandica, Diplotaenia cachrydifolia, Diplotaenia hayri-dumanii

Angelicin

2-Propenoic acid, 3-(4-hydroxy-5-benzofuranyl)-, .delta.-lactone

C11H6O3 (186.0317)


Angelicin is a furanocoumarin. Angelicin is a natural product found in Cullen cinereum, Psoralea glabra, and other organisms with data available. Angelicin is found in coriander. Angelicin is a constituent of roots and leaves of angelica (Angelica archangelica). Angelicin is found in roots and on surface of parsnips and diseased celery.Angelicin is a furanocoumarin. It can be found in Bituminaria bituminosa. It is present in the list of IARC Group 3 carcinogens (Angelicin plus ultraviolet A radiation). (Wikipedia). See also: Angelica archangelica root (part of); Cullen corylifolium fruit (part of). Angelicin is found in coriander. Angelicin is a constituent of roots and leaves of angelica (Angelica archangelica). Angelicin is found in roots and on surface of parsnips and diseased celery.Angelicin is a furanocoumarin. It can be found in Bituminaria bituminosa. It is present in the list of IARC Group 3 carcinogens (Angelicin plus ultraviolet A radiation). (Wikipedia). Constituent of roots and leaves of angelica (Angelica archangelica). Found in roots and on surface of parsnips and diseased celery D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D007364 - Intercalating Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D002491 - Central Nervous System Agents > D000927 - Anticonvulsants Angelicin is a natural tricyclic aromatic hydrocarbon compound that is structurally related to psoralen and has anti-cancer, anti-inflammatory, anti-viral and other activities. Cytotoxic, IC50: 49.56 μM; inhibits MHV-68, IC50: 5.39 μg/ml (28.95 μM). Angelicin is a natural tricyclic aromatic hydrocarbon compound that is structurally related to psoralen and has anti-cancer, anti-inflammatory, anti-viral and other activities. Cytotoxic, IC50: 49.56 μM; inhibits MHV-68, IC50: 5.39 μg/ml (28.95 μM).

   

Camphor

Bicyclo[2.2.1]heptan-2-one, 1,7,7-trimethyl-, (.+/-.)-

C10H16O (152.1201)


Camphor appears as a colorless or white colored crystalline powder with a strong mothball-like odor. About the same density as water. Emits flammable vapors above 150 °F. Used to make moth proofings, pharmaceuticals, and flavorings. Camphor is a cyclic monoterpene ketone that is bornane bearing an oxo substituent at position 2. A naturally occurring monoterpenoid. It has a role as a plant metabolite. It is a bornane monoterpenoid and a cyclic monoterpene ketone. Camphor is a natural product found in Xylopia aromatica, Xylopia sericea, and other organisms with data available. A bicyclic monoterpene ketone found widely in plants, especially CINNAMOMUM CAMPHORA. It is used topically as a skin antipruritic and as an anti-infective agent. A cyclic monoterpene ketone that is bornane bearing an oxo substituent at position 2. A naturally occurring monoterpenoid. C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D000890 - Anti-Infective Agents relative retention time with respect to 9-anthracene Carboxylic Acid is 0.986 Camphor ((±)-Camphor) is a topical anti-infective and anti-pruritic and internally as a stimulant and carminative. However, Camphor is poisonous when ingested. Antiviral, antitussive, and anticancer activities[1]. Camphor is a TRPV3 agonist[2]. Camphor ((±)-Camphor) is a topical anti-infective and anti-pruritic and internally as a stimulant and carminative. However, Camphor is poisonous when ingested. Antiviral, antitussive, and anticancer activities[1]. Camphor is a TRPV3 agonist[2].

   

Methoxsalen

Methoxsalen, United States Pharmacopeia (USP) Reference Standard

C12H8O4 (216.0423)


8-methoxypsoralen is an odorless white to cream-colored crystalline solid. Bitter taste followed by tingling sensation. (NTP, 1992) Methoxsalen is a member of the class of psoralens that is 7H-furo[3,2-g]chromen-7-one in which the 9 position is substituted by a methoxy group. It is a constituent of the fruits of Ammi majus. Like other psoralens, trioxsalen causes photosensitization of the skin. It is administered topically or orally in conjunction with UV-A for phototherapy treatment of vitiligo and severe psoriasis. It has a role as a dermatologic drug, an antineoplastic agent, a photosensitizing agent, a cross-linking reagent and a plant metabolite. It is a member of psoralens and an aromatic ether. It is functionally related to a psoralen. A naturally occurring furocoumarin compound found in several species of plants, including Psoralea corylifolia. It is a photoactive substance that forms DNA adducts in the presence of ultraviolet A irradiation. Methoxsalen is a Photoactivated Radical Generator and Psoralen. The mechanism of action of methoxsalen is as a Photoabsorption. The physiologic effect of methoxsalen is by means of Photosensitizing Activity. Methoxsalen is a natural product found in Ammi visnaga, Zanthoxylum mayu, and other organisms with data available. Methoxsalen is a naturally occurring substance isolated from the seeds of the plant Ammi majus with photoactivating properties. As a member of the family of compounds known as psoralens or furocoumarins, methoxsalens exact mechanism of action is unknown; upon photoactivation, methoxsalen has been observed to bind covalently to and crosslink DNA. (NCI04) Methoxsalen is only found in individuals that have used or taken this drug. It is a naturally occurring furocoumarin compound found in several species of plants, including Psoralea corylifolia. It is a photoactive substance that forms DNA adducts in the presence of ultraviolet A irradiation. After activation Methoxsalen binds preferentially to the guanine and cytosine moieties of DNA, leading to cross-linking of DNA, thus inhibiting DNA synthesis and function. A naturally occurring furocoumarin compound found in several species of plants, including Psoralea corylifolia. It is a photoactive substance that forms DNA ADDUCTS in the presence of ultraviolet A irradiation. See also: Angelica archangelica root (part of); Ammi majus seed (part of); Angelica keiskei top (part of) ... View More ... Methoxsalen, also known as oxsoralen or 8-methoxypsoralen, belongs to the class of organic compounds known as 8-methoxypsoralens. These are psoralens containing a methoxy group attached at the C8 position of the psoralen group. Methoxsalen is a drug which is used for the treatment of psoriasis and vitiligo. Methoxsalen is a bitter tasting compound. Methoxsalen is found, on average, in the highest concentration within a few different foods, such as parsnips, parsley, and celery stalks and in a lower concentration in wild carrots, carrots, and fennels. Methoxsalen has also been detected, but not quantified, in several different foods, such as figs, green vegetables, corianders, dills, and fruits. Methoxsalen is a potentially toxic compound. A member of the class of psoralens that is 7H-furo[3,2-g]chromen-7-one in which the 9 position is substituted by a methoxy group. It is a constituent of the fruits of Ammi majus. Like other psoralens, trioxsalen causes photosensitization of the skin. It is administered topically or orally in conjunction with UV-A for phototherapy treatment of vitiligo and severe psoriasis. Present in celery, especies the outer leaves, and other common grocery vegetables. Implicated in photodermatitis among grocery workers. Isolated from Aegle marmelos (bael) D - Dermatologicals > D05 - Antipsoriatics > D05B - Antipsoriatics for systemic use > D05BA - Psoralens for systemic use D - Dermatologicals > D05 - Antipsoriatics > D05A - Antipsoriatics for topical use > D05AD - Psoralens for topical use D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D003432 - Cross-Linking Reagents D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent C1420 - Photosensitizing Agent D003879 - Dermatologic Agents [Raw Data] CBA87_Xanthotoxin_pos_20eV.txt [Raw Data] CBA87_Xanthotoxin_pos_30eV.txt [Raw Data] CBA87_Xanthotoxin_pos_40eV.txt [Raw Data] CBA87_Xanthotoxin_pos_10eV.txt [Raw Data] CBA87_Xanthotoxin_pos_50eV.txt Methoxsalen (8-Methoxypsoralen) is a furanocoumarin compound used in psoralen, used in studies of psoriasis, eczema, vitiligo and some sun-exposed cutaneous lymphomas, and is a P450 inhibitor. Methoxsalen (8-Methoxypsoralen) is a furanocoumarin compound used in psoralen, used in studies of psoriasis, eczema, vitiligo and some sun-exposed cutaneous lymphomas, and is a P450 inhibitor.

   

3,7-Dimethyl-1,6-octadien-3-ol

Linalool, certified reference material, TraceCERT(R)

C10H18O (154.1358)


3,7-Dimethyl-1,6-octadien-3-ol, also known simply as linalool is a naturally occurring terpene alcohol. It belongs to the class of organic compounds known as acyclic monoterpenoids. These are monoterpenes that do not contain a cycle. Linalool has a role as a plant metabolite, a volatile oil component, an antimicrobial agent and a fragrance. There are two stereoisomers of Linalool ‚Äö√Ñ√¨ (S)-linalool and (R)-linalool. Linalool is used as a scent in 60\\\\\% to 80\\\\\% of perfumed hygiene products and cleaning agents including soaps, detergents, shampoos, and lotions. Linalool is also used by pest professionals as a flea, fruit fly, and cockroach insecticide. Linalool is found in more than 200 different species of plants, including many flowers and spice plants. (S)-linalool is found, for example, as a major constituent of the essential oils of coriander (Coriandrum sativum L.), cymbopogon (Cymbopogon martini var. martinii), and sweet orange (Citrus sinensis) flowers. (R)-linalool is present in lavender (Lavandula officinalis), bay laurel (Laurus nobilis), and sweet basil (Ocimum basilicum), among others. Linalool is also found in plants from the Lamiaceae family (mint and other herbs), Lauraceae (laurels, cinnamon, rosewood), Cinnamomum tamala, Solidago Meyen, Artemisia vulgaris (mugwort), Humulus lupulus. Linalool is also one of several monoterpenes that are found in cannabis plants (PMID:6991645 ). There are more than 140 known terpenes in cannabis and the combination of these terepenoids produces the skunky, fruity odor characteristic of C. savita. Like the majority of monoterpenes, linalool starts with the condensation of dimethylallyl diphosphate (DMAPP) and isopentenyl diphosphate (IPP) to form geranyl pyrophosphate (GPP) (PMID:7640522 ). Linalool is then synthesized with the aid of linalool synthase (LIS) (PMID:12572612 ). Linalool has a citrus, floral, rose, woody aroma and a citrus, orange, waxy taste. Linalool is found in a few different foods and spices, such as spearmints, corianders, common thymes, limes, grapes, lemons, grapefruit, oranges, pineapples, blackcurrants, basil, and common oregano. This could make, Linalool a potential biomarker for the consumption of these foods. Linalool is also synthesized, de novo, by yeast (C. cerevisiae) and may contribute to the floral tones found in some wines (PMID:15668008 ). Linalool is a monoterpenoid that is octa-1,6-diene substituted by methyl groups at positions 3 and 7 and a hydroxy group at position 3. It has been isolated from plants like Ocimum canum. It has a role as a plant metabolite, a volatile oil component, an antimicrobial agent and a fragrance. It is a tertiary alcohol and a monoterpenoid. Linalool is a natural product found in Nepeta nepetella, Teucrium montanum, and other organisms with data available. 3,7-Dimethyl-1,6-octadien-3-ol is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Cinnamon Leaf Oil (part of); Clary Sage Oil (part of); Cannabis sativa subsp. indica top (part of) ... View More ... A monoterpenoid that is octa-1,6-diene substituted by methyl groups at positions 3 and 7 and a hydroxy group at position 3. It has been isolated from plants like Ocimum canum. Flavouring agent. Widespread natural occurrence as the optically active and racemic forms in over 200 essential oilsand is) also present in numerous fruits. D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals Linalool is natural monoterpene in essential olis of coriander, acts as a competitive antagonist of Nmethyl d-aspartate (NMDA) receptor, with anti-tumor, anti-cardiotoxicity activity[1].Linalool is a PPARα ligand that reduces plasma TG levels and rewires the hepatic transcriptome and plasma metabolome[2]. Linalool is a natural monoterpene which is a competitive NMDA receptor antagonist. Linalool is orally active and crosses the blood-brain barrier. Linalool has anticancer, antibacterial, anti-inflammatory, neuroprotective, anxiolytic, antidepressant, anti-stress, cardioprotective, hepatoprotective, nephroprotective and pulmonary protective activities[1][2][3][4][5]. Linalool is natural monoterpene in essential olis of coriander, acts as a competitive antagonist of Nmethyl d-aspartate (NMDA) receptor, with anti-tumor, anti-cardiotoxicity activity[1].Linalool is a PPARα ligand that reduces plasma TG levels and rewires the hepatic transcriptome and plasma metabolome[2].

   

Psoralen

7H-furo[3,2-g]chromen-7-one

C11H6O3 (186.0317)


Psoralen is the simplest member of the class of psoralens that is 7H-furo[3,2-g]chromene having a keto group at position 7. It has been found in plants like Psoralea corylifolia and Ficus salicifolia. It has a role as a plant metabolite. 8-methoxsalen and 5-methoxsalen are furocoumarins referred to collectively as psoralens that have photosensitizing activity and are used orally and topically in conjunction with ultraviolet irradiation for the therapy of psoriasis and vitiligo. Psoralens have been linked to a low rate of transient serum enzyme elevations during therapy and to rare instances of clinically apparent acute liver injury. Psoralen is a natural product found in Cullen cinereum, Ficus erecta var. beecheyana, and other organisms with data available. Psoralen is a furocoumarin that intercalates with DNA, inhibiting DNA synthesis and cell division. Psoralen is used in Photochemotherapy with high-intensity long-wavelength UVA irradiation. Psoralens are tricyclic furocumarins and have a strong tendency to intercalate with DNA base pairs. Irradiation of nucleic acids in the presence of psoralen with long wave UV (~360 nm) results in the 2+2 cyclo- addition of either of its two photoreactive sites with 5,6-carbon bonds of pyrimidines resulting in crosslinking double-stranded nucleic acids. Psoralen is found in carrot. Psoralen is found in common vegetables, e.g. parsnip, celery especially if diseased or `spoiled Psoralen is a significant mutagen and is used for this purpose in molecular biology research.Psoralen has been shown to exhibit anti-proliferative, anti-allergenic and anti-histamine functions (A7781, A7782, A7782).Psoralen belongs to the family of Furanocoumarins. These are polycyclic aromatic compounds containing a furan ring fused to a coumarin moeity. A naturally occurring furocoumarin, found in PSORALEA. After photoactivation with UV radiation, it binds DNA via single and double-stranded cross-linking. See also: Angelica keiskei top (part of); Cullen corylifolium fruit (part of). Psoralen, also known as psoralene, ficusin or manaderm, belongs to the class of organic compounds known as psoralens. These are organic compounds containing a psoralen moiety, which consists of a furan fused to a chromenone to for 7H-furo[3,2-g]chromen-7-one. Psoralen is the parent compound in a family of naturally occurring organic compounds known as the linear furanocoumarins. Psoralen is structurally related to coumarin by the addition of a fused furan ring and is considered as a derivative of umbelliferone. Biosynthetically, psoralen originates from coumarins in the shikimate pathway. Psoralen is produced exclusively by plants but can be found in animals that consume these plants. Psoralen can be found in several plant sources with Ficus carica (the common fig) being probably the most abundant source of psoralens. They are also found in small quantities in Ammi visnaga (bisnaga), Pastinaca sativa (parsnip), Petroselinum crispum (parsley), Levisticum officinale (lovage), Foeniculum vulgare (fruit, i.e., Fennel seeds), Daucus carota (carrot), Psoralea corylifolia (babchi), Apium graveolens (celery), and bergamot oil (bergapten, bergamottin). Psoralen is found in all citrus fruits. Psoralen is a well-known mutagen and is used for this purpose in molecular biology research. Psoralen intercalates into DNA and on exposure to ultraviolet (UVA) radiation can form monoadducts and covalent inter-strand cross-links (ICL) with thymines in the DNA molecule. Psoralen also functions as a drug. An important use of psoralen is in the treatment for skin problems such as psoriasis and, to a lesser extent, eczema and vitiligo. This treatment takes advantage of the high UV absorbance of psoralen. In treating these skin conditions psoralen is applied first to sensitise the skin, then UVA light is applied to clean up the skin problem. Psoralen has also been recommended for treating alopecia. The simplest member of the class of psoralens that is 7H-furo[3,2-g]chromene having a keto group at position 7. It has been found in plants like Psoralea corylifolia and Ficus salicifolia. D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D003432 - Cross-Linking Reagents D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics Found in common vegetables, e.g. parsnip, celery especies if diseased or `spoiled D003879 - Dermatologic Agents INTERNAL_ID 18; CONFIDENCE Reference Standard (Level 1) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 18 Psoralen (Ficusin) is a coumarin isolated from the seeds of Fructus Psoraleae. Psoralen exhibits a wide range of biological properties, including anti-cancer, antioxidant, antidepressant, anticancer, antibacterial, and antiviral, et al[1]. Psoralen. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=66-97-7 (retrieved 2024-10-18) (CAS RN: 66-97-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

(-)-Sabinene

(1R,5R)-4-methylidene-1-(propan-2-yl)bicyclo[3.1.0]hexane (1R,5R)-thuj-4(10)-ene

C10H16 (136.1252)


Sabinene (CAS: 3387-41-5) belongs to the class of organic compounds known as bicyclic monoterpenoids. These are monoterpenoids containing exactly 2 rings, which are fused to each other. Thus, sabinene is considered to be an isoprenoid lipid molecule. Sabinene is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. (-)-Sabinene is found in herbs and spices and is a constituent of Laurus nobilis (bay laurel). Constituent of Laurus nobilis (bay laurel) and some other plants. (-)-4(10)-Thujene is found in sweet bay and herbs and spices. Sabinene is a thujene that is a bicyclic monoterpene isolated from the essential oils of various plant species. It has a role as a plant metabolite. Black pepper allergenic extract is used in allergenic testing. Laurus nobilis allergenic extract is used in allergenic testing. Nutmeg allergenic extract is used in allergenic testing. Sabinene is a natural product found in Teucrium montanum, Xylopia aromatica, and other organisms with data available. Carrot Seed Oil is the oil extracted from the seeds of Daucus carota. Carrot seed oil is primarily used in skin treatment preparations. Acquisition and generation of the data is financially supported in part by CREST/JST. Sabinene is an naturally occurring bicyclic monoterpene which can be used as flavorings, perfume additives, fine chemicals, and advanced biofuels. Sabinene is also an orally active compound to attenuates skeletal muscle atrophy and regulates ROS-mediated MAPK/MuRF-1 pathways[1][2]. Sabinene is an naturally occurring bicyclic monoterpene which can be used as flavorings, perfume additives, fine chemicals, and advanced biofuels. Sabinene is also an orally active compound to attenuates skeletal muscle atrophy and regulates ROS-mediated MAPK/MuRF-1 pathways[1][2].

   

Polylimonene

1-Methyl-4-(1-methylethenyl)-or 1-methyl-4-isopropenyl-cyclohex-1-ene

C10H16 (136.1252)


Dipentene appears as a colorless liquid with an odor of lemon. Flash point 113 °F. Density about 7.2 lb /gal and insoluble in water. Hence floats on water. Vapors heavier than air. Used as a solvent for rosin, waxes, rubber; as a dispersing agent for oils, resins, paints, lacquers, varnishes, and in floor waxes and furniture polishes. Limonene is a monoterpene that is cyclohex-1-ene substituted by a methyl group at position 1 and a prop-1-en-2-yl group at position 4 respectively. It has a role as a human metabolite. It is a cycloalkene and a p-menthadiene. Limonene is a natural product found in Teucrium montanum, Xylopia aromatica, and other organisms with data available. Limonene, (+/-)- is a racemic mixture of limonene, a natural cyclic monoterpene and major component of the oil extracted from citrus rind with chemo-preventive and antitumor activities. The metabolites of DL-limonene, perillic acid, dihydroperillic acid, uroterpenol and limonene 1,2-diol are suggested to inhibit tumor growth through inhibition of p21-dependent signaling, induce apoptosis via the induction of the transforming growth factor beta-signaling pathway, inhibit post-translational modification of signal transduction proteins, result in G1 cell cycle arrest as well as cause differential expression of cell cycle- and apoptosis-related genes. Limonene is a metabolite found in or produced by Saccharomyces cerevisiae. A naturally-occurring class of MONOTERPENES which occur as a clear colorless liquid at room temperature. Limonene is the major component in the oil of oranges which has many uses, including as flavor and fragrance. It is recognized as safe in food by the Food and Drug Administration (FDA). See also: Cannabis sativa subsp. indica top (part of); Larrea tridentata whole (part of). Constituent of many essential oils. (±)-Limonene is found in many foods, some of which are common oregano, nutmeg, herbs and spices, and summer savory. Dipentene is found in carrot. Dipentene is a constituent of many essential oils

   

(-)-beta-Pinene

Bicyclo(3.1.1)heptane, 6,6-dimethyl-2-methylene-, (1S,5S)-

C10H16 (136.1252)


(-)-beta-pinene is the (1S,5S)-enantiomer of beta-pinene. It is an enantiomer of a (+)-beta-pinene. (-)-beta-Pinene is a natural product found in Curcuma amada, Molopospermum peloponnesiacum, and other organisms with data available. Flavouring ingredient. (-)-beta-Pinene is found in many foods, some of which are almond, hyssop, sweet bay, and common sage. (-)-beta-Pinene is found in almond. (-)-beta-Pinene is a flavouring ingredient. The (1S,5S)-enantiomer of beta-pinene. β-Pinene ((-)-β-Pinene), a major component of turpentine, inhibit infectious bronchitis virus (IBV) with an IC50 of 1.32 mM. β-Pinene presents antimicrobial activity[1][2]. β-Pinene ((-)-β-Pinene), a major component of turpentine, inhibit infectious bronchitis virus (IBV) with an IC50 of 1.32 mM. β-Pinene presents antimicrobial activity[1][2].

   

beta-Myrcene

InChI=1/C10H16/c1-5-10(4)8-6-7-9(2)3/h5,7H,1,4,6,8H2,2-3H

C10H16 (136.1252)


7-Methyl-3-methylene-1,6-octadiene, also known as beta-Myrcene or myrcene is an acyclic monoterpene. Monoterpenoids are terpenes that contain 10 carbon atoms and are comprised of two isoprene units. The biosynthesis of monoterpenes is known to occur mainly through the methyl-erythritol-phosphate (MEP) pathway in the plastids. beta-Myrcene is a significant component of the essential oil of several plants, including allspice, bay, cannabis, hops, houttuynia, lemon grass, mango, myrcia, verbena, west indian bay tree, and cardamom. It is also the main component of wild thyme, the leaves of which contain up to 40\\\\% by weight of myrcene. Industrially, it is produced mainly semi-synthetically from myrcia, from which it gets its name. Myrcene has been detected as a volatile component in cannabis plant samples (PMID:26657499 ) and its essential oils (PMID:6991645 ). beta-Myrcene is the most abundant monoterpene in Cannabis and it has analgesic, anti-inflammatory, antibiotic, and antimutagenic activities. beta-Myrcene is a flavouring agent and it is used in the perfumery industry. It has a pleasant odor but is rarely used directly. It is a key intermediate in the production of several fragrances such as menthol, citral, citronellol, citronellal, geraniol, nerol, and linalool. Myrcene, [liquid] appears as a yellow oily liquid with a pleasant odor. Flash point below 200 °F. Insoluble in water and less dense than water. Beta-myrcene is a monoterpene that is octa-1,6-diene bearing methylene and methyl substituents at positions 3 and 7 respectively. It has a role as a plant metabolite, an anti-inflammatory agent, an anabolic agent, a fragrance, a flavouring agent and a volatile oil component. Myrcene is a natural product found in Teucrium montanum, Xylopia aromatica, and other organisms with data available. 7-Methyl-3-methylene-1,6-octadiene is found in allspice. 7-Methyl-3-methylene-1,6-octadiene is found in many essential oils, e.g. hop oil. 7-Methyl-3-methylene-1,6-octadiene is a flavouring agent. Myrcene is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Caraway Oil (part of); Mandarin oil (part of); Juniper Berry Oil (part of) ... View More ... A monoterpene that is octa-1,6-diene bearing methylene and methyl substituents at positions 3 and 7 respectively. Found in many essential oils, e.g. hop oil. Flavouring agent Myrcene (β-Myrcene), an aromatic volatile compound, suppresses TNFα-induced NF-κB activity. Myrcene has anti-invasive effect[1][2]. Myrcene (β-Myrcene), an aromatic volatile compound, suppresses TNFα-induced NF-κB activity. Myrcene has anti-invasive effect[1][2].

   

(2S,4R)-1,7,7-Trimethylbicyclo[2.2.1]heptan-2-ol

Bicyclo(2.2.1)heptan-2-ol, 1,7,7-trimethyl-, endo-(.+/-.)-

C10H18O (154.1358)


Borneol appears as a white colored lump-solid with a sharp camphor-like odor. Burns readily. Slightly denser than water and insoluble in water. Used to make perfumes. Borneol is a bornane monoterpenoid that is 1,7,7-trimethylbicyclo[2.2.1]heptane substituted by a hydroxy group at position 2. It has a role as a volatile oil component and a metabolite. Isoborneol is a natural product found in Xylopia sericea, Eupatorium capillifolium, and other organisms with data available. Both Borneol and Isoborneol and their acetates and formates are used as flavouring agents. 2-Bornanol is found in turmeric. Isoborneol ((±)-Isoborneol) is a monoterpenoid alcohol present in the essential oils of numerous medicinal plants and has antioxidant and antiviral properties. Isoborneol is a potent inhibitor of herpes simplex virus type 1 (HSV-1)[1][2]. Isoborneol ((±)-Isoborneol) is a monoterpenoid alcohol present in the essential oils of numerous medicinal plants and has antioxidant and antiviral properties. Isoborneol is a potent inhibitor of herpes simplex virus type 1 (HSV-1)[1][2].

   

Pulegone

(5R)-5-methyl-2-(propan-2-ylidene)cyclohexan-1-one

C10H16O (152.1201)


A p-menthane monoterpenoid that is cyclohexan-1-one substituted by a methyl group at position 5 and a propan-2-ylidene group at position 2. Occurs in oils of Mentha subspecies, Hedeoma pulegioides and many other essential oils. Fragrance and flavour ingredient. (R)-p-Menth-4(8)-en-3-one is found in many foods, some of which are blackcurrant, pepper (c. frutescens), spearmint, and red bell pepper. Pulegone, the major chemical constituent of Nepeta catariaessential oil which is an aromatic herb, is one of avian repellents[1]. The molecular target for the repellent action of Pulegone in avian species is nociceptive TRP ankyrin 1 (TRPA1). Pulegone stimulates both TRPM8 and TRPA1 channel in chicken sensory neurons and suppresses the former but not the latter at high concentrations[2]. Pulegone, the major chemical constituent of Nepeta catariaessential oil which is an aromatic herb, is one of avian repellents[1]. The molecular target for the repellent action of Pulegone in avian species is nociceptive TRP ankyrin 1 (TRPA1). Pulegone stimulates both TRPM8 and TRPA1 channel in chicken sensory neurons and suppresses the former but not the latter at high concentrations[2].

   

Cedorol

Cedrol;[3R-(3alpha,3abeta,6alpha,7beta,8aalpha)]-octahydro-3,6,8,8-tetramethyl-1H-3a,7-methanoazulen-6-ol

C15H26O (222.1984)


Cedrol, also known as alpha-cedrol or (+)-cedrol, is a member of the class of compounds known as cedrane and isocedrane sesquiterpenoids. Cedrane and isocedrane sesquiterpenoids are sesquiternoids with a structure based on the cedrane or the isocedrane skeleton. Cedrane is a tricyclic molecules a 3,6,8,8-tetramethyl-1H-3a,7-methano-azulene moiety. Isocedrane is a rearranged cedrane arising from the migration of methyl group moved from the 6-position to the 4-position. Thus, cedrol is considered to be an isoprenoid lipid molecule. Cedrol is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Cedrol can be found in ginger, which makes cedrol a potential biomarker for the consumption of this food product. Cedrol is a sesquiterpene alcohol found in the essential oil of conifers (cedar oil), especially in the genera Cupressus (cypress) and Juniperus (juniper). It has also been identified in Origanum onites, a plant related to oregano. Its main uses are in the chemistry of aroma compounds. It makes up about 19\\\\% of cedarwood oil Texas and 15.8\\\\% of cedarwood oil Virginia . Cedrol is a bioactive sesquiterpene, a potent competitive inhibitor of cytochrome P-450 (CYP) enzymes. Cedrol inhibits CYP2B6-mediated bupropion hydroxylase and CYP3A4-mediated midazolam hydroxylation with Ki of 0.9 μM and 3.4 μM, respectively. Cedrol also has weak inhibitory effect on CYP2C8, CYP2C9, and CYP2C19 enzymes[1]. Cedrol is found in cedar essential oil and poetesses anti-septic, anti-inflammatory, anti-spasmodic, tonic, astringent, diuretic, insecticidal, and anti-fungal activities[2]. Cedrol is a bioactive sesquiterpene, a potent competitive inhibitor of cytochrome P-450 (CYP) enzymes. Cedrol inhibits CYP2B6-mediated bupropion hydroxylase and CYP3A4-mediated midazolam hydroxylation with Ki of 0.9 μM and 3.4 μM, respectively. Cedrol also has weak inhibitory effect on CYP2C8, CYP2C9, and CYP2C19 enzymes[1]. Cedrol is found in cedar essential oil and poetesses anti-septic, anti-inflammatory, anti-spasmodic, tonic, astringent, diuretic, insecticidal, and anti-fungal activities[2].

   

Nonacosane

Nonacosane; Celidoniol, deoxy- (7CI); n-Nonacosane

C29H60 (408.4695)


Nonacosane, also known as CH3-[CH2]27-CH3, belongs to the class of organic compounds known as alkanes. These are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Nonacosane is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Thus, nonacosane is considered to be a hydrocarbon lipid molecule. Nonacosane is a straight-chain hydrocarbon with a molecular formula of C29H60. Nonacosane has been identified within several essential oils. Nonacosane has been detected, but not quantified, in several different foods, such as peachs, ginkgo nuts, cauliflowers, arabica coffee, and lambsquarters. This could make nonacosane a potential biomarker for the consumption of these foods. Nonacosane occurs naturally and has been reported to be a component of a pheromone of Orgyia leucostigma, and evidence suggests it plays a role in the chemical communication of several insects, including the female Anopheles stephensi (a mosquito). It can also be prepared synthetically. It has 1,590,507,121 constitutional isomers. Nonacosane, also known as ch3-[ch2]27-ch3, is a member of the class of compounds known as alkanes. Alkanes are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Thus, nonacosane is considered to be a hydrocarbon lipid molecule. Nonacosane can be found in a number of food items such as garden tomato (variety), papaya, brussel sprouts, and wild carrot, which makes nonacosane a potential biomarker for the consumption of these food products. Nonacosane occurs naturally and has been reported to be a component of a pheromone of Orgyia leucostigma, and evidence suggests it plays a role in the chemical communication of several insects, including the female Anopheles stephensi (a mosquito) . Nonacosane is a straight-chain alkane comprising of 29 carbon atoms. It has a role as a plant metabolite and a volatile oil component. Nonacosane is a natural product found in Euphorbia larica, Quercus salicina, and other organisms with data available. See also: Moringa oleifera leaf oil (part of). A straight-chain alkane comprising of 29 carbon atoms. Nonacosane, isolated from Baphia massaiensis, exhibits weak activities against E. coli, B. subtilis, P. aeruginosa and S. aureus[1]. Nonacosane, isolated from Baphia massaiensis, exhibits weak activities against E. coli, B. subtilis, P. aeruginosa and S. aureus[1].

   

Thymol

Thymol, Pharmaceutical Secondary Standard; Certified Reference Material

C10H14O (150.1045)


Thymol is a phenol that is a natural monoterpene derivative of cymene. It has a role as a volatile oil component. It is a member of phenols and a monoterpenoid. It derives from a hydride of a p-cymene. A phenol obtained from thyme oil or other volatile oils. It is used as a stabilizer in pharmaceutic preparations. It has been used for its antiseptic, antibacterial, and antifungal actions, and was formerly used as a vermifuge. (Dorland, 28th ed) Thymol is a natural product found in Xylopia aromatica, Xylopia sericea, and other organisms with data available. A phenol obtained from thyme oil or other volatile oils used as a stabilizer in pharmaceutical preparations, and as an antiseptic (antibacterial or antifungal) agent. See also: Paeonia lactiflora root (part of); Elymus repens root (part of); Eucalyptol; thymol (component of) ... View More ... Thymol is a phenol obtained from thyme oil or other volatile oils. It is used as a stabilizer in pharmaceutic preparations. It has been used for its antiseptic, antibacterial, and antifungal actions, and was formerly used as a vermifuge. Thymol is a monoterpene phenol derivative of cymene, C10H13OH, isomeric with carvacrol, found in oil of thyme, and extracted as a white crystalline substance of a pleasant aromatic odor and strong antiseptic properties. It is also called "hydroxy cymene". In a 1994 report released by five top cigarette companies, thymol is one of the 599 additives to cigarettes. Its use or purpose, however, is unknown, like most cigarette additives. Found in many essential oils. Especies found in the Labiatae. Rich sources are thyme oil, seed oil of Ptychotis ajowan and oils of horsemint (Monarda punctata) and Ocimum subspecies Flavouring ingredient C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D000890 - Anti-Infective Agents > D000935 - Antifungal Agents A phenol that is a natural monoterpene derivative of cymene. Thymol is the main monoterpene phenol occurring in essential oils isolated from plants belonging to the Lamiaceae family, and other plants such as those belonging to the Verbenaceae, Scrophulariaceae, Ranunculaceae and Apiaceae families. Thymol has antioxidant, anti-inflammatory, antibacterial and antifungal effects[1]. Thymol is the main monoterpene phenol occurring in essential oils isolated from plants belonging to the Lamiaceae family, and other plants such as those belonging to the Verbenaceae, Scrophulariaceae, Ranunculaceae and Apiaceae families. Thymol has antioxidant, anti-inflammatory, antibacterial and antifungal effects[1].

   

beta-Geraniol

3,7-Dimethyloctan-1-ol, tetradehydro derivative

C10H18O (154.1358)


Geraniol is a colorless to pale yellow oily liquid with a sweet rose odor. (NTP, 1992) Geraniol is a monoterpenoid consisting of two prenyl units linked head-to-tail and functionalised with a hydroxy group at its tail end. It has a role as a fragrance, an allergen, a volatile oil component and a plant metabolite. It is a monoterpenoid, a primary alcohol and a 3,7-dimethylocta-2,6-dien-1-ol. Geraniol is a monoterpene that is found within many essential oils of fruits, vegetables, and herbs including rose oil, citronella, lemongrass, lavender, and other aromatic plants. It is emitted from the flowers of many species of plant and is commonly used by the food, fragrance, and cosmetic industry. Geraniol has demonstrated a wide spectrum of pharmacological activities including antimicrobial, anti-inflammatory, antioxidant, anti-cancer, and neuroprotective to name a few. Interestingly, geraniol has also been shown to sensitize tumour cells to commonly used chemotherapies including [DB00544] and [DB01248] and represents a promising cancer chemopreventive agent. Due to its anticancer effects, geraniol has been found to be effective against a broad range of cancers including breast, lung, colon, prostate, pancreatic, skin, liver, kidney and oral cancers. These pharmacologic effects are clinically important as geraniol is classified as generally-recognized-as-safe (GRAS) by the Flavor and Extract Manufacturers Association (FEMA) and the Food and Drug Administration (FDA) of the United States. Sensitivity to geraniol may be identified with a clinical patch test. Geraniol is a Standardized Chemical Allergen. The physiologic effect of geraniol is by means of Increased Histamine Release, and Cell-mediated Immunity. Geraniol is a natural product found in Xylopia sericea, Eupatorium cannabinum, and other organisms with data available. beta-Geraniol is found in almond. beta-Geraniol is found in free state and as esters in many essential oils including geranium oil. Most prolific natural source is palmarosa oil. beta-Geraniol is a flavouring agent. Geraniol is a monoterpenoid and an alcohol. It is the primary part of rose oil, palmarosa oil, and citronella oil (Java type). It also occurs in small quantities in geranium, lemon, and many other essential oils. It has a rose-like odor and is commonly used in perfumes. It is used in flavors such as peach, raspberry, grapefruit, red apple, plum, lime, orange, lemon, watermelon, pineapple, and blueberry. It is the isomer of nerol. (Wikipedia) beta-Geraniol belongs to the family of Monoterpenes. These are compounds contaning a chain of two isoprene units. Geraniol is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Coriander Oil (part of); Java citronella oil (part of). beta-Geraniol, also known as (E)-nerol, the isomer of nerol (or geranyl alcohol, is a monoterpenoid alcohol. It belongs to the class of organic compounds known as acyclic monoterpenoids. These are monoterpenes that do not contain a cycle. Monoterpenoids are terpenes that contain 10 carbon atoms and are comprised of two isoprene units. The biosynthesis of monoterpenes is known to occur mainly through the methyl-erythritol-phosphate (MEP) pathway in the plastids (PMID:7640522 ). Geranyl diphosphate (GPP) is a key intermediate in the biosynthesis of cyclic monoterpenes. GPP undergoes several cyclization reactions to yield a diverse number of cyclic arrangements. beta-Geraniol is an isoprenoid lipid molecule that is very hydrophobic, practically insoluble in water, and relatively neutral. beta-Geraniol has a sweet, citrus, and floral taste. beta-Geraniol is found in highest concentrations in common grapes, black walnuts, and common thymes and in lower concentrations in cardamoms, common oregano, and gingers. beta-Geraniol has also been detected in lemon verbena, oval-leaf huckleberries, common pea, sweet cherries, and nopals. This could make beta-geraniol a potential biomarker for the consumption of these foods. It is found in as an alcohol and as its ester in many essential oils including geranium oil. It is the primary part of rose oil, palmarosa oil, and citronella oil (Java type) and occurs in small quantities in geranium, lemon, and many other essential oils. Geraniol is a monoterpenoid and an alcohol found in cannabis plants (PMID:6991645 ). Because it has a rose-like odor, it is commonly used in perfumes. It is used to create flavors such as peach, raspberry, grapefruit, red apple, plum, lime, orange, lemon, watermelon, pineapple, and blueberry. Geraniol is produced by the scent glands of honeybees to mark nectar-bearing flowers and locate the entrances to their hives (http//doi:10.1051/apido:19900403). Found in free state and as esters in many essential oils including geranium oil. Most prolific natural source is palmarosa oil. Flavouring agent A monoterpenoid consisting of two prenyl units linked head-to-tail and functionalised with a hydroxy group at its tail end. C26170 - Protective Agent > C275 - Antioxidant Geraniol, an olefinic terpene, was found to inhibit growth of Candida albicans and Saccharomyces cerevisiae strains[1]. Geraniol, an olefinic terpene, was found to inhibit growth of Candida albicans and Saccharomyces cerevisiae strains[1]. Nerol is a constituent of neroli oil. Nerol Nerol triggers mitochondrial dysfunction and induces apoptosis via elevation of Ca2+ and ROS. Antifungal activity[1][2]. Nerol is a constituent of neroli oil. Nerol Nerol triggers mitochondrial dysfunction and induces apoptosis via elevation of Ca2+ and ROS. Antifungal activity[1][2]. Nerol is a constituent of neroli oil. Nerol Nerol triggers mitochondrial dysfunction and induces apoptosis via elevation of Ca2+ and ROS. Antifungal activity[1][2].

   

Geraniol

cis-3,7-Dimethyl-2,6-octadien-1-ol, >=97\\%, FCC, FG

C10H18O (154.1358)


Geraniol, also known as beta-Geraniol, (E)-nerol (the isomer of nerol) or geranyl alcohol, is a monoterpenoid alcohol. It belongs to the class of organic compounds known as acyclic monoterpenoids. These are monoterpenes that do not contain a cycle. Monoterpenoids are terpenes that contain 10 carbon atoms and are comprised of two isoprene units. In plants, the biosynthesis of monoterpenes is known to occur mainly through the methyl-erythritol-phosphate (MEP) pathway in the plastids (PMID:7640522 ). Geranyl diphosphate (GPP) is a key intermediate in the biosynthesis of cyclic monoterpenes. GPP undergoes several cyclization reactions to yield a diverse number of cyclic arrangements. beta-Geraniol is an isoprenoid lipid molecule that is very hydrophobic, practically insoluble in water, and relatively neutral. beta-Geraniol has a sweet, citrus, and floral taste. beta-Geraniol is found in highest concentrations in common grapes, black walnuts, and common thymes and in lower concentrations in cardamoms, common oregano, and gingers. beta-Geraniol has also been detected in lemon verbena, oval-leaf huckleberries, common pea, sweet cherries, and nopals. It is found as an alcohol and as its ester in many essential oils including geranium oil. It is the primary part of rose oil, palmarosa oil, and citronella oil (Java type) and occurs in small quantities in geranium, lemon, and many other essential oils. Because it has a rose-like odor, it is commonly used in perfumes. It is used to create flavors such as peach, raspberry, grapefruit, red apple, plum, lime, orange, lemon, watermelon, pineapple, and blueberry. An alternate application has been found in the use of insect repellents or deterrants. Though it may repel mosquitoes, flies, lice, cockroaches, ants, and ticks, it is also produced by the scent glands of honey bees to help them mark nectar-bearing flowers and locate the entrances to their hives (http//doi:10.1051/apido:19900403). Extensive testing by Dr. Jerry Butler at the University of Florida has shown geraniol to be one of natures most effective insect repellents (PMID:20836800). Nerol is the (2Z)-stereoisomer of 3,7-dimethylocta-2,6-dien-1-ol. It has been isolated from the essential oils from plants like lemon grass. It has a role as a volatile oil component, a plant metabolite and a fragrance. Nerol is a natural product found in Eupatorium cannabinum, Vitis rotundifolia, and other organisms with data available. Nerol is a metabolite found in or produced by Saccharomyces cerevisiae. Constituent of many essential oils including neroli and bergamot oils. In essential oils it is a minor component always accompanied by geraniol. Flavouring agent The (2Z)-stereoisomer of 3,7-dimethylocta-2,6-dien-1-ol. It has been isolated from the essential oils from plants like lemon grass. Nerol is a constituent of neroli oil. Nerol Nerol triggers mitochondrial dysfunction and induces apoptosis via elevation of Ca2+ and ROS. Antifungal activity[1][2]. Nerol is a constituent of neroli oil. Nerol Nerol triggers mitochondrial dysfunction and induces apoptosis via elevation of Ca2+ and ROS. Antifungal activity[1][2]. Nerol is a constituent of neroli oil. Nerol Nerol triggers mitochondrial dysfunction and induces apoptosis via elevation of Ca2+ and ROS. Antifungal activity[1][2].

   

Safranal

InChI=1/C10H14O/c1-8-5-4-6-10(2,3)9(8)7-11/h4-5,7H,6H2,1-3H3

C10H14O (150.1045)


Safranal is found in fig. Safranal is a constituent of saffron (Crocus sativa). Safranal is a flavouring ingredient It is believed that safranal is a degradation product of the carotenoid zeaxanthin via the intermediacy of picrocrocin. Safranal is an effective anticonvulsant shown to act as an agonist at GABAA receptors. Safranal also exhibits high antioxidant and free radical scavenging activity, along with cytotoxicity towards cancer cells in vitro. It has also been shown to have antidepressant properties. Safranal is an organic compound isolated from saffron, the spice consisting of the stigmas of crocus flowers (Crocus sativus). It is the constituent primarily responsible for the aroma of saffron Safranal is a monoterpenoid formally derived from beta-cyclocitral by dehydrogenation. It is functionally related to a beta-cyclocitral. Safranal is a natural product found in Aspalathus linearis, Cistus creticus, and other organisms with data available. Constituent of saffron (Crocus sativa). Flavouring ingredient Safranal is an orally active main component of Saffron (Crocus sativus) and is responsible for the unique aroma of this spice. Safranal has neuroprotective and anti-inflammatory effects and has the potential for Parkinson’s disease research[1]. Safranal is an orally active main component of Saffron (Crocus sativus) and is responsible for the unique aroma of this spice. Safranal has neuroprotective and anti-inflammatory effects and has the potential for Parkinson’s disease research[1].

   

p-Menth-1-en-4-ol

Terpinen 4-ol, primary pharmaceutical reference standard

C10H18O (154.1358)


p-Menth-1-en-4-ol, also known as terpinen-4-ol, 1-para-menthen-4-ol or p-Menth-1-en-4-ol or 4-carvomenthenol, is an isomer of terpineol. It belongs to the class of organic compounds known as menthane monoterpenoids. These are monoterpenoids with a structure based on the o-, m-, or p-menthane backbone. P-menthane consists of the cyclohexane ring with a methyl group and a (2-methyl)-propyl group at the 1 and 4 ring position, respectively. The o- and m- menthanes are much rarer, and presumably arise by alkyl migration of p-menthanes. ±-Terpinene-4-ol is a hydrophobic, largely neutral molecule that is essentially insoluble in water. It has a peppery, spicy, musty, citrus odor and a cooling woody or spicy taste. ±-Terpinene-4-ol is widely used as a flavoring agent and as a masking agent in cosmetics. ±-Terpinene-4-ol is a natural product that can be found in a number of plants, such as allspice, anise, apple, basil, cardamom, cinnamon and Melaleuca alternifolia (also called tea tree) and is the main bioactive component of tea tree oil (PMID 22083482 ). ±-Terpinene-4-ol is also one of the monoterpenes found in cannabis plants (PMID:6991645 ). Terpinen-4-ol is a potent bactericidal agent that also possess antifungal properties. In particular, it has shown in vitro activity against Staphylococcus aureus and C. albicans (PMID:27275783 ). It has also been shown that combining this natural substance and conventional drugs may help treat resistant yeast and bacterial infections. Several studies have suggested that terpinen-4-ol induces antitumor effects by selectively causing necrotic cell death and cell-cycle arrest in melanoma cell lines, or by triggering caspase-dependent apoptosis in human melanoma cells (PMID:27275783 ). 4-terpineol is a terpineol that is 1-menthene carrying a hydroxy substituent at position 4. It has a role as a plant metabolite, an antibacterial agent, an antioxidant, an anti-inflammatory agent, an antiparasitic agent, an antineoplastic agent, an apoptosis inducer and a volatile oil component. It is a terpineol and a tertiary alcohol. Terpinen-4-ol is under investigation in clinical trial NCT01647217 (Demodex Blepharitis Treatment Study). 4-Carvomenthenol is a natural product found in Nepeta nepetella, Teucrium montanum, and other organisms with data available. Terpinen-4-ol is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Lavender Oil (part of); Juniper Berry Oil (part of); Peumus boldus leaf (part of). Flavouring ingredient. p-Menth-1-en-4-ol is found in many foods, some of which are star anise, spearmint, sweet basil, and black elderberry. A terpineol that is 1-menthene carrying a hydroxy substituent at position 4. Terpinen-4-ol (4-Carvomenthenol), a naturally occurring monoterpene, is the main bioactive component of tea-tree oil. Terpinen-4-ol suppresses inflammatory mediator production by activated human monocytes. Terpinen-4-ol significantly enhances the effect of several chemotherapeutic and biological agents[1][2][3]. Terpinen-4-ol (4-Carvomenthenol), a naturally occurring monoterpene, is the main bioactive component of tea-tree oil. Terpinen-4-ol suppresses inflammatory mediator production by activated human monocytes. Terpinen-4-ol significantly enhances the effect of several chemotherapeutic and biological agents[1][2][3].

   

gamma-Terpinene

1-Isopropyl-4-methyl-1,4-cyclohexadiene, p-Mentha-1,4-diene

C10H16 (136.1252)


Gamma-terpinene is one of three isomeric monoterpenes differing in the positions of their two double bonds (alpha- and beta-terpinene being the others). In gamma-terpinene the double bonds are at the 1- and 4-positions of the p-menthane skeleton. It has a role as an antioxidant, a plant metabolite, a volatile oil component and a human xenobiotic metabolite. It is a monoterpene and a cyclohexadiene. gamma-Terpinene is a natural product found in Teucrium montanum, Xylopia aromatica, and other organisms with data available. The terpinenes are three isomeric hydrocarbons that are classified as terpenes. Gamma-terpinene is one these three isomeric hydrocarbons. It is natural and has been isolated from a variety of plant sources (Wikipedia). It is a major component of essential oils made from Citrus Fruits and has strong antioxidant activity. It has a lemon odor and widely used in food, flavours, soaps, cosmetics, pharmaceutical, tabacco, confectionery and perfume industries (http://www.gyanflavoursexport.com). See also: Lemon oil, cold pressed (part of); Coriander Oil (part of); Mandarin oil (part of). Gamma-terpinene is one of four isomeric monoterpenes (the other three being alpha terpinene, beta terpinene and delta terpinene). It is a naturally occurring terpinene and has been isolated from a variety of plant sources. It has the highest boiling point of the four known terpinene isomers. It is a major component of essential oils made from citrus fruits and has a strong antioxidant activity. It has a lemon-like or lime-like odor and is widely used in food, flavours, soaps, cosmetics, pharmaceutical, tabacco, confectionery and perfume industries (http://www.gyanflavoursexport.com). The other isomers of gamma-terpinene, such as alpha-terpinene and delta-terpinene, have been isolated from cardamom and marjoram oils while beta terpinene appears to have no natural source. One of three isomeric monoterpenes differing in the positions of their two double bonds (alpha- and beta-terpinene being the others). In gamma-terpinene the double bonds are at the 1- and 4-positions of the p-menthane skeleton. Constituent of many essential oils e.g. Citrus, Eucalyptus, Mentha, Pinus subspecies Ajowan seed oil (Carum copticum) is a major source γ-Terpinene, a monoterpene, is an orally active antioxidant compound which can scavenge radicals directly. γ-Terpinene has potent antinociception activity[1]. γ-Terpinene, a monoterpene, is an orally active antioxidant compound which can scavenge radicals directly. γ-Terpinene has potent antinociception activity[1].

   

(+)-alpha-Pinene

(R)-(+)--Pinene;(+)--Pinene; (1R)-(+)--Pinene; (1R)--Pinene; (1R,5R)-(+)--Pinene

C10H16 (136.1252)


alpha-Pinene (CAS: 80-56-8) is an organic compound of the terpene class and is one of two isomers of pinene. It is found in the oils of many species of many coniferous trees, notably the pine. It is also found in the essential oil of rosemary (Rosmarinus officinalis). Both enantiomers are known in nature. 1S,5S- or (-)-alpha-pinene is more common in European pines, whereas the 1R,5R- or (+)-alpha-isomer is more common in North America. The racemic mixture is present in some oils such as eucalyptus oil (Wikipedia). alpha-Pinene is an organic compound of the terpene class, one of two isomers of pinene. It is found in the oils of many species of many coniferous trees, notably the pine. It is also found in the essential oil of rosemary (Rosmarinus officinalis). Both enantiomers are known in nature; 1S,5S- or (-)-alpha-pinene is more common in European pines, whereas the 1R,5R- or (+)-alpha-isomer is more common in North America. The racemic mixture is present in some oils such as eucalyptus oil. (+)-alpha-pinene is the (+)-enantiomer of alpha-pinene. It has a role as a plant metabolite and a human metabolite. It is an enantiomer of a (-)-alpha-pinene. (+)-alpha-Pinene is a natural product found in Juniperus drupacea, Eucalyptus deglupta, and other organisms with data available. The (+)-enantiomer of alpha-pinene. (1R)-α-Pinene is a volatile monoterpene with antimicrobial activities. (1R)-α-Pinene reduces Bacillus cereus population growth, and exhibits repellent effects[1][2]. (1R)-α-Pinene is a volatile monoterpene with antimicrobial activities. (1R)-α-Pinene reduces Bacillus cereus population growth, and exhibits repellent effects[1][2].

   

(+)-Camphor

(+)-Camphor;(+)-bornan-2-one;(+)-camphor;(1R)-(+)-camphor;(R)-(+)-camphor;(R)-camphor

C10H16O (152.1201)


Camphor, also known as (+)-camphor or (+)-bornan-2-one, is a member of the class of compounds known as bicyclic monoterpenoids. Bicyclic monoterpenoids are monoterpenoids containing exactly 2 rings, which are fused to each other. Camphor is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Within the cell, camphor is primarily located in the membrane (predicted from logP). Camphor is a waxy, flammable, white or transparent solid with a strong aroma. It is a terpenoid with the chemical formula C10H16O. It is found in many plants, such as in the wood of the camphor laurel (Cinnamomum camphora), a large evergreen tree found in Asia (particularly in Sumatra and Borneo islands, Indonesia) and also of the unrelated Kapur tree, a tall timber tree from the same region. It also occurs in some other related trees in the laurel family, notably Ocotea usambarensis and in the oil in rosemary leaves (Rosmarinus officinalis). The mint family contains 10 to 20\\\\\\\\% camphor, while camphorweed (Heterotheca) only contains some 5\\\\\\\\%. Camphor can also be synthetically produced from oil of turpentine. It is used for its scent, as an ingredient in cooking (mainly in India), as an embalming fluid, for medicinal purposes, and in religious ceremonies. A major source of camphor in Asia is camphor basil (the parent of African blue basil) (Wikipedia). (R)-camphor is the (R)- enantiomer of camphor. It is an enantiomer of a (S)-camphor. Camphor is a bicyclic monoterpene ketone found widely in plants, especially Cinnamomum camphora. It is used topically as a skin antipruritic and as an anti-infective agent. When ingested, camphor has a rapid onset of toxic effects, and camphorated oil is the product most often responsible for its toxicity. The FDA ruled that camphorated oil could not be marketed in the United States and that no product could contain a concentration higher than 11\\\\\\\\%. It appears in the list of drug products withdrawn or removed from the market for safety or effectiveness. However, camphor can be found in several nonprescription medications at lower concentrations. D-Camphor is a natural product found in Chromolaena odorata, Curcuma amada, and other organisms with data available. See also: Coriander Oil (part of). C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent C - Cardiovascular system > C01 - Cardiac therapy The (R)- enantiomer of camphor. (+)-Camphor is a food additive used medicinally as a preservative. (+)-Camphor is a food additive used medicinally as a preservative. (+)-Camphor is a food additive used medicinally as a preservative. (+)-Camphor is a food additive used medicinally as a preservative. Camphor ((±)-Camphor) is a topical anti-infective and anti-pruritic and internally as a stimulant and carminative. However, Camphor is poisonous when ingested. Antiviral, antitussive, and anticancer activities[1]. Camphor is a TRPV3 agonist[2]. Camphor ((±)-Camphor) is a topical anti-infective and anti-pruritic and internally as a stimulant and carminative. However, Camphor is poisonous when ingested. Antiviral, antitussive, and anticancer activities[1]. Camphor is a TRPV3 agonist[2].

   

Geranial

trans-3,7-Dimethyl-2,6-octadien-1-al

C10H16O (152.1201)


Geranial, also known as 3,7-dimethyl-2,6-octadienal, citral or lemonal, belongs to the class of organic compounds known as acyclic monoterpenoids. These are monoterpenes that do not contain a cycle. Thus, citral is considered to be an isoprenoid lipid. Two different isomers of 3,7-dimethyl-2,6-octadienal exist. The E-isomer or trans-isomer is known as geranial or citral A. The Z-isomer or cis-isomer is known as neral or citral B. 3,7-dimethyl-2,6-octadienal is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Citral is present in the oils of several plants, including lemon myrtle (90-98\\\\%), Litsea citrata (90\\\\%), Litsea cubeba, lemongrass (65-80\\\\%), lemon tea-tree (70-80\\\\%), Ocimum gratissimum, Lindera citriodora, Calypranthes parriculata, petitgrain, lemon verbena, lemon ironbark, lemon balm, lime, lemon and orange. Citral has also been reported to be found in Cannabis sativa (PMID:6991645 , 26657499 ). Citral has a strong lemon (citrus) odor. Nerals lemon odor is less intense, but sweeter. Citral is therefore an aroma compound used in perfumery for its citrus effect. Citral is also used as a flavor and for fortifying lemon oil. It has strong antimicrobial qualities (PMID:28974979 ) and pheromonal effects in nematodes and insects (PMID:26973536 ). Citral is used in the synthesis of vitamin A, lycopene, ionone, and methylionone (a compound used to mask the smell of smoke). Occurs in lemon grass oil (Cymbopogon citratus), lemon, orange and many other essential oils; flavouring ingredient. Geranial is found in many foods, some of which are watermelon, nutmeg, cloud ear fungus, and yellow wax bean. Citral is a monoterpene found in Cymbopogon citratus essential oil, with antihyperalgesic, anti-nociceptive and anti-inflammatory effects[1]. Citral is a monoterpene found in Cymbopogon citratus essential oil, with antihyperalgesic, anti-nociceptive and anti-inflammatory effects[1].

   

(-)-trans-Carveol

(1S-trans)-2-Methyl-5-(1-methylvinyl)cyclohex-2-en-1-ol

C10H16O (152.1201)


Carveol is a natural terpenoid alcohol that is a constituent of spearmint oil. It has an odor and flavor that resemble those of spearmint and caraway. Consequently, it is used as a fragrance in cosmetics and as a flavor additive in the food industry. Constituent of Valencia orange essence oil. Flavouring ingredient Carveol is an endogenous metabolite. Carveol is an endogenous metabolite.

   

p-Cymene

1-Methyl-4-(1-methylethyl)-benzene

C10H14 (134.1095)


Cymene, or p-cymene also known as p-cymol or isopropyltoluene, is a naturally occurring aromatic organic compound. It is classified as a hydrocarbon related to a monoterpene. Its structure consists of a benzene ring para-substituted with a methyl group and an isopropyl group. It is insoluble in water, but miscible with ethanol and ether. Cymene is a constituent of a number of essential oils, most commonly the oil of cumin and thyme. There are two less common geometric isomers. o-Cymene, in which the alkyl groups are ortho-substituted, and m-cymene, in which they are meta-substituted. p-Cymene is the only natural isomer. Cymene is a common ligand for ruthenium. V. widely distributed in plant oils e.g. terpentine and citrus oils and many others. It is used in flavour industries. 1-Isopropyl-4-methylbenzene is found in many foods, some of which are green bell pepper, lemon balm, saffron, and sweet basil.

   
   

beta-Caryophyllene

trans-(1R,9S)-4,11,11-Trimethyl-8-methylenebicyclo[7.2.0]undec-4-ene

C15H24 (204.1878)


beta-Caryophyllene, also known as caryophyllene or (−)-β-caryophyllene, is a natural bicyclic sesquiterpene that is a constituent of many essential oils including that of Syzygium aromaticum (cloves), Cannabis sativa, rosemary, and hops. It is usually found as a mixture with isocaryophyllene (the cis double bond isomer) and α-humulene (obsolete name: α-caryophyllene), a ring-opened isomer. beta-Caryophyllene is notable for having both a cyclobutane ring and a trans-double bond in a nine-membered ring, both rarities in nature (Wikipedia). beta-Caryophyllene is a sweet and dry tasting compound that can be found in a number of food items such as allspice, fig, pot marjoram, and roman camomile, which makes beta-caryophyllene a potential biomarker for the consumption of these food products. beta-Caryophyllene can be found in feces and saliva. (-)-Caryophyllene. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=87-44-5 (retrieved 2024-08-07) (CAS RN: 87-44-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). β-Caryophyllene is a CB2 receptor agonist. β-Caryophyllene is a CB2 receptor agonist.

   

(-)-Bornyl acetate

(1S,2R)-1,7,7-Trimethylbicyclo[2.2.1]heptan-2-yl acetic acid

C12H20O2 (196.1463)


(-)-Bornyl acetate is isolated from Blumea balsamifera, Jasonia sp., Salvia fruticosa, carrot, rosemary, sage and lavender oil. (-)-Bornyl acetate is a flavouring agent [CCD]. Isolated from Blumea balsamifera, Jasonia species, Salvia fruticosa, carrot, rosemary, sage and lavender oil. Flavouring agent [CCD] (-)-Bornyl acetate (L-(-)-Bornyl acetate), isolated from hyssop oil, is a less active enantiomer of (+)-Bornyl acetate. (-)-Bornyl acetate possesses antifungal activity[1]. (-)-Bornyl acetate (L-(-)-Bornyl acetate), isolated from hyssop oil, is a less active enantiomer of (+)-Bornyl acetate. (-)-Bornyl acetate possesses antifungal activity[1]. (-)-Bornyl acetate (L-(-)-Bornyl acetate), isolated from hyssop oil, is a less active enantiomer of (+)-Bornyl acetate. (-)-Bornyl acetate possesses antifungal activity[1]. (-)-Bornyl acetate (L-(-)-Bornyl acetate), isolated from hyssop oil, is a less active enantiomer of (+)-Bornyl acetate. (-)-Bornyl acetate possesses antifungal activity[1].

   

(+)-alpha-Carene

(1R,6S)-3,7,7-trimethylbicyclo[4.1.0]hept-3-ene

C10H16 (136.1252)


(+)-alpha-Carene is found in herbs and spices. (+)-alpha-Carene is widespread plant product, found especially in turpentine oils (from Pinus species) and oil of galbanu Isolated from root oil of Kaempferia galanga. (-)-alpha-Carene is found in many foods, some of which are pummelo, cumin, herbs and spices, and sweet orange.

   

trans-Ocimene

trans-3,7-Dimethylocta-1,3,6-triene

C10H16 (136.1252)


trans-Ocimene is found in allspice. trans-Ocimene is a constituent of the pheromones of Anastrepha suspensa, Euploea tulliolus koxinga, and Labidus species (CCD). Ocimene refers to several isomeric hydrocarbons. The ocimenes are monoterpenes found within a variety of plants and fruits. alpha-Ocimene and the two beta-ocimenes differ in the position of the isolated double bond: it is terminal in the alpha-isomer. alpha-Ocimene is 3,7-dimethyl-1,3,7-octatriene. beta-Ocimene is 3,7-dimethyl-1,3,6-octatriene. beta-Ocimene exists in two stereoisomeric forms, cis and trans, with respect to the central double bond. The ocimenes are often found naturally as mixtures of the various forms. The mixture (as well as the pure compounds) is an oil with a pleasant odour and it is used in perfumery. Constituent of the pheromones of Anastrepha suspensa, Euploea tulliolus koxinga and Labidus subspecies [CCD]

   

alpha-Terpineol

2-(4-Methylcyclohex-3-enyl)propan-2-ol (alpha-terpineol)

C10H18O (154.1358)


alpha-Terpineol (CAS: 98-55-5) is a naturally occurring monoterpene alcohol that has been isolated from a variety of sources such as cajuput oil, pine oil, and petitgrain oil. There are three isomers of terpineol, alpha-, beta-, and gamma-terpineol, with the last two differing only by the location of the double bond. Terpineol is usually a mixture of these isomers with alpha-terpineol as the major constituent. Terpineol has a pleasant odour similar to lilac and is a common ingredient in perfumes, cosmetics, and flavours. alpha-Terpineol is occasionally found as a volatile component in urine. It is a water-soluble component of Melaleuca alternifolia Cheel, the tea tree oil (TTO). alpha-Terpineol is a likely mediator of the in vitro and in vivo activity of the TTO as an agent that could control C. albicans vaginal infections. Purified alpha-terpineol can suppress pro-inflammatory mediator production by activated human monocytes. alpha-Terpineol is able to impair the growth of human M14 melanoma cells and appear to be more effective on their resistant variants, which express high levels of P-glycoprotein in the plasma membrane, overcoming resistance to caspase-dependent apoptosis exerted by P-glycoprotein-positive tumour cells (PMID:5556886, 17083732, 11131302, 15009716). Terpineol is a naturally occurring monoterpene alcohol that has been isolated from a variety of sources such as cajuput oil, pine oil, and petitgrain oil. There are three isomers, alpha-, beta-, and gamma-terpineol, the last two differing only by the location of the double bond. Terpineol is usually a mixture of these isomers with alpha-terpineol as the major constituent. (R)-alpha-Terpineol is found in many foods, some of which are mentha (mint), sweet marjoram, lovage, and cardamom. α-Terpineol is isolated from Eucalyptus globulus Labill, exhibits strong antimicrobial activity against periodontopathic and cariogenic bacteria[1]. α-Terpineol possesses antifungal activity against T. mentagrophytes, and the activity might lead to irreversible cellular disruption[2]. α-Terpineol is isolated from Eucalyptus globulus Labill, exhibits strong antimicrobial activity against periodontopathic and cariogenic bacteria[1]. α-Terpineol possesses antifungal activity against T. mentagrophytes, and the activity might lead to irreversible cellular disruption[2].

   

Elemicin

4-(2-Ethyl-benzoimidazol-1-yl)-4-oxo-butyricacid

C12H16O3 (208.1099)


Elemicin is an olefinic compound. Elemicin is a natural product found in Anemopsis californica, Asarum celsum, and other organisms with data available. Constituent of Elemi oil and Myristica fragrans (nutmeg). Elemicin is found in many foods, some of which are nutmeg, carrot, parsley, and tarragon. Elemicin is found in carrot. Elemicin is a constituent of Elemi oil and Myristica fragrans (nutmeg). Elemicin is an orally active alkenylbenzene widely distributed in many herbs and spices. Elemicin inhibits Stearoyl-CoA Desaturase 1 (SCD1) by metabolic activation. Elemicin has anti-influenza activities, antimicrobial, antioxidant, and antiviral activities. Elemicin and its reactive metabolite of 1′-Hydroxyelemicin can induce hepatotoxicity[1][2][3][4]. Elemicin is a alkenylbenzene widely distributed in many herbs and spices. Elemicin inhibits Stearoyl-CoA Desaturase 1 (SCD1) by metabolic activation. Elemicin is one of the main components in aromatic food and has antimicrobial, antioxidant, and antiviral activities. Elemicin possesses genotoxicity and carcinogenicity[1]. Elemicin is a alkenylbenzene widely distributed in many herbs and spices. Elemicin inhibits Stearoyl-CoA Desaturase 1 (SCD1) by metabolic activation. Elemicin is one of the main components in aromatic food and has antimicrobial, antioxidant, and antiviral activities. Elemicin possesses genotoxicity and carcinogenicity[1].

   

Myrtenal

6,6-Dimethyl-bicyclo[3,1,1]hept-2-ene-2-carboxaldehyde

C10H14O (150.1045)


Occurs in orange, lemon, spearmint, pepper, thyme, juniper, calamus, ginger, myrtle, lemon balm, calabash, nutmeg, parsley seed and other plant oils. Myrtenal is found in many foods, some of which are peppermint, fruits, wild celery, and sweet bay. Myrtenal is found in cardamom. Myrtenal occurs in orange, lemon, spearmint, pepper, thyme, juniper, calamus, ginger, myrtle, lemon balm, calabash, nutmeg, parsley seed and other plant oils.

   

Isoelemicin

1,2,3-Trimethoxy-5-(1E)-1-propen-1-ylbenzene; (E)-Isoelemicin; 1,2,3-Trimethoxy-5-((E)-prop-1-enyl)benzene; 1,2,3-Trimethoxy-5-[(1E)-1-propenyl]benzene

C12H16O3 (208.1099)


Isoelemicin is found in herbs and spices. Isoelemicin is a constituent of oil of nutmeg Constituent of oil of nutmeg. Isoelemicin is found in ucuhuba and herbs and spices.

   

Bergamotene

(+)-Endo-beta-bergamotene

C15H24 (204.1878)


   

Thujyl alcohol

(1S,3S,4S,5R)-4-methyl-1-(propan-2-yl)bicyclo[3.1.0]hexan-3-ol

C10H18O (154.1358)


Thujyl alcohol is used as a food additive [EAFUS] ("EAFUS: Everything Added to Food in the United States. [http://www.eafus.com/]")

   

(S)-Carvone

D-Carvone 2-Methyl-5-(1-methylethenyl)-2-cyclohexene-1-one

C10H14O (150.1045)


Carvone, with R and S isomers, also known as carvol or limonen-6-one, belongs to the class of organic compounds known as menthane monoterpenoids. These are monoterpenoids with a structure based on the o-, m-, or p-menthane backbone. p-Menthane consists of the cyclohexane ring with a methyl group and a (2-methyl)-propyl group at the 1 and 4 ring position, respectively. The o- and m-menthanes are much rarer, and presumably arise by alkyl migration of p-menthanes. Carvone is a neutral compound. Carvone is a naturally occurring organic compound found in many essential oils but is most abundant in the oils from caraway seeds (Carum carvi), spearmint (Mentha spicata), and dill (PMID:27427817). Carvone is occasionally found as a component of biological fluids in normal individuals. Both carvones (R, S) are used in the food and flavor industry (http//doi:10.1016/j.foodchem.2005.01.003). R-carvone is also used in air freshening products and in essential oils used in aromatherapy and alternative medicine. Caraway was used for medicinal purposes by the ancient Romans, but carvone was probably not isolated as a pure compound until Varrentrapp obtained it in 1841 (PMID:5556886 , 2477620 ). Carvone may help in the management of diseases (PMID:30374904) and had been considered as an adjuvant for treatment of cancer patients (PMID:30087792) and patients with epilepsy (PMID:31239862). It also has been successfully used as a biopesticide (PMID:30250476). D-carvone appears as pale yellow or colorless liquid. (NTP, 1992) (+)-carvone is a carvone having (S) configuration. It is an enantiomer of a (-)-carvone. d-Carvone is a natural product found in Xylopia aromatica, Xylopia sericea, and other organisms with data available. See also: Caraway Oil (part of). A carvone having (S) configuration.

   

cis-Citral

(2Z)-3,7-Dimethyl-2,6-octadien-1-al

C10H16O (152.1201)


Neral, also known as cis-citral or citral b, is a member of the class of compounds known as acyclic monoterpenoids. Acyclic monoterpenoids are monoterpenes that do not contain a cycle. Thus, neral is considered to be an isoprenoid lipid molecule. Neral is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Neral is a sweet, citral, and lemon tasting compound and can be found in a number of food items such as oval-leaf huckleberry, lime, onion-family vegetables, and biscuit, which makes neral a potential biomarker for the consumption of these food products. Neral may refer to: An isomer of Citral Neral, India, a town in Raigad district in the Indian state of Maharashtra Neral railway station A Romulan from Star Trek . cis-Citral, also known as neural or citral B, is the Z-isomer of the terpenoid citral. Citral is found in carrot.

   

(-)-cis-Carveol

2-Methyl-5-(1-methylethenyl)-(1R-cis)-2-cyclohexen-1-ol

C10H16O (152.1201)


(-)-cis-Carveol is found in citrus. (-)-cis-Carveol is a constituent of Valencia orange oil (Citrus sinensis). (-)-cis-Carveol is a flavouring agent Constituent of Valencia orange oil (Citrus sinensis). Flavouring agent. (-)-cis-Carveol is found in citrus.

   

1-Dihydrocarveol

2-methyl-5-(prop-1-en-2-yl)cyclohexan-1-ol

C10H18O (154.1358)


Dihydrocarveol, also known as 2-methyl-5-(1-methylethenyl)cyclohexanol or 6-methyl-3-isopropenylcyclohexanol, is a member of the class of compounds known as menthane monoterpenoids. Menthane monoterpenoids are monoterpenoids with a structure based on the o-, m-, or p-menthane backbone. P-menthane consists of the cyclohexane ring with a methyl group and a (2-methyl)-propyl group at the 1 and 4 ring position, respectively. The o- and m- menthanes are much rarer, and presumably arise by alkyl migration of p-menthanes. Dihydrocarveol is slightly soluble (in water) and an extremely weak acidic compound (based on its pKa). Dihydrocarveol is a herbal, menthol, and minty tasting compound and can be found in a number of food items such as spearmint, dill, pot marjoram, and pepper (spice), which makes dihydrocarveol a potential biomarker for the consumption of these food products. Dihydrocarveol, also known as 2-methyl-5-(1-methylethenyl)cyclohexanol or 6-methyl-3-isopropenylcyclohexanol, is a member of the class of compounds known as menthane monoterpenoids. Menthane monoterpenoids are monoterpenoids with a structure based on the o-, m-, or p-menthane backbone. P-menthane consists of the cyclohexane ring with a methyl group and a (2-methyl)-propyl group at the 1 and 4 ring position, respectively. The o- and m- menthanes are much rarer, and presumably arise by alkyl migration of p-menthanes. Dihydrocarveol is slightly soluble (in water) and an extremely weak acidic compound (based on its pKa). Dihydrocarveol is a herbal, menthol, and minty tasting compound and can be found in a number of food items such as dill, pot marjoram, pepper (spice), and caraway, which makes dihydrocarveol a potential biomarker for the consumption of these food products.

   

Pinene

(1R,5R)-2,6,6-Trimethylbicyclo[3.1.1]hept-2-ene

C10H16 (136.1252)


Pinene (is a bicyclic monoterpene chemical compound. There are two structural isomers of pinene found in nature: alpha-pinene and beta-pinene. As the name suggests, both forms are important constituents of pine resin; they are also found in the resins of many other conifers, as well as in non-coniferous plants. Both isomers are used by many insects in their chemical communication system.

   

β-Pinene

(1S,5S)-7,7-dimethyl-4-methylidene-bicyclo[3.1.1]heptane

C10H16 (136.1252)


An isomer of pinene with an exocyclic double bond. It is a component of essential oils from many plants. Widely distributed in plants, usually associated with a-Pinene JPV84-W but in smaller amounts. Found in lime peel oil, ginger, nutmeg, mace, bitter fennel, rosemary and sage. Flavour ingredient β-Pinene ((-)-β-Pinene), a major component of turpentine, inhibit infectious bronchitis virus (IBV) with an IC50 of 1.32 mM. β-Pinene presents antimicrobial activity[1][2]. β-Pinene ((-)-β-Pinene), a major component of turpentine, inhibit infectious bronchitis virus (IBV) with an IC50 of 1.32 mM. β-Pinene presents antimicrobial activity[1][2].

   

Auraptene

2H-1-BENZOPYRAN-2-ONE, 7-(((2E)-3,7-DIMETHYL-2,6-OCTADIEN-1-YL)OXY)-

C19H22O3 (298.1569)


Auraptene is a member of the class of coumarins that is umbelliferone in which the phenolic hydrogen has been replaced by a geranyl group. Ii is isolated from several edible fruits and vegetables and exhibits a variety of therapeutic properties. It has a role as a plant metabolite, an antineoplastic agent, an apoptosis inducer, a dopaminergic agent, a neuroprotective agent, an antihypertensive agent, a gamma-secretase modulator, a vulnerary, an EC 2.7.11.24 (mitogen-activated protein kinase) inhibitor, a PPARalpha agonist, a gastrointestinal drug, a matrix metalloproteinase inhibitor, an antioxidant and a hepatoprotective agent. It is a member of coumarins and a monoterpenoid. It is functionally related to an umbelliferone. Auraptene is a natural product found in Clausena anisum-olens, Geijera parviflora, and other organisms with data available. Auraptene is found in citrus. Auraptene is isolated from Citrus aurantium (Seville orange) and bael fruit (Aegle marmelos) Auraptene is a natural bioactive monoterpene coumarin ether. It was first isolated from members of the genus Citrus. Auraptene has shown a remarkable effect in the prevention of degenerative diseases. Many studies have reported the effect of auraptene as a chemopreventative agent against cancers of liver, skin, tongue, esophagus, and colon in rodent models. The effect in humans is not yet known A member of the class of coumarins that is umbelliferone in which the phenolic hydrogen has been replaced by a geranyl group. Ii is isolated from several edible fruits and vegetables and exhibits a variety of therapeutic properties. Isolated from Citrus aurantium (Seville orange) and bael fruit (Aegle marmelos) Auraptene is the most abundant naturally occurring geranyloxycoumarin. Auraptene decreases the secretion of matrix metalloproteinase 2 (MMP-2) as well as key inflammatory mediators, including IL-6, IL-8, and chemokine (C-C motif) ligand-5(CCL5)[1]. Auraptene is the most abundant naturally occurring geranyloxycoumarin. Auraptene decreases the secretion of matrix metalloproteinase 2 (MMP-2) as well as key inflammatory mediators, including IL-6, IL-8, and chemokine (C-C motif) ligand-5(CCL5)[1].

   

Pulegone

Cyclohexanone, 5-methyl-2-(1-methylethylidene)-, (theta)-

C10H16O (152.1201)


Pulegone belongs to the class of organic compounds known as menthane monoterpenoids. These are monoterpenoids with a structure based on the o-, m-, or p-menthane backbone. P-menthane consists of the cyclohexane ring with a methyl group and a (2-methyl)-propyl group at the 1 and 4 ring position, respectively. The o- and m- menthanes are much rarer, and presumably arise by alkyl migration of p-menthanes. It is formally classified as a cyclic ketone although it is biochemically a monoterpenoid as it is synthesized via isoprene units. Monoterpenoids are terpenes that contain 10 carbon atoms and are comprised of two isoprene units. The biosynthesis of monoterpenes is known to occur mainly through the methyl-erythritol-phosphate (MEP) pathway in plant cell plastids (PMID:7640522 ). Geranyl diphosphate (GPP) is a key intermediate in the biosynthesis of cyclic monoterpenes. GPP undergoes several cyclization reactions to yield a diverse number of cyclic arrangements. Pulegone is a hydrophobic, neutral compound that is insoluble in water. It exists as a clear, colorless oil. There are two isomers of Pulegone (the R and the S isomer), with the R isomer being more common. It is used industrially as a food additive and a perfuming agent. Pulegone has a fresh, minty or peppermint odor and a minty, fruity or green taste. It is found naturally in the essential oils of a variety of plants such as Nepeta cataria (catnip), Hedeoma pulegioides (pennyroyal), and Mentha species. It is also found in a number of plant foods and spices such as blackberryies, black currants, bell peppers, cornmint, rosemary, black tea, thyme, orange mint, peppermint, and spearmint, which makes it a potential biomarker for the consumption of these food products. Pulegone is also one of more than 140 terpenes that are found in cannabis plants (PMID:6991645 ). Pulegone, also known as (+)-(R)-pulegone or (1r)-(+)-P-menth-4(8)-en-3-one, is a member of the class of compounds known as menthane monoterpenoids. Menthane monoterpenoids are monoterpenoids with a structure based on the o-, m-, or p-menthane backbone. P-menthane consists of the cyclohexane ring with a methyl group and a (2-methyl)-propyl group at the 1 and 4 ring position, respectively. The o- and m- menthanes are much rarer, and presumably arise by alkyl migration of p-menthanes. Thus, pulegone is considered to be an isoprenoid lipid molecule. Pulegone is slightly soluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Pulegone can be found in a number of food items such as globe artichoke, sacred lotus, garden onion, and rubus (blackberry, raspberry), which makes pulegone a potential biomarker for the consumption of these food products. Pulegone can be found primarily in saliva. Pulegone is a naturally occurring organic compound obtained from the essential oils of a variety of plants such as Nepeta cataria (catnip), Mentha piperita, and pennyroyal. It is classified as a monoterpene . (+)-pulegone is the (5R)-enantiomer of p-menth-4(8)-en-3-one. Pulegone is a natural product found in Hedeoma multiflora, Clinopodium dalmaticum, and other organisms with data available. See also: Agathosma betulina leaf (part of). The (5R)-enantiomer of p-menth-4(8)-en-3-one. Pulegone, the major chemical constituent of Nepeta catariaessential oil which is an aromatic herb, is one of avian repellents[1]. The molecular target for the repellent action of Pulegone in avian species is nociceptive TRP ankyrin 1 (TRPA1). Pulegone stimulates both TRPM8 and TRPA1 channel in chicken sensory neurons and suppresses the former but not the latter at high concentrations[2]. Pulegone, the major chemical constituent of Nepeta catariaessential oil which is an aromatic herb, is one of avian repellents[1]. The molecular target for the repellent action of Pulegone in avian species is nociceptive TRP ankyrin 1 (TRPA1). Pulegone stimulates both TRPM8 and TRPA1 channel in chicken sensory neurons and suppresses the former but not the latter at high concentrations[2].

   

Cedrol

(3R-(3.ALPHA.,3A.BETA.,6.ALPHA.,7.BETA.,8A.ALPHA.))-OCTAHYDRO-3,6,8,8-TETRAMETHYL-1H-3A,7-METHANOAZULEN-6-OL

C15H26O (222.1984)


Cedrol is a cedrane sesquiterpenoid and a tertiary alcohol. Cedrol is a natural product found in Xylopia aromatica, Widdringtonia whytei, and other organisms with data available. Cedrol is a bioactive sesquiterpene, a potent competitive inhibitor of cytochrome P-450 (CYP) enzymes. Cedrol inhibits CYP2B6-mediated bupropion hydroxylase and CYP3A4-mediated midazolam hydroxylation with Ki of 0.9 μM and 3.4 μM, respectively. Cedrol also has weak inhibitory effect on CYP2C8, CYP2C9, and CYP2C19 enzymes[1]. Cedrol is found in cedar essential oil and poetesses anti-septic, anti-inflammatory, anti-spasmodic, tonic, astringent, diuretic, insecticidal, and anti-fungal activities[2]. Cedrol is a bioactive sesquiterpene, a potent competitive inhibitor of cytochrome P-450 (CYP) enzymes. Cedrol inhibits CYP2B6-mediated bupropion hydroxylase and CYP3A4-mediated midazolam hydroxylation with Ki of 0.9 μM and 3.4 μM, respectively. Cedrol also has weak inhibitory effect on CYP2C8, CYP2C9, and CYP2C19 enzymes[1]. Cedrol is found in cedar essential oil and poetesses anti-septic, anti-inflammatory, anti-spasmodic, tonic, astringent, diuretic, insecticidal, and anti-fungal activities[2].

   

alpha-Carene

Bicyclo(4.1.0)hept-3-ene, 3,7,7(or 4,7,7)-trimethyl-

C10H16 (136.1252)


Carene is a colorless liquid with a sweet, turpentine-like odor. Floats on water. (USCG, 1999) Car-3-ene is a monoterpene. It derives from a hydride of a carane. 3-Carene is a natural product found in Nepeta nepetella, Xylopia aromatica, and other organisms with data available. See also: Cannabis sativa subsp. indica top (part of). alpha-Carene is found in allspice. alpha-Carene is a flavouring ingredient.Carene, or delta-3-carene, is a bicyclic monoterpene which occurs naturally as a constituent of turpentine, with a content as high as 42\\% depending on the source. Carene has a sweet and pungent odor. It is not soluble in water, but miscible with fats and oils Flavouring ingredient

   

Carveol

(1S-trans)-2-Methyl-5-(1-methylvinyl)cyclohex-2-en-1-ol

C10H16O (152.1201)


Carveol is a clear colorless liquid. Insoluble in water. Carveol is a limonene monoterpenoid that is cyclohex-2-en-1-ol substituted by a methyl group at position 2 and a prop-1-en-2-yl group at position 5. It has a role as a volatile oil component and a plant metabolite. Carveol is a natural product found in Echinophora tournefortii, Trachyspermum anethifolium, and other organisms with data available. Present in oil of grapefruit (Citrus paradisi), mandarin (Citrus reticulata), blackcurrant berries, celery, black tea, dill, caraway seeds and lambs lettuce. Flavouring agent. Carveol is found in many foods, some of which are fruits, parsley, tea, and cumin. Carveol is found in caraway. Carveol is present in oil of grapefruit (Citrus paradisi), mandarin (Citrus reticulata), blackcurrant berries, celery, black tea, dill, caraway seeds and lambs lettuce. Carveol is a flavouring agent A limonene monoterpenoid that is cyclohex-2-en-1-ol substituted by a methyl group at position 2 and a prop-1-en-2-yl group at position 5. Carveol is an endogenous metabolite. Carveol is an endogenous metabolite.

   

beta-Guaiene

1,2,3,4,5,6,7,8-octahydro-1,4-Dimethyl-7-(1-methylethylidene)azulene, 9ci

C15H24 (204.1878)


beta-Guaiene is found in herbs and spices. beta-Guaiene is a flavouring ingredient. beta-Guaiene is a constituent of sweet flag oil. Flavouring ingredient. Constituent of sweet flag oil. beta-Guaiene is found in lemon balm, herbs and spices, and root vegetables.

   

(-)-Borneol

1,7,7-Trimethyl-(1R,2S,4R)-rel-bicyclo[2.2.1]heptan-2-ol

C10H18O (154.1358)


(-)-Borneol is found in common thyme and in turmeric. (-)-Borneol is a constituent of Blumea balsamifera (sambong). Both Borneol and Isoborneol and their acetates and formates are used as flavouring agents Constituent of Blumea balsamifera (sambong). (-)-Borneol is found in many foods, some of which are tea, coriander, common thyme, and cornmint. Isoborneol ((±)-Isoborneol) is a monoterpenoid alcohol present in the essential oils of numerous medicinal plants and has antioxidant and antiviral properties. Isoborneol is a potent inhibitor of herpes simplex virus type 1 (HSV-1)[1][2]. Isoborneol ((±)-Isoborneol) is a monoterpenoid alcohol present in the essential oils of numerous medicinal plants and has antioxidant and antiviral properties. Isoborneol is a potent inhibitor of herpes simplex virus type 1 (HSV-1)[1][2].

   

Linalyl acetate

3,7-Dimethyl-3-acetate(3R)-1,6-octadien-3-ol

C12H20O2 (196.1463)


Linalyl acetate, also known as 3,7-dimethylocta-1,6-dien-3-yl acetate, is a monoterpenoid that is the acetate ester of linalool. It forms a principal component of the essential oils from bergamot and lavender. It is an acetate ester and a monoterpenoid that derives from linalool. Linalyl acetate is isolated from numerous plants and essential oils, e.g. clary sage, lavender, lemon etc., and it is used as a flavouring ingredient. Synthetic linalyl acetate is sometimes used as an adulterant in essential oils to make them more marketable. Isolated from numerous plants and essential oils, e.g. clary sage, lavender, lemon etc. Flavouring ingredient Linalyl acetate is the principal components of many plant essential oils with potentially anti-inflammatory activity[1]. Linalyl acetate is the principal components of many plant essential oils with potentially anti-inflammatory activity[1].

   

cis-Ocimene

(Z)-3,7-dimethylocta-1,3,6,-triene

C10H16 (136.1252)


Ocimene refers to several isomeric hydrocarbons. The ocimenes are monoterpenes found within a variety of plants and fruits. alpha-Ocimene and the two beta-ocimenes differ in the position of the isolated double bond: it is terminal in the alpha isomer. alpha-Ocimene is 3,7-dimethyl-1,3,7-octatriene. beta-Ocimene is 3,7-dimethyl-1,3,6-octatriene. beta-Ocimene exists in two stereoisomeric forms, cis and trans, with respect to the central double bond. The ocimenes are often found naturally as mixtures of the various forms. The mixture (as well as the pure compounds) is an oil with a pleasant odor. It is used in perfumery. cis-beta-Ocimene is found in many foods, some of which are cornmint, sweet orange, sweet basil, and common sage. cis-Ocimene is found in allspice. Ocimene refers to several isomeric hydrocarbons. The ocimenes are monoterpenes found within a variety of plants and fruits. alpha-Ocimene and the two beta-ocimenes differ in the position of the isolated double bond: it is terminal in the alpha isomer. alpha-Ocimene is 3,7-dimethyl-1,3,7-octatriene. beta-Ocimene is 3,7-dimethyl-1,3,6-octatriene. beta-Ocimene exists in two stereoisomeric forms, cis and trans, with respect to the central double bond. The ocimenes are often found naturally as mixtures of the various forms. The mixture (as well as the pure compounds) is an oil with a pleasant odor. It is used in perfumery. (Wikipedia

   

(S)-p-Menth-1-en-4-ol

(1S)-4-methyl-1-(propan-2-yl)cyclohex-3-en-1-ol

C10H18O (154.1358)


(S)-p-Menth-1-en-4-ol occurs in many essential oils, e.g. lavende Occurs in many essential oils, e.g. lavender Terpinen-4-ol (4-Carvomenthenol), a naturally occurring monoterpene, is the main bioactive component of tea-tree oil. Terpinen-4-ol suppresses inflammatory mediator production by activated human monocytes. Terpinen-4-ol significantly enhances the effect of several chemotherapeutic and biological agents[1][2][3]. Terpinen-4-ol (4-Carvomenthenol), a naturally occurring monoterpene, is the main bioactive component of tea-tree oil. Terpinen-4-ol suppresses inflammatory mediator production by activated human monocytes. Terpinen-4-ol significantly enhances the effect of several chemotherapeutic and biological agents[1][2][3].

   

1alpha,3beta,22R-Trihydroxyergosta-5,24E-dien-26-oic acid 3-O-b-D-glucoside 26-O-[b-D-glucosyl-(1->2)-6-acetyl-b-D-glucosyl] ester

6-[(Acetyloxy)methyl]-4,5-dihydroxy-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl (2Z)-5-hydroxy-6-(3-hydroxy-2,15-dimethyl-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}tetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-7-en-14-yl)-2,3-dimethylhept-2-enoic acid

C48H76O21 (988.4879)


1alpha,3beta,22R-Trihydroxyergosta-5,24E-dien-26-oic acid 3-O-b-D-glucoside 26-O-[b-D-glucosyl-(1->2)-6-acetyl-b-D-glucosyl] ester is found in fruits. 1alpha,3beta,22R-Trihydroxyergosta-5,24E-dien-26-oic acid 3-O-b-D-glucoside 26-O-[b-D-glucosyl-(1->2)-6-acetyl-b-D-glucosyl] ester is a constituent of Physalis peruviana (Cape gooseberry).

   

Carvone

2-Methyl-5-(1-methyl-1-ethenyl)-2-cyclohexen-1-one

C10H14O (150.1045)


Carvone is found in anise. Carvone is a flavouring ingredient Flavouring ingredient. Constituent of gingergrass oil

   

alpha-Phellandrene

2-Methyl-5-(1-methylethyl)-1,3-cyclohexadiene

C10H16 (136.1252)


Phellandrene is the name for a pair of organic compounds that have a similar molecular structure and similar chemical properties. alpha-Phellandrene and beta-phellandrene are cyclic monoterpenes and are double-bond isomers. The phellandrenes are used in fragrances because of their pleasing aromas. Phellandrene is found in many foods, some of which are ceylon cinnamon, peppermint, anise, and dill. alpha-Phellandrene is found in allspice. Phellandrene is the name for a pair of organic compounds that have a similar molecular structure and similar chemical properties. alpha-Phellandrene and beta-phellandrene are cyclic monoterpenes and are double-bond isomers. The phellandrenes are used in fragrances because of their pleasing aromas. (Wikipedia

   

Thymol

[5-methyl-2-(propan-2-yl)phenyl]oxidanesulfonic acid

C10H14O (150.1045)


Thymol Sulfate is also known as Thymol sulfuric acid. Thymol Sulfate is considered to be practically insoluble (in water) and acidic. Thymol (also known as 2-isopropyl-5-methylphenol, IPMP), C10H14O, is a natural monoterpenoid phenol derivative of p-Cymene, isomeric with carvacrol, found in oil of thyme, and extracted from Thymus vulgaris (common thyme), ajwain,[4] and various other plants as a white crystalline substance of a pleasant aromatic odor and strong antiseptic properties. Thymol also provides the distinctive, strong flavor of the culinary herb thyme, also produced from T. vulgaris. Thymol is only slightly soluble in water at neutral pH, but it is extremely soluble in alcohols and other organic solvents. It is also soluble in strongly alkaline aqueous solutions due to deprotonation of the phenol. Its dissociation constant (pKa) is 10.59±0.10.[5] Thymol absorbs maximum UV radiation at 274 nm.[6] Ancient Egyptians used thyme for embalming.[9] The ancient Greeks used it in their baths and burned it as incense in their temples, believing it was a source of courage. The spread of thyme throughout Europe was thought to be due to the Romans, as they used it to purify their rooms and to "give an aromatic flavour to cheese and liqueurs".[10] In the European Middle Ages, the herb was placed beneath pillows to aid sleep and ward off nightmares.[11] In this period, women also often gave knights and warriors gifts that included thyme leaves, because it was believed to bring courage to the bearer. Thyme was also used as incense and placed on coffins during funerals, because it was supposed to ensure passage into the next life.[12] The bee balms Monarda fistulosa and Monarda didyma, North American wildflowers, are natural sources of thymol. The Blackfoot Native Americans recognized these plants' strong antiseptic action and used poultices of the plants for skin infections and minor wounds. A tisane made from them was also used to treat mouth and throat infections caused by dental caries and gingivitis.[13] Thymol was first isolated by German chemist Caspar Neumann in 1719.[14] In 1853, French chemist Alexandre Lallemand[15] (1816-1886) named thymol and determined its empirical formula.[16] Thymol was first synthesized by Swedish chemist Oskar Widman[17] (1852-1930) in 1882.[18]

   

Neothujol

3-Thujol, (1R-(alpha,3alpha,4alpha5alpha))-isomer

C10H18O (154.1358)


Thujyl alcohol, also known as 3-thujol, is a member of the class of compounds known as bicyclic monoterpenoids. Bicyclic monoterpenoids are monoterpenoids containing exactly 2 rings, which are fused to each other. Thujyl alcohol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Thujyl alcohol has a camphoreous and minty taste. It is used as a food additive .

   

Bornyl acetate

(1S,2R,4S)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl acetate

C12H20O2 (196.1463)


Bornyl acetate, also known as bornyl acetic acid, is a member of the class of compounds known as bicyclic monoterpenoids. Bicyclic monoterpenoids are monoterpenoids containing exactly 2 rings, which are fused to each other. Bornyl acetate is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Bornyl acetate is a camphor, cedar, and herbal tasting compound and can be found in a number of food items such as nutmeg, rosemary, spearmint, and sunflower, which makes bornyl acetate a potential biomarker for the consumption of these food products. (-)-Bornyl acetate (L-(-)-Bornyl acetate), isolated from hyssop oil, is a less active enantiomer of (+)-Bornyl acetate. (-)-Bornyl acetate possesses antifungal activity[1]. (-)-Bornyl acetate (L-(-)-Bornyl acetate), isolated from hyssop oil, is a less active enantiomer of (+)-Bornyl acetate. (-)-Bornyl acetate possesses antifungal activity[1]. (-)-Bornyl acetate (L-(-)-Bornyl acetate), isolated from hyssop oil, is a less active enantiomer of (+)-Bornyl acetate. (-)-Bornyl acetate possesses antifungal activity[1]. (-)-Bornyl acetate (L-(-)-Bornyl acetate), isolated from hyssop oil, is a less active enantiomer of (+)-Bornyl acetate. (-)-Bornyl acetate possesses antifungal activity[1]. Bornyl acetate is a potent odorant, exhibiting one of the highest flavor dilution factor (FD factor). Bornyl acetate possesses anti-cancer activity[1][2]. Bornyl acetate is a potent odorant, exhibiting one of the highest flavor dilution factor (FD factor). Bornyl acetate possesses anti-cancer activity[1][2].

   

D-Camphor

1,7,7-Trimethylbicyclo[2.2.1]heptan-2-one

C10H16O (152.1201)


(+)-camphor, also known as formosa camphor or 2-bornanone, is a member of the class of compounds known as bicyclic monoterpenoids. Bicyclic monoterpenoids are monoterpenoids containing exactly 2 rings, which are fused to each other. Thus, (+)-camphor is considered to be an isoprenoid lipid molecule (+)-camphor is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). (+)-camphor is a bitter, camphor, and herbal tasting compound and can be found in a number of food items such as sugar apple, sunflower, fennel, and cardamom, which makes (+)-camphor a potential biomarker for the consumption of these food products. C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D000890 - Anti-Infective Agents Camphor ((±)-Camphor) is a topical anti-infective and anti-pruritic and internally as a stimulant and carminative. However, Camphor is poisonous when ingested. Antiviral, antitussive, and anticancer activities[1]. Camphor is a TRPV3 agonist[2]. Camphor ((±)-Camphor) is a topical anti-infective and anti-pruritic and internally as a stimulant and carminative. However, Camphor is poisonous when ingested. Antiviral, antitussive, and anticancer activities[1]. Camphor is a TRPV3 agonist[2].

   

Cedrol

2,6,6,8-tetramethyltricyclo[5.3.1.0¹,⁵]undecan-8-ol

C15H26O (222.1984)


Cedrol is a member of the class of compounds known as cedrane and isocedrane sesquiterpenoids. Cedrane and isocedrane sesquiterpenoids are sesquiternoids with a structure based on the cedrane or the isocedrane skeleton. Cedrane is a tricyclic molecules a 3,6,8,8-tetramethyl-1H-3a,7-methano-azulene moiety. Isocedrane is a rearranged cedrane arising from the migration of methyl group moved from the 6-position to the 4-position. Cedrol is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Cedrol is a sweet, cedarwood, and dry tasting compound found in ginger, pepper (spice), and peppermint, which makes cedrol a potential biomarker for the consumption of these food products. Cedrol is a sesquiterpene alcohol found in the essential oil of conifers (cedar oil), especially in the genera Cupressus (cypress) and Juniperus (juniper). It has also been identified in Origanum onites, a plant related to oregano. Its main uses are in the chemistry of aroma compounds. It makes up about 19\\\\% of cedarwood oil Texas and 15.8\\\\% of cedarwood oil Virginia . Cedrol is a bioactive sesquiterpene, a potent competitive inhibitor of cytochrome P-450 (CYP) enzymes. Cedrol inhibits CYP2B6-mediated bupropion hydroxylase and CYP3A4-mediated midazolam hydroxylation with Ki of 0.9 μM and 3.4 μM, respectively. Cedrol also has weak inhibitory effect on CYP2C8, CYP2C9, and CYP2C19 enzymes[1]. Cedrol is found in cedar essential oil and poetesses anti-septic, anti-inflammatory, anti-spasmodic, tonic, astringent, diuretic, insecticidal, and anti-fungal activities[2]. Cedrol is a bioactive sesquiterpene, a potent competitive inhibitor of cytochrome P-450 (CYP) enzymes. Cedrol inhibits CYP2B6-mediated bupropion hydroxylase and CYP3A4-mediated midazolam hydroxylation with Ki of 0.9 μM and 3.4 μM, respectively. Cedrol also has weak inhibitory effect on CYP2C8, CYP2C9, and CYP2C19 enzymes[1]. Cedrol is found in cedar essential oil and poetesses anti-septic, anti-inflammatory, anti-spasmodic, tonic, astringent, diuretic, insecticidal, and anti-fungal activities[2].

   
   

citrol

InChI=1\C10H18O\c1-9(2)5-4-6-10(3)7-8-11\h5,7,11H,4,6,8H2,1-3H3\b10-7

C10H18O (154.1358)


C26170 - Protective Agent > C275 - Antioxidant Geraniol, an olefinic terpene, was found to inhibit growth of Candida albicans and Saccharomyces cerevisiae strains[1]. Geraniol, an olefinic terpene, was found to inhibit growth of Candida albicans and Saccharomyces cerevisiae strains[1].

   

α-phellandrene

2-Methyl-5-(1-methylethyl)-1,3-cyclohexadiene

C10H16 (136.1252)


One of a pair of phellandrene cyclic monoterpene double-bond isomers in which both double bonds are endocyclic (cf. alpha-phellandrene, where one of them is exocyclic).

   

aurapten

7-(3,7-Dimethyl-2,6-octadienyl)oxy-2H-1-benzopyran-2-one, 9CI

C19H22O3 (298.1569)


Auraptene is the most abundant naturally occurring geranyloxycoumarin. Auraptene decreases the secretion of matrix metalloproteinase 2 (MMP-2) as well as key inflammatory mediators, including IL-6, IL-8, and chemokine (C-C motif) ligand-5(CCL5)[1]. Auraptene is the most abundant naturally occurring geranyloxycoumarin. Auraptene decreases the secretion of matrix metalloproteinase 2 (MMP-2) as well as key inflammatory mediators, including IL-6, IL-8, and chemokine (C-C motif) ligand-5(CCL5)[1].

   
   

Xanthotoxin

9-methoxy-7H-furo[3,2-g]chromen-7-one

C12H8O4 (216.0423)


   

myrtenal

BICYCLO(3.1.1)HEPT-2-ENE-2-CARBOXALDEHYDE, 6,6-DIMETHYL-, (1R,5S)-REL-

C10H14O (150.1045)


(-)-Myrtenal is a natural product found in Cyperus articulatus, Forsythia viridissima, and other organisms with data available. (?)-Myrtenal ((1R)-(?)-Myrtenal) is an orally active terpene with antitumour activity. (?)-Myrtenal ameliorates hyperglycemia by enhancing GLUT2 through Akt in the skeletal muscle and liver of diabetic rats[1][2]. (?)-Myrtenal ((1R)-(?)-Myrtenal) is an orally active terpene with antitumour activity. (?)-Myrtenal ameliorates hyperglycemia by enhancing GLUT2 through Akt in the skeletal muscle and liver of diabetic rats[1][2]. (?)-Myrtenal ((1R)-(?)-Myrtenal) is an orally active terpene with antitumour activity. (?)-Myrtenal ameliorates hyperglycemia by enhancing GLUT2 through Akt in the skeletal muscle and liver of diabetic rats[1][2]. (?)-Myrtenal ((1R)-(?)-Myrtenal) is an orally active terpene with antitumour activity. (?)-Myrtenal ameliorates hyperglycemia by enhancing GLUT2 through Akt in the skeletal muscle and liver of diabetic rats[1][2]. (?)-Myrtenal ((1R)-(?)-Myrtenal) is an orally active terpene with antitumour activity. (?)-Myrtenal ameliorates hyperglycemia by enhancing GLUT2 through Akt in the skeletal muscle and liver of diabetic rats[1][2]. (?)-Myrtenal ((1R)-(?)-Myrtenal) is an orally active terpene with antitumour activity. (?)-Myrtenal ameliorates hyperglycemia by enhancing GLUT2 through Akt in the skeletal muscle and liver of diabetic rats[1][2].

   

Carene

(+)-3-delta-Carene, primary pharmaceutical reference standard

C10H16 (136.1252)


(+)-car-3-ene is a car-3-ene (3,7,7-trimethylbicyclo[4.1.0]hept-3-ene) that has S configuration at position 1 and R configuration at position 6. It is an enantiomer of a (-)-car-3-ene. (+)-3-Carene is a natural product found in Molopospermum peloponnesiacum, Kippistia suaedifolia, and other organisms with data available.

   

Bornyl_acetate

BICYCLO[2.2.1]HEPTAN-2-OL,1,7,7-TRIMETHYL-, 2-ACETATE, (1S,2R,4S)-

C12H20O2 (196.1463)


Bornyl acetate is a natural product found in Xylopia aromatica, Xylopia sericea, and other organisms with data available. (-)-Bornyl acetate (L-(-)-Bornyl acetate), isolated from hyssop oil, is a less active enantiomer of (+)-Bornyl acetate. (-)-Bornyl acetate possesses antifungal activity[1]. (-)-Bornyl acetate (L-(-)-Bornyl acetate), isolated from hyssop oil, is a less active enantiomer of (+)-Bornyl acetate. (-)-Bornyl acetate possesses antifungal activity[1]. (-)-Bornyl acetate (L-(-)-Bornyl acetate), isolated from hyssop oil, is a less active enantiomer of (+)-Bornyl acetate. (-)-Bornyl acetate possesses antifungal activity[1]. (-)-Bornyl acetate (L-(-)-Bornyl acetate), isolated from hyssop oil, is a less active enantiomer of (+)-Bornyl acetate. (-)-Bornyl acetate possesses antifungal activity[1]. Bornyl acetate is a potent odorant, exhibiting one of the highest flavor dilution factor (FD factor). Bornyl acetate possesses anti-cancer activity[1][2]. Bornyl acetate is a potent odorant, exhibiting one of the highest flavor dilution factor (FD factor). Bornyl acetate possesses anti-cancer activity[1][2].

   

Terpenol

3-Cyclohexene-1-methanol, .alpha.,.alpha.,4-trimethyl-, sodium salt, (1S)-

C10H18O (154.1358)


Alpha-terpineol is a terpineol that is propan-2-ol substituted by a 4-methylcyclohex-3-en-1-yl group at position 2. It has a role as a plant metabolite. alpha-TERPINEOL is a natural product found in Nepeta nepetella, Xylopia aromatica, and other organisms with data available. 2-(4-Methyl-3-cyclohexen-1-yl)-2-propanol is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Coriander Oil (part of); Cannabis sativa subsp. indica top (part of); Peumus boldus leaf (part of). A terpineol that is propan-2-ol substituted by a 4-methylcyclohex-3-en-1-yl group at position 2. (-)-α-Terpineol ((S)-α-Terpineol), a monoterpene compound, is one of compounds in Melaleuca alternifolia[1]. (-)-α-Terpineol ((S)-α-Terpineol), a monoterpene compound, is one of compounds in Melaleuca alternifolia[1]. (-)-α-Terpineol ((S)-α-Terpineol), a monoterpene compound, is one of compounds in Melaleuca alternifolia[1]. (-)-α-Terpineol ((S)-α-Terpineol), a monoterpene compound, is one of compounds in Melaleuca alternifolia[1]. α-Terpineol is isolated from Eucalyptus globulus Labill, exhibits strong antimicrobial activity against periodontopathic and cariogenic bacteria[1]. α-Terpineol possesses antifungal activity against T. mentagrophytes, and the activity might lead to irreversible cellular disruption[2]. α-Terpineol is isolated from Eucalyptus globulus Labill, exhibits strong antimicrobial activity against periodontopathic and cariogenic bacteria[1]. α-Terpineol possesses antifungal activity against T. mentagrophytes, and the activity might lead to irreversible cellular disruption[2].

   

Linalyl acetate

Linalyl acetate

C12H20O2 (196.1463)


Linalyl acetate is the principal components of many plant essential oils with potentially anti-inflammatory activity[1]. Linalyl acetate is the principal components of many plant essential oils with potentially anti-inflammatory activity[1].

   

Citral

3-01-00-03053 (Beilstein Handbook Reference)

C10H16O (152.1201)


An enal that consists of octa-2,6-dienal bearing methyl substituents at positions 3 and 7. A mixture of the two geometric isomers geranial and neral, it is the major constituent (75-85\\\\%) of oil of lemon grass, the volatile oil of Cymbopogon citratus, or of C. flexuosus. It also occurs in oils of verbena, lemon, and orange. Citral is a monoterpene found in Cymbopogon citratus essential oil, with antihyperalgesic, anti-nociceptive and anti-inflammatory effects[1]. Citral is a monoterpene found in Cymbopogon citratus essential oil, with antihyperalgesic, anti-nociceptive and anti-inflammatory effects[1].

   

Psoralen

Psoralen

C11H6O3 (186.0317)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D003432 - Cross-Linking Reagents D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics relative retention time with respect to 9-anthracene Carboxylic Acid is 0.856 D003879 - Dermatologic Agents relative retention time with respect to 9-anthracene Carboxylic Acid is 0.851 Psoralen (Ficusin) is a coumarin isolated from the seeds of Fructus Psoraleae. Psoralen exhibits a wide range of biological properties, including anti-cancer, antioxidant, antidepressant, anticancer, antibacterial, and antiviral, et al[1]. Psoralen (Ficusin) is a coumarin isolated from the seeds of Fructus Psoraleae. Psoralen exhibits a wide range of biological properties, including anti-cancer, antioxidant, antidepressant, anticancer, antibacterial, and antiviral, et al[1].

   

Methoxsalen

8-Methoxypsoralen

C12H8O4 (216.0423)


D - Dermatologicals > D05 - Antipsoriatics > D05B - Antipsoriatics for systemic use > D05BA - Psoralens for systemic use D - Dermatologicals > D05 - Antipsoriatics > D05A - Antipsoriatics for topical use > D05AD - Psoralens for topical use D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D003432 - Cross-Linking Reagents D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent relative retention time with respect to 9-anthracene Carboxylic Acid is 0.910 C1420 - Photosensitizing Agent D003879 - Dermatologic Agents relative retention time with respect to 9-anthracene Carboxylic Acid is 0.909 Methoxsalen (8-Methoxypsoralen) is a furanocoumarin compound used in psoralen, used in studies of psoriasis, eczema, vitiligo and some sun-exposed cutaneous lymphomas, and is a P450 inhibitor. Methoxsalen (8-Methoxypsoralen) is a furanocoumarin compound used in psoralen, used in studies of psoriasis, eczema, vitiligo and some sun-exposed cutaneous lymphomas, and is a P450 inhibitor.

   

Sabinene

Bicyclo[3.1.0]hexane, 4-methylene-1-(1-methylethyl)-

C10H16 (136.1252)


Sabinene is a thujene that is a bicyclic monoterpene isolated from the essential oils of various plant species. It has a role as a plant metabolite. Black pepper allergenic extract is used in allergenic testing. Laurus nobilis allergenic extract is used in allergenic testing. Nutmeg allergenic extract is used in allergenic testing. Sabinene is a natural product found in Teucrium montanum, Xylopia aromatica, and other organisms with data available. Carrot Seed Oil is the oil extracted from the seeds of Daucus carota. Carrot seed oil is primarily used in skin treatment preparations. A thujene that is a bicyclic monoterpene isolated from the essential oils of various plant species. 4(10)-thujene, also known as sabinen or 1-isopropyl-4-methylenebicyclo[3.1.0]hexane, is a member of the class of compounds known as bicyclic monoterpenoids. Bicyclic monoterpenoids are monoterpenoids containing exactly 2 rings, which are fused to each other. 4(10)-thujene is a citrus, pepper, and pine tasting compound and can be found in a number of food items such as sweet orange, green bell pepper, pot marjoram, and parsley, which makes 4(10)-thujene a potential biomarker for the consumption of these food products. Sabinene is an naturally occurring bicyclic monoterpene which can be used as flavorings, perfume additives, fine chemicals, and advanced biofuels. Sabinene is also an orally active compound to attenuates skeletal muscle atrophy and regulates ROS-mediated MAPK/MuRF-1 pathways[1][2]. Sabinene is an naturally occurring bicyclic monoterpene which can be used as flavorings, perfume additives, fine chemicals, and advanced biofuels. Sabinene is also an orally active compound to attenuates skeletal muscle atrophy and regulates ROS-mediated MAPK/MuRF-1 pathways[1][2].

   

Angelicin

Isopsoralen

C11H6O3 (186.0317)


D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D007364 - Intercalating Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D002491 - Central Nervous System Agents > D000927 - Anticonvulsants Origin: Plant, Coumarins Angelicin is a natural tricyclic aromatic hydrocarbon compound that is structurally related to psoralen and has anti-cancer, anti-inflammatory, anti-viral and other activities. Cytotoxic, IC50: 49.56 μM; inhibits MHV-68, IC50: 5.39 μg/ml (28.95 μM). Angelicin is a natural tricyclic aromatic hydrocarbon compound that is structurally related to psoralen and has anti-cancer, anti-inflammatory, anti-viral and other activities. Cytotoxic, IC50: 49.56 μM; inhibits MHV-68, IC50: 5.39 μg/ml (28.95 μM).

   

Thymol

InChI=1\C10H14O\c1-7(2)9-5-4-8(3)6-10(9)11\h4-7,11H,1-3H

C10H14O (150.1045)


Thymol, also known as 1-hydroxy-5-methyl-2-isopropylbenzene or 2-isopropyl-5-methylphenol, is a member of the class of compounds known as aromatic monoterpenoids. Aromatic monoterpenoids are monoterpenoids containing at least one aromatic ring. Thus, thymol is considered to be an isoprenoid lipid molecule. Thymol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Thymol can be synthesized from p-cymene. Thymol can also be synthesized into thymol sulfate and thymol sulfate(1-). Thymol is a camphor, herbal, and medicinal tasting compound and can be found in a number of food items such as anise, common oregano, caraway, and highbush blueberry, which makes thymol a potential biomarker for the consumption of these food products. Thymol can be found primarily in saliva and urine, as well as in human liver and skeletal muscle tissues. Thymol exists in all eukaryotes, ranging from yeast to humans. C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D000890 - Anti-Infective Agents > D000935 - Antifungal Agents Thymol is the main monoterpene phenol occurring in essential oils isolated from plants belonging to the Lamiaceae family, and other plants such as those belonging to the Verbenaceae, Scrophulariaceae, Ranunculaceae and Apiaceae families. Thymol has antioxidant, anti-inflammatory, antibacterial and antifungal effects[1]. Thymol is the main monoterpene phenol occurring in essential oils isolated from plants belonging to the Lamiaceae family, and other plants such as those belonging to the Verbenaceae, Scrophulariaceae, Ranunculaceae and Apiaceae families. Thymol has antioxidant, anti-inflammatory, antibacterial and antifungal effects[1].

   

nerol

(2Z)-3,7-Dimethyl-2,6-octadien-1-ol

C10H18O (154.1358)


Nerol is a constituent of neroli oil. Nerol Nerol triggers mitochondrial dysfunction and induces apoptosis via elevation of Ca2+ and ROS. Antifungal activity[1][2]. Nerol is a constituent of neroli oil. Nerol Nerol triggers mitochondrial dysfunction and induces apoptosis via elevation of Ca2+ and ROS. Antifungal activity[1][2]. Nerol is a constituent of neroli oil. Nerol Nerol triggers mitochondrial dysfunction and induces apoptosis via elevation of Ca2+ and ROS. Antifungal activity[1][2].

   

Auraptene

2H-1-Benzopyran-2-one, 7-((3,7-dimethyl-2,6-octadienyl)oxy)-, (E)-

C19H22O3 (298.1569)


Origin: Plant, Coumarins Auraptene is the most abundant naturally occurring geranyloxycoumarin. Auraptene decreases the secretion of matrix metalloproteinase 2 (MMP-2) as well as key inflammatory mediators, including IL-6, IL-8, and chemokine (C-C motif) ligand-5(CCL5)[1]. Auraptene is the most abundant naturally occurring geranyloxycoumarin. Auraptene decreases the secretion of matrix metalloproteinase 2 (MMP-2) as well as key inflammatory mediators, including IL-6, IL-8, and chemokine (C-C motif) ligand-5(CCL5)[1].

   

Carveol

2-Methyl-5-[1-methylethenyl]-2-cyclohexen-1-ol

C10H16O (152.1201)


Carveol is an endogenous metabolite. Carveol is an endogenous metabolite.

   

caryophyllene

(-)-beta-Caryophyllene

C15H24 (204.1878)


A beta-caryophyllene in which the stereocentre adjacent to the exocyclic double bond has S configuration while the remaining stereocentre has R configuration. It is the most commonly occurring form of beta-caryophyllene, occurring in many essential oils, particularly oil of cloves. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents β-Caryophyllene is a CB2 receptor agonist. β-Caryophyllene is a CB2 receptor agonist.

   

Thujol

4-methyl-1-(propan-2-yl)bicyclo[3.1.0]hexan-3-ol

C10H18O (154.1358)


   

borneol

1,7,7-Trimethyl-(1R,2S,4R)-rel-bicyclo[2.2.1]heptan-2-ol

C10H18O (154.1358)


Flavouring agent. (±)-Borneol is found in many foods, some of which are pot marjoram, pepper (spice), saffron, and german camomile. Constituent of Curcuma aromatica and other plants. (+)-Borneol is found in nutmeg, herbs and spices, and ginger. Isoborneol ((±)-Isoborneol) is a monoterpenoid alcohol present in the essential oils of numerous medicinal plants and has antioxidant and antiviral properties. Isoborneol is a potent inhibitor of herpes simplex virus type 1 (HSV-1)[1][2]. Isoborneol ((±)-Isoborneol) is a monoterpenoid alcohol present in the essential oils of numerous medicinal plants and has antioxidant and antiviral properties. Isoborneol is a potent inhibitor of herpes simplex virus type 1 (HSV-1)[1][2].

   

b-Guaiene

1,2,3,4,5,6,7,8-octahydro-1,4-Dimethyl-7-(1-methylethylidene)azulene, 9ci

C15H24 (204.1878)


   

FEMA 2159

endo-(1S)-1,7,7-trimethylbicyclo[2.2.1]Hept-2-yl acetate

C12H20O2 (196.1463)


(-)-Bornyl acetate (L-(-)-Bornyl acetate), isolated from hyssop oil, is a less active enantiomer of (+)-Bornyl acetate. (-)-Bornyl acetate possesses antifungal activity[1]. (-)-Bornyl acetate (L-(-)-Bornyl acetate), isolated from hyssop oil, is a less active enantiomer of (+)-Bornyl acetate. (-)-Bornyl acetate possesses antifungal activity[1]. (-)-Bornyl acetate (L-(-)-Bornyl acetate), isolated from hyssop oil, is a less active enantiomer of (+)-Bornyl acetate. (-)-Bornyl acetate possesses antifungal activity[1]. (-)-Bornyl acetate (L-(-)-Bornyl acetate), isolated from hyssop oil, is a less active enantiomer of (+)-Bornyl acetate. (-)-Bornyl acetate possesses antifungal activity[1].

   

Neral

InChI=1\C10H16O\c1-9(2)5-4-6-10(3)7-8-11\h5,7-8H,4,6H2,1-3H3\b10-7

C10H16O (152.1201)


An enal that is 3,7-dimethyloctanal with unsaturation at positions C-2 and C-6. It has been isolated form the essential oils of plant species like lemon.

   

P-CYMENE

P-CYMENE

C10H14 (134.1095)


A monoterpene that is toluene substituted by an isopropyl group at position 4.

   

cis-Myrtanol

cis-Myrtanol

C10H18O (154.1358)


   

alpha-terpineol

alpha-terpineol

C10H18O (154.1358)


α-Terpineol is isolated from Eucalyptus globulus Labill, exhibits strong antimicrobial activity against periodontopathic and cariogenic bacteria[1]. α-Terpineol possesses antifungal activity against T. mentagrophytes, and the activity might lead to irreversible cellular disruption[2]. α-Terpineol is isolated from Eucalyptus globulus Labill, exhibits strong antimicrobial activity against periodontopathic and cariogenic bacteria[1]. α-Terpineol possesses antifungal activity against T. mentagrophytes, and the activity might lead to irreversible cellular disruption[2].

   

Bornyl acetate

(1R,2S,4R)-(+)-Bornyl acetate

C12H20O2 (196.1463)


Same as: D09740 (-)-Bornyl acetate (L-(-)-Bornyl acetate), isolated from hyssop oil, is a less active enantiomer of (+)-Bornyl acetate. (-)-Bornyl acetate possesses antifungal activity[1]. (-)-Bornyl acetate (L-(-)-Bornyl acetate), isolated from hyssop oil, is a less active enantiomer of (+)-Bornyl acetate. (-)-Bornyl acetate possesses antifungal activity[1]. (-)-Bornyl acetate (L-(-)-Bornyl acetate), isolated from hyssop oil, is a less active enantiomer of (+)-Bornyl acetate. (-)-Bornyl acetate possesses antifungal activity[1]. (-)-Bornyl acetate (L-(-)-Bornyl acetate), isolated from hyssop oil, is a less active enantiomer of (+)-Bornyl acetate. (-)-Bornyl acetate possesses antifungal activity[1]. Bornyl acetate is a potent odorant, exhibiting one of the highest flavor dilution factor (FD factor). Bornyl acetate possesses anti-cancer activity[1][2]. Bornyl acetate is a potent odorant, exhibiting one of the highest flavor dilution factor (FD factor). Bornyl acetate possesses anti-cancer activity[1][2].

   

Cymol

InChI=1\C10H14\c1-8(2)10-6-4-9(3)5-7-10\h4-8H,1-3H

C10H14 (134.1095)


   

α-Pinene

InChI=1\C10H16\c1-7-4-5-8-6-9(7)10(8,2)3\h4,8-9H,5-6H2,1-3H

C10H16 (136.1252)


A pinene that is bicyclo[3.1.1]hept-2-ene substituted by methyl groups at positions 2, 6 and 6 respectively. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1]. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1]. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1]. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1]. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1]. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1].

   

Myrcene

InChI=1\C10H16\c1-5-10(4)8-6-7-9(2)3\h5,7H,1,4,6,8H2,2-3H

C10H16 (136.1252)


Myrcene (β-Myrcene), an aromatic volatile compound, suppresses TNFα-induced NF-κB activity. Myrcene has anti-invasive effect[1][2]. Myrcene (β-Myrcene), an aromatic volatile compound, suppresses TNFα-induced NF-κB activity. Myrcene has anti-invasive effect[1][2].

   

Moslene

InChI=1\C10H16\c1-8(2)10-6-4-9(3)5-7-10\h4,7-8H,5-6H2,1-3H

C10H16 (136.1252)


γ-Terpinene, a monoterpene, is an orally active antioxidant compound which can scavenge radicals directly. γ-Terpinene has potent antinociception activity[1]. γ-Terpinene, a monoterpene, is an orally active antioxidant compound which can scavenge radicals directly. γ-Terpinene has potent antinociception activity[1].

   

Isoelemicin

Benzene, 1,2,3-trimethoxy-5-(1-propenyl)-, (E)-

C12H16O3 (208.1099)


   

Elemicin

Benzene, 1,2,3-trimethoxy-5-(2-propenyl)- (9CI)

C12H16O3 (208.1099)


Elemicin is an orally active alkenylbenzene widely distributed in many herbs and spices. Elemicin inhibits Stearoyl-CoA Desaturase 1 (SCD1) by metabolic activation. Elemicin has anti-influenza activities, antimicrobial, antioxidant, and antiviral activities. Elemicin and its reactive metabolite of 1′-Hydroxyelemicin can induce hepatotoxicity[1][2][3][4]. Elemicin is a alkenylbenzene widely distributed in many herbs and spices. Elemicin inhibits Stearoyl-CoA Desaturase 1 (SCD1) by metabolic activation. Elemicin is one of the main components in aromatic food and has antimicrobial, antioxidant, and antiviral activities. Elemicin possesses genotoxicity and carcinogenicity[1]. Elemicin is a alkenylbenzene widely distributed in many herbs and spices. Elemicin inhibits Stearoyl-CoA Desaturase 1 (SCD1) by metabolic activation. Elemicin is one of the main components in aromatic food and has antimicrobial, antioxidant, and antiviral activities. Elemicin possesses genotoxicity and carcinogenicity[1].

   

Nonacosane

EINECS 211-126-2

C29H60 (408.4695)


Nonacosane, isolated from Baphia massaiensis, exhibits weak activities against E. coli, B. subtilis, P. aeruginosa and S. aureus[1]. Nonacosane, isolated from Baphia massaiensis, exhibits weak activities against E. coli, B. subtilis, P. aeruginosa and S. aureus[1].

   

Safranal

InChI=1\C10H14O\c1-8-5-4-6-10(2,3)9(8)7-11\h4-5,7H,6H2,1-3H

C10H14O (150.1045)


Safranal is an orally active main component of Saffron (Crocus sativus) and is responsible for the unique aroma of this spice. Safranal has neuroprotective and anti-inflammatory effects and has the potential for Parkinson’s disease research[1]. Safranal is an orally active main component of Saffron (Crocus sativus) and is responsible for the unique aroma of this spice. Safranal has neuroprotective and anti-inflammatory effects and has the potential for Parkinson’s disease research[1].

   

Ficusin

2-Propenoic acid, 3-(6-hydroxy-5-benzofuranyl)-, .delta.-lactone

C11H6O3 (186.0317)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D003432 - Cross-Linking Reagents D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics D003879 - Dermatologic Agents Psoralen (Ficusin) is a coumarin isolated from the seeds of Fructus Psoraleae. Psoralen exhibits a wide range of biological properties, including anti-cancer, antioxidant, antidepressant, anticancer, antibacterial, and antiviral, et al[1]. Psoralen (Ficusin) is a coumarin isolated from the seeds of Fructus Psoraleae. Psoralen exhibits a wide range of biological properties, including anti-cancer, antioxidant, antidepressant, anticancer, antibacterial, and antiviral, et al[1].

   

Uvadex

5-Benzofuranacrylic acid, 6-hydroxy-7-methoxy-, .delta.-lactone

C12H8O4 (216.0423)


D - Dermatologicals > D05 - Antipsoriatics > D05B - Antipsoriatics for systemic use > D05BA - Psoralens for systemic use D - Dermatologicals > D05 - Antipsoriatics > D05A - Antipsoriatics for topical use > D05AD - Psoralens for topical use D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D003432 - Cross-Linking Reagents D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent C1420 - Photosensitizing Agent D003879 - Dermatologic Agents Methoxsalen (8-Methoxypsoralen) is a furanocoumarin compound used in psoralen, used in studies of psoriasis, eczema, vitiligo and some sun-exposed cutaneous lymphomas, and is a P450 inhibitor. Methoxsalen (8-Methoxypsoralen) is a furanocoumarin compound used in psoralen, used in studies of psoriasis, eczema, vitiligo and some sun-exposed cutaneous lymphomas, and is a P450 inhibitor.

   

Carvol

2-Cyclohexen-1-one, 2-methyl-5-(1-methylethenyl)-, (5S)-

C10H14O (150.1045)


   

Angecin

2-Propenoic acid, 3-(4-hydroxy-5-benzofuranyl)-, .delta.-lactone

C11H6O3 (186.0317)


D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D007364 - Intercalating Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D002491 - Central Nervous System Agents > D000927 - Anticonvulsants Angelicin is a natural tricyclic aromatic hydrocarbon compound that is structurally related to psoralen and has anti-cancer, anti-inflammatory, anti-viral and other activities. Cytotoxic, IC50: 49.56 μM; inhibits MHV-68, IC50: 5.39 μg/ml (28.95 μM). Angelicin is a natural tricyclic aromatic hydrocarbon compound that is structurally related to psoralen and has anti-cancer, anti-inflammatory, anti-viral and other activities. Cytotoxic, IC50: 49.56 μM; inhibits MHV-68, IC50: 5.39 μg/ml (28.95 μM).

   

Dihydrocarveol

(1R,2R,4R)-Dihydrocarveol

C10H18O (154.1358)


The (1R,2R,4R)-stereoisomer of dihydrocarveol. A p-menthane monoterpenoid that is the dihydro derivative of carveol. Dihydrocarveol, also known as 2-methyl-5-(1-methylethenyl)cyclohexanol or 6-methyl-3-isopropenylcyclohexanol, is a member of the class of compounds known as menthane monoterpenoids. Menthane monoterpenoids are monoterpenoids with a structure based on the o-, m-, or p-menthane backbone. P-menthane consists of the cyclohexane ring with a methyl group and a (2-methyl)-propyl group at the 1 and 4 ring position, respectively. The o- and m- menthanes are much rarer, and presumably arise by alkyl migration of p-menthanes. Dihydrocarveol is slightly soluble (in water) and an extremely weak acidic compound (based on its pKa). Dihydrocarveol is a herbal, menthol, and minty tasting compound and can be found in a number of food items such as dill, pepper (spice), pot marjoram, and wild celery, which makes dihydrocarveol a potential biomarker for the consumption of these food products. Dihydrocarveol, also known as 2-methyl-5-(1-methylethenyl)cyclohexanol or 6-methyl-3-isopropenylcyclohexanol, is a member of the class of compounds known as menthane monoterpenoids. Menthane monoterpenoids are monoterpenoids with a structure based on the o-, m-, or p-menthane backbone. P-menthane consists of the cyclohexane ring with a methyl group and a (2-methyl)-propyl group at the 1 and 4 ring position, respectively. The o- and m- menthanes are much rarer, and presumably arise by alkyl migration of p-menthanes. Dihydrocarveol is slightly soluble (in water) and an extremely weak acidic compound (based on its pKa). Dihydrocarveol is a herbal, menthol, and minty tasting compound and can be found in a number of food items such as dill, pot marjoram, pepper (spice), and caraway, which makes dihydrocarveol a potential biomarker for the consumption of these food products.

   

Lavandulol

4-Hexen-1-ol, 5-methyl-2-(1-methylethenyl)-, (theta)-

C10H18O (154.1358)


A monoterpenoid alcohol that is hepta-1-5-diene which is substituted at positions 2 and 6 by methyl groups and at position 3 by a hydroxymethyl group. It is commonly found in lavender oil.

   

Borneol

Bicyclo(2.2.1)heptan-2-ol, 1,7,7-trimethyl-, endo-(.+/-.)-

C10H18O (154.1358)


Borneol appears as a white colored lump-solid with a sharp camphor-like odor. Burns readily. Slightly denser than water and insoluble in water. Used to make perfumes. Borneol is a bornane monoterpenoid that is 1,7,7-trimethylbicyclo[2.2.1]heptane substituted by a hydroxy group at position 2. It has a role as a volatile oil component and a metabolite. Isoborneol is a natural product found in Xylopia sericea, Eupatorium capillifolium, and other organisms with data available. A bornane monoterpenoid that is 1,7,7-trimethylbicyclo[2.2.1]heptane substituted by a hydroxy group at position 2. Isoborneol ((±)-Isoborneol) is a monoterpenoid alcohol present in the essential oils of numerous medicinal plants and has antioxidant and antiviral properties. Isoborneol is a potent inhibitor of herpes simplex virus type 1 (HSV-1)[1][2]. Isoborneol ((±)-Isoborneol) is a monoterpenoid alcohol present in the essential oils of numerous medicinal plants and has antioxidant and antiviral properties. Isoborneol is a potent inhibitor of herpes simplex virus type 1 (HSV-1)[1][2].

   

(Z)-β-ocimene

beta-OCIMENE, (3E)-

C10H16 (136.1252)


   

(-)-Carveol

(4R,6R)-cis-Carveol

C10H16O (152.1201)


The (1R,5R)-stereoisomer of carveol.

   

beta-Ocimene, (3Z)-

(Z)-3,7-dimethylocta-1,3,6,-triene

C10H16 (136.1252)


   

Isopsoralen

2H-furo[2,3-h]chromen-2-one

C11H6O3 (186.0317)


Isopsoralen is a natural organic compound belonging to the family of furocoumarins, which are well-known for their phototoxic and photochemical properties. It is found in various plants, including species of the genus Psoralea, from which it derives its name. Isopsoralen is structurally similar to psoralen, another furocoumarin, but with a distinct arrangement of functional groups. Chemically, isopsoralen consists of a furan ring fused to a coumarin moiety. This structure imparts the compound with its unique photobiological activities. When exposed to ultraviolet (UV) light, particularly UVA radiation, isopsoralen intercalates into the DNA strands, forming covalent bonds with the DNA bases. This interaction can lead to the formation of DNA crosslinks, which can be mutagenic and cytotoxic, and can also interfere with DNA replication and transcription processes. Due to these properties, isopsoralen and other psoralen derivatives have been used in photodynamic therapy (PDT), particularly in the treatment of skin disorders such as psoriasis and vitiligo. In PDT, the psoralen compound is applied or administered orally, followed by exposure to UV light. The activated psoralen induces therapeutic effects by damaging the hyperproliferative skin cells. Isopsoralen also has applications in research, where it is used as a tool to study DNA damage and repair mechanisms. However, the use of isopsoralen and related compounds requires careful consideration due to their potential risks, including skin irritation and an increased risk of skin cancer with prolonged or excessive UV exposure. In summary, isopsoralen is a furocoumarin with significant photobiological activities, primarily used in photodynamic therapy and as a research tool in the study of DNA. Its use is associated with potential risks, highlighting the importance of careful application and monitoring when utilizing this compound.

   

[(1r,2r,5s)-6,6-dimethylbicyclo[3.1.1]heptan-2-yl]methanol

[(1r,2r,5s)-6,6-dimethylbicyclo[3.1.1]heptan-2-yl]methanol

C10H18O (154.1358)


   

(1s,2r,4s)-5,5-dimethyl-6-methylidenebicyclo[2.2.1]heptan-2-yl acetate

(1s,2r,4s)-5,5-dimethyl-6-methylidenebicyclo[2.2.1]heptan-2-yl acetate

C12H18O2 (194.1307)


   

6-methyl-2-methylidene-6-(4-methylpent-3-en-1-yl)bicyclo[3.1.1]heptane

6-methyl-2-methylidene-6-(4-methylpent-3-en-1-yl)bicyclo[3.1.1]heptane

C15H24 (204.1878)


   

1,6,6-trimethylbicyclo[2.1.1]hexane-5-carbaldehyde

1,6,6-trimethylbicyclo[2.1.1]hexane-5-carbaldehyde

C10H16O (152.1201)


   

dec-4-yne

dec-4-yne

C10H18 (138.1408)


   
   

(1as,4ar,7as,7br)-1,1,7-trimethyl-4-methylidene-octahydro-1ah-cyclopropa[e]azulene

(1as,4ar,7as,7br)-1,1,7-trimethyl-4-methylidene-octahydro-1ah-cyclopropa[e]azulene

C15H24 (204.1878)


   

6,6-dimethyl-5-methylidenebicyclo[2.2.1]heptan-2-one

6,6-dimethyl-5-methylidenebicyclo[2.2.1]heptan-2-one

C10H14O (150.1045)


   

6,6-dimethyl-5-methylidenebicyclo[2.2.1]heptan-2-ol

6,6-dimethyl-5-methylidenebicyclo[2.2.1]heptan-2-ol

C10H16O (152.1201)


   

(1s,5s)-4,6,6-trimethylbicyclo[3.1.1]hept-3-en-2-ol

(1s,5s)-4,6,6-trimethylbicyclo[3.1.1]hept-3-en-2-ol

C10H16O (152.1201)


   

(r)-cis-verbenol

(r)-cis-verbenol

C10H16O (152.1201)


   

5,5-dimethyl-6-methylidenebicyclo[2.2.1]heptan-2-ol

5,5-dimethyl-6-methylidenebicyclo[2.2.1]heptan-2-ol

C10H16O (152.1201)