NCBI Taxonomy: 216803
Cheloneae (ncbi_taxid: 216803)
found 289 associated metabolites at tribe taxonomy rank level.
Ancestor: Plantaginaceae
Child Taxonomies: Chelone, Chionophila, Tonella, Russelia, Keckiella, Tetranema, Penstemon, Collinsia, Uroskinnera, Nothochelone, Pennellianthus
Loganin
Loganin is an iridoid monoterpenoid with formula C17H26O10 that is isolated from several plant species and exhibits neuroprotective and anti-inflammatory properties. It has a role as a plant metabolite, a neuroprotective agent, an EC 3.4.23.46 (memapsin 2) inhibitor, an EC 3.2.1.20 (alpha-glucosidase) inhibitor, an anti-inflammatory agent and an EC 3.1.1.7 (acetylcholinesterase) inhibitor. It is a cyclopentapyran, a beta-D-glucoside, an enoate ester, a monosaccharide derivative, an iridoid monoterpenoid, a methyl ester and a secondary alcohol. It is functionally related to a loganetin. Loganin is one of the best-known of the iridoid glycosides. It is named for the Loganiaceae, having first been isolated from the seeds of a member of that plant family, namely those of Strychnos nux-vomica. It also occurs in Alstonia boonei (Apocynaceae),[1] a medicinal tree of West Africa and in the medicinal/entheogenic shrub Desfontainia spinosa (Columelliaceae) native to Central America and South America. Loganin is a natural product found in Strychnos axillaris, Lonicera japonica, and other organisms with data available. An iridoid monoterpenoid with formula C17H26O10 that is isolated from several plant species and exhibits neuroprotective and anti-inflammatory properties. Loganin, also known as loganoside, is a member of the class of compounds known as iridoid o-glycosides. Iridoid o-glycosides are iridoid monoterpenes containing a glycosyl (usually a pyranosyl) moiety linked to the iridoid skeleton. Thus, loganin is considered to be an isoprenoid lipid molecule. Loganin is soluble (in water) and a very weakly acidic compound (based on its pKa). Loganin can be found in a number of food items such as groundcherry, annual wild rice, muscadine grape, and broad bean, which makes loganin a potential biomarker for the consumption of these food products. Loganin is one of the best-known of the iridoid glycosides.It is named for the Loganiaceae,having first been isolated from the seeds of a member of that plant family, namely those of Strychnos nux-vomica. It also occurs in Alstonia boonei (Apocynaceae), a medicinal tree of West Africa and in the medicinal/entheogenic shrub Desfontainia spinosa (Columelliaceae) native to Central America and South America . Loganin is formed from loganic acid by the enzyme loganic acid O-methyltransferase (LAMT). Loganin then becomes a substrate for the enzyme secologanin synthase (SLS) to form secologanin, a secoiridoid monoterpene found as part of ipecac and terpene indole alkaloids. Loganin is the main iridoid glycoside compound in Cornus officinalis and has anti-inflammatory and anti-shock effects. Loganin is the main iridoid glycoside compound in Cornus officinalis and has anti-inflammatory and anti-shock effects.
Agnuside
C22H26O11 (466.14750460000005)
Agnuside is a benzoate ester resulting from the formal condensation of the carboxy group of 4-hydroxybenzoic acid with the primary hydroxy group of aucubin. It is an iridoid glycoside found in several Vitex plants including Vitex agnus-castus. It has a role as a plant metabolite, an anti-inflammatory agent, a pro-angiogenic agent and a cyclooxygenase 2 inhibitor. It is a terpene glycoside, an iridoid monoterpenoid, a benzoate ester, a member of phenols, a beta-D-glucoside, a cyclopentapyran and a monosaccharide derivative. It is functionally related to an aucubin. Agnuside is a natural product found in Crescentia cujete, Vitex peduncularis, and other organisms with data available. See also: Chaste tree fruit (part of); Vitex negundo leaf (part of). Isolated from Vitex agnus-castus (agnus castus). Agnuside is found in herbs and spices and fruits. Agnuside is found in fruits. Agnuside is isolated from Vitex agnus-castus (agnus castus). Agnuside is a compound isolated from Vitex negundo, down-regulates pro-inflammatory mediators PGE2 and LTB4, and reduces the expression of cytokines, with anti-arthritic activity[1]. Agnuside is used in the study of asthma, inflammation, and angiogenic diseases. Agnuside is an orally active compound that can be extracted from Vitex negundo[1][2][3][4]. Agnuside is a compound isolated from Vitex negundo, down-regulates pro-inflammatory mediators PGE2 and LTB4, and reduces the expression of cytokines, with anti-arthritic activity[1].
Geniposide
C17H24O10 (388.13694039999996)
Geniposide is a terpene glycoside. Geniposide is a natural product found in Feretia apodanthera, Gardenia jasminoides, and other organisms with data available. See also: Gardenia jasminoides whole (part of). Origin: Plant; SubCategory_DNP: Monoterpenoids, Iridoid monoterpenoids Annotation level-1 Geniposide is an iridoid glucoside extracted from Gardenia jasminoidesEllis fruits; exhibits a varity of biological activities such as anti-diabetic, antioxidative, antiproliferative and neuroprotective activities. Geniposide is an iridoid glucoside extracted from Gardenia jasminoidesEllis fruits; exhibits a varity of biological activities such as anti-diabetic, antioxidative, antiproliferative and neuroprotective activities.
Diosmetin
Diosmetin is a monomethoxyflavone that is the 4-methyl ether derivative of luteolin. It is a natural product isolated from citrus fruits which exhibits a range of pharmacological activities. It has a role as an antioxidant, an antineoplastic agent, a plant metabolite, a tropomyosin-related kinase B receptor agonist, an apoptosis inducer, an angiogenesis inhibitor, a cardioprotective agent, a bone density conservation agent, an anti-inflammatory agent and a vasodilator agent. It is a monomethoxyflavone, a trihydroxyflavone and a 3-hydroxyflavonoid. It is functionally related to a luteolin. It is a conjugate acid of a diosmetin-7-olate. Diosmetin is an O-methylated flavone and the aglycone part of the flavonoid glycosides diosmin that occurs naturally in citrus fruits. Pharmacologically, diosmetin is reported to exhibit anticancer, antimicrobial, antioxidant, oestrogenic and anti-inflamatory activities. It also acts as a weak TrkB receptor agonist. Diosmetin is a natural product found in Vicia tenuifolia, Salvia tomentosa, and other organisms with data available. See also: Agathosma betulina leaf (part of). A monomethoxyflavone that is the 4-methyl ether derivative of luteolin. It is a natural product isolated from citrus fruits which exhibits a range of pharmacological activities. Isolated from peel of lemon (Citrus limon) and others. Diosmetin is found in many foods, some of which are spearmint, citrus, rosemary, and common thyme. Diosmetin is found in citrus. Diosmetin is isolated from peel of lemon (Citrus limon) and other Diosmetin is a natural flavonoid which inhibits human CYP1A enzyme activity with an IC50 of 40 μM in HepG2 cell. Diosmetin is a natural flavonoid which inhibits human CYP1A enzyme activity with an IC50 of 40 μM in HepG2 cell.
Luteolin
Luteolin is a naturally occurring flavonoid. (PMID:17168665). The flavonoids are polyphenolic compounds found as integral components of the human diet. They are universally present as constituents of flowering plants, particularly of food plants. The flavonoids are phenyl substituted chromones (benzopyran derivatives) consisting of a 15-carbon basic skeleton (C6-C3-C6), composed of a chroman (C6-C3) nucleus (the benzo ring A and the heterocyclic ring C), also shared by the tocopherols, with a phenyl (the aromatic ring B) substitution usually at the 2-position. Different substitutions can typically occur in the rings, A and B. Several plants and spices containing flavonoid derivatives have found application as disease preventive and therapeutic agents in traditional medicine in Asia for thousands of years. The selection of a particular food plant, plant tissue or herb for its potential health benefits appears to mirror its flavonoid composition. The much lower risk of colon, prostate and breast cancers in Asians, who consume more vegetables, fruits and tea than populations in the Western hemisphere do, raises the question of whether flavonoid components mediate the protective effects of diets rich in these foodstuffs by acting as natural chemopreventive and anticancer agents. An impressive body of information exists on the antitumoral action of plant flavonoids. In vitro work has concentrated on the direct and indirect actions of flavonoids on tumor cells, and has found a variety of anticancer effects such as cell growth and kinase activity inhibition, apoptosis induction, suppression of the secretion of matrix metalloproteinases and of tumor invasive behavior. Furthermore, some studies have reported the impairment of in vivo angiogenesis by dietary flavonoids. Experimental animal studies indicate that certain dietary flavonoids possess antitumoral activity. The hydroxylation pattern of the B ring of the flavones and flavonols, such as luteolin seems to critically influence their activities, especially the inhibition of protein kinase activity and antiproliferation. The different mechanisms underlying the potential anticancer action of plant flavonoids await further elucidation. Certain dietary flavonols and flavones targeting cell surface signal transduction enzymes, such as protein tyrosine and focal adhesion kinases, and the processes of angiogenesis appear to be promising candidates as anticancer agents. Further in vivo studies of these bioactive constituents is deemed necessary in order to develop flavonoid-based anticancer strategies. In view of the increasing interest in the association between dietary flavonoids and cancer initiation and progression, this important field is likely to witness expanded effort and to attract and stimulate further vigorous investigations (PMID:16097445). Luteolin is a tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 4, 5 and 7. It is thought to play an important role in the human body as an antioxidant, a free radical scavenger, an anti-inflammatory agent and an immune system modulator as well as being active against several cancers. It has a role as an EC 2.3.1.85 (fatty acid synthase) inhibitor, an antineoplastic agent, a vascular endothelial growth factor receptor antagonist, a plant metabolite, a nephroprotective agent, an angiogenesis inhibitor, a c-Jun N-terminal kinase inhibitor, an anti-inflammatory agent, an apoptosis inducer, a radical scavenger and an immunomodulator. It is a 3-hydroxyflavonoid and a tetrahydroxyflavone. It is a conjugate acid of a luteolin-7-olate. Luteolin is a natural product found in Verbascum lychnitis, Carex fraseriana, and other organisms with data available. Luteolin is a naturally-occurring flavonoid, with potential anti-oxidant, anti-inflammatory, apoptosis-inducing and chemopreventive activities. Upon administration, luteolin scavenges free radicals, protects cells from reactive oxygen species (ROS)-induced damage and induces direct cell cycle arrest and apoptosis in tumor cells. This inhibits tumor cell proliferation and suppresses metastasis. 5,7,3,4-tetrahydroxy-flavone, one of the FLAVONES. See also: Chamomile (part of); Cannabis sativa subsp. indica top (part of); Fenugreek seed (part of). A tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 4, 5 and 7. It is thought to play an important role in the human body as an antioxidant, a free radical scavenger, an anti-inflammatory agent and an immune system modulator as well as being active against several cancers. Flavone v. widespread in plant world; found especies in celery, peppermint, rosemary, thyme and Queen Annes Lace leaves (wild carrot). Potential nutriceutical. Luteolin is found in many foods, some of which are soy bean, ginger, abalone, and swiss chard. Acquisition and generation of the data is financially supported in part by CREST/JST. IPB_RECORD: 361; CONFIDENCE confident structure CONFIDENCE standard compound; INTERNAL_ID 48 Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3]. Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3].
Aucubin
Aucubin is found in common verbena. Aucubin is a monoterpenoid based compound. Aucubin, like all iridoids, has a cyclopentan-[C]-pyran skeleton. Iridoids can consist of ten, nine, or rarely eight carbons in which C11 is more frequently missing than C10. Aucubin has 10 carbons with the C11 carbon missing. The stereochemical configurations at C5 and C9 lead to cis fused rings, which are common to all iridoids containing carbocylclic- or seco-skeleton in non-rearranged form. Oxidative cleavage at C7-C8 bond affords secoiridoids. The last steps in the biosynthesis of iridoids usually consist of O-glycosylation and O-alkylation. Aucubin, a glycoside iridoid, has an O-linked glucose moiety. Aucubin is an iridoid glycoside. Iridoids are commonly found in plants and function as defensive compounds. Irioids decrease the growth rates of many generalist herbivores. Aucubin is found in the leaves of Aucuba japonica (Cornaceae), Eucommia ulmoides (Eucommiaceae), and Plantago asiatic (Plantaginaceae), etc, plants used in traditional Chinese and folk medicine. Aucubin was found to protect against liver damage induced by carbon tetrachloride or alpha-amanitin in mice and rats when 80 mg/kg was dosed intraperitoneally. Geranyl pyrophosphate is the precursor for iridoids. Geranyl phosphate is generated through the mevalonate pathway or the methylerythritol phosphate pathway. The initial steps of the pathway involve the fusion of three molecules of acetyl-CoA to produce the C6 compound 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA). HMG-CoA is then reduced in two steps by the enzyme HMG-CoA reductase. The resulting mevalonate is then sequentially phosphorylated by two separate kinases, mevalonate kinase and phosphomevalonate kinase, to form 5-pyrophosphomevalonate. Phosphosphomevalonate decarboxylase through a concerted decarboxylation reaction affords isopentenyl pyrophosphate (IPP). IPP is the basic C5 building block that is added to prenyl phosphate cosubstrates to form longer chains. IPP is isomerized to the allylic ester dimethylallyl pyrophosphate (DMAPP) by IPP isomerase. Through a multistep process, including the dephosphorylation DMAPP, IPP and DMAPP are combinded to from the C10 compound geranyl pyrophosphate (GPP). Geranyl pyrophosphate is a major branch point for terpenoid synthesis. The cyclizaton reaction to form the iridoid pyrane ring may result from one of two routes: route 1 - a hydride nucleophillic attack on C1 will lead to 1-O-carbonyl atom attack on C3, yielding the lactone ring; route 2 - loss of proton from carbon 4 leads to the formation of a double bond C3-C4; consequently the 3-0-carbonyl atom will attach to C1 Aucubin is a monoterpenoid based compound. Aucubin, like all iridoids, has a cyclopentan-[C]-pyran skeleton. Iridoids can consist of ten, nine, or rarely eight carbons in which C11 is more frequently missing than C10. Aucubin has 10 carbons with the C11 carbon missing. The stereochemical configurations at C5 and C9 lead to cis fused rings, which are common to all iridoids containing carbocylclic- or seco-skeleton in non-rearranged form. Oxidative cleavage at C7-C8 bond affords secoiridoids. The last steps in the biosynthesis of iridoids usually consist of O-glycosylation and O-alkylation. Aucubin, a glycoside iridoid, has an O-linked glucose moiety.; Aucubin is an iridoid glycoside. Iridoids are commonly found in plants and function as defensive compounds. Irioids decrease the growth rates of many generalist herbivores. Aucubin is found in the leaves of Aucuba japonica (Cornaceae), Eucommia ulmoides (Eucommiaceae), and Plantago asiatic (Plantaginaceae), etc, plants used in traditional Chinese and folk medicine. Aucubin was found to protect against liver damage induced by carbon tetrachloride or alpha-amanitin in mice and rats when 80 mg/kg was dosed intraperitoneally.; Geranyl pyrophosphate is the precursor for iridoids. Geranyl phosphate is generated through the mevalonate pathway or the methylerythritol phosphate pathway. The initial steps of the pathway involve the fusion of three molecules of acetyl-CoA to produce the C6 compound 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA). HMG-CoA is then reduced in two steps by the enzyme HMG-CoA reductase. The resulting mevalonate is then sequentially phosphorylated by two separate kinases, mevalonate kinase and phosphomevalonate kinase, to form 5-pyrophosphomevalonate. Phosphosphomevalonate decarboxylase through a concerted decarboxylation reaction affords isopentenyl pyrophosphate (IPP). IPP is the basic C5 building block that is added to prenyl phosphate cosubstrates to form longer chains. IPP is isomerized to the allylic ester dimethylallyl pyrophosphate (DMAPP) by IPP isomerase. Through a multistep process, including the dephosphorylation DMAPP, IPP and DMAPP are combinded to from the C10 compound geranyl pyrophosphate (GPP). Geranyl pyrophosphate is a major branch point for terpenoid synthesis.; The cyclizaton reaction to form the iridoid pyrane ring may result from one of two routes: route 1 - a hydride nucleophillic attack on C1 will lead to 1-O-carbonyl atom attack on C3, yielding the lactone ring; route 2 - loss of proton from carbon 4 leads to the formation of a double bond C3-C4; consequently the 3-0-carbonyl atom will attach to C1. Aucubin is an organic molecular entity. It has a role as a metabolite. Aucubin is a natural product found in Verbascum lychnitis, Plantago media, and other organisms with data available. See also: Chaste tree fruit (part of); Rehmannia glutinosa Root (part of); Plantago ovata seed (part of). Aucubin, an iridoid glucoside, is isolated from Plantago asiatica, Eucommia ulmoides, the leaves of Aucuba japonica and more recently from butterfly larva. Aucubin has many biological activities, such as antioxidant, anti-aging, anti-inflammatory, antimicrobial, anti-fibrotic, anti-cancer, hepatoprotective, neuroprotective and osteoprotective effects[1][2][3]. Aucubin, an iridoid glucoside, is isolated from Plantago asiatica, Eucommia ulmoides, the leaves of Aucuba japonica and more recently from butterfly larva. Aucubin has many biological activities, such as antioxidant, anti-aging, anti-inflammatory, antimicrobial, anti-fibrotic, anti-cancer, hepatoprotective, neuroprotective and osteoprotective effects[1][2][3].
Salidroside
Salidroside is a glycoside. Salidroside is a natural product found in Plantago australis, Plantago coronopus, and other organisms with data available. See also: Sedum roseum root (part of); Rhodiola crenulata root (part of). Salidroside is a prolyl endopeptidase inhibitor. Salidroside alleviates cachexia symptoms in mouse models of cancer cachexia via activating mTOR signalling. Salidroside protects dopaminergic neurons by enhancing PINK1/Parkin-mediated mitophagy. Salidroside is a prolyl endopeptidase inhibitor. Salidroside alleviates cachexia symptoms in mouse models of cancer cachexia via activating mTOR signalling. Salidroside protects dopaminergic neurons by enhancing PINK1/Parkin-mediated mitophagy.
Lupeol
Lupeol is a pentacyclic triterpenoid that is lupane in which the hydrogen at the 3beta position is substituted by a hydroxy group. It occurs in the skin of lupin seeds, as well as in the latex of fig trees and of rubber plants. It is also found in many edible fruits and vegetables. It has a role as an anti-inflammatory drug and a plant metabolite. It is a secondary alcohol and a pentacyclic triterpenoid. It derives from a hydride of a lupane. Lupeol has been investigated for the treatment of Acne. Lupeol is a natural product found in Ficus auriculata, Ficus septica, and other organisms with data available. See also: Calendula Officinalis Flower (part of). A pentacyclic triterpenoid that is lupane in which the hydrogen at the 3beta position is substituted by a hydroxy group. It occurs in the skin of lupin seeds, as well as in the latex of fig trees and of rubber plants. It is also found in many edible fruits and vegetables. D000893 - Anti-Inflammatory Agents Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1]. Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1].
Gardoside
Gardoside is a glycoside. Gardoside is a natural product found in Plantago atrata, Gardenia jasminoides, and other organisms with data available.
Cyanidin-3,5-diglucoside
Cyanidin-3,5-diglucoside is a member of the class of compounds known as anthocyanidin-5-o-glycosides. Anthocyanidin-5-o-glycosides are phenolic compounds containing one anthocyanidin moiety which is O-glycosidically linked to a carbohydrate moiety at the C5-position. Cyanidin-3,5-diglucoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Cyanidin-3,5-diglucoside can be found in a number of food items such as winged bean, evening primrose, durian, and peppermint, which makes cyanidin-3,5-diglucoside a potential biomarker for the consumption of these food products. Cyanidin 3,5-diglucoside. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=2611-67-8 (retrieved 2024-09-27) (CAS RN: 2611-67-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Forsythiaside
Forsythiaside A, a phenylethanoside product isolated from air-dried fruits of Forsythia suspense, has anti-inflammatory and antioxidant effects[1]. Forsythiaside A, a phenylethanoside product isolated from air-dried fruits of Forsythia suspense, has anti-inflammatory and antioxidant effects[1].
Picein
Picein is a glycoside. Picein is a natural product found in Salix candida, Halocarpus biformis, and other organisms with data available. Picein, isolated from Picrorhiza kurroa, is a naturally occurring antioxidant[1]. Picein, isolated from Picrorhiza kurroa, is a naturally occurring antioxidant[1].
Geniposidic acid
Geniposidic acid is found in beverages. Geniposidic acid is a constituent of Genipa americana (genipap) Constituent of Genipa americana (genipap). Geniposidic acid is found in beverages and fruits. Geniposidic acid has radiation protection and anti-cancer activity. Geniposidic acid has radiation protection and anti-cancer activity.
Liriodendrin
Liriodendrin is a natural product found in Kalopanax septemlobus, Eleutherococcus gracilistylus, and other organisms with data available. Eleutheroside D is found in tea. Eleutheroside D is a constituent of Siberian ginseng (Eleutherococcus (Acanthopanax) senticosus). Isolated from Eleutherococcus senticosus (Siberian ginseng). Liriodendrin is found in tea. Eleutheroside E is an important component of Acanthopanax, which has anti-inflammatory and protective effects on ischemic heart. Eleutheroside E is an important component of Acanthopanax, which has anti-inflammatory and protective effects on ischemic heart. Syringaresinol diglucoside is a natural compound from bamboo leaves[1]. Syringaresinol diglucoside is a natural compound from bamboo leaves[1].
Lamiide
C17H26O12 (422.14241960000004)
Lamiide is a terpene glycoside. Lamiide is a natural product found in Lamium eriocephalum, Lantana viburnoides, and other organisms with data available.
echinacoside
Echinacoside, one of the phenylethanoids isolated from the stems of Cistanche deserticola, effectively inhibits Wnt/β-catenin signaling. Echinacoside elicits neuroprotection by activating Trk receptors and their downstream signal pathways. Antiosteoporotic activity[1][2][3]. Echinacoside, one of the phenylethanoids isolated from the stems of Cistanche deserticola, effectively inhibits Wnt/β-catenin signaling. Echinacoside elicits neuroprotection by activating Trk receptors and their downstream signal pathways. Antiosteoporotic activity[1][2][3].
Cyanidin
[C15H11O6]+ (287.05556060000004)
Cyanidin, also known as cyanidin chloride (CAS: 528-58-5), belongs to the class of organic compounds known as 7-hydroxyflavonoids. These are flavonoids that bear one hydroxyl group at the C-7 position of the flavonoid skeleton. Thus, cyanidin is considered to be a flavonoid lipid molecule. Cyanidin is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Cyanidin (and its glycosides) is the most commonly occurring of the anthocyanins, a widespread group of pigments responsible for the red-blue colour of many fruits and vegetables (PMID: 14711454). BioTransformer predicts that cyanidin is a product of cyanidin 3-glucoside metabolism via a glycoside-hydrolysis reaction occurring in human gut microbiota and catalyzed by the EC.3.2.1.X enzyme (PMID: 30612223). Widely distributed anthocyanidin, found especies in Vaccinium subspecies (blueberries, bilberries, whortleberries), cherries, raspberries, red onions, red wine and black tea. Cyanidin is found in many foods, some of which are papaya, hyacinth bean, sweet basil, and abalone.
Pelargonidin
Pelargonidin, also known as pelargonidin chloride (CAS: 134-04-3) is an anthocyanin. Anthocyanins are water-soluble glycosides and acylglycosides of anthocyanidins, which are polyhydroxy and polymethoxyl derivatives of a 2-phenylbenzopyrylium (flavylium) cation. They are widely distributed in foods of plant origin, especially in fruits and vegetables with dark red and blue colours. Numerous epidemiologic and clinical trials show that fruits and vegetables, many of which are rich in anthocyanins, may be related to the decreased incidence of many chronic and degenerative diseases, including heart disease, cancer, and aging. Antioxidant mechanisms were suggested as potential means of disease prevention. Anthocyanins are strong antioxidants in vitro. In most cases, fruits and vegetables with high anthocyanin content were shown to have higher antioxidant capacity than other fruits and vegetables. Whether anthocyanins are effective antioxidants in vivo remains an open question primarily because of the relatively low apparent absorption of anthocyanins compared with other phenolic compounds (PMID: 15465754). BioTransformer predicts that pelargonidin is a product of 5-[(6-{[(2-carboxyacetyl)oxy]methyl}-3,4,5-trihydroxyoxan-2-yl)oxy]-3,7-dihydroxy-2-(4-hydroxyphenyl)-1λ⁴-chromen-1-ylium metabolism via a glycoside-hydrolysis reaction occurring in human gut microbiota and catalyzed by an EC.3.2.1.X enzyme (PMID: 30612223). Anthocyanin pigment present in many plants, flowers and fruits, e.g. cherries, raspberries, radishes, orchids, brassicas, Petunia subspecies Glycosides also widely distributed. Pelargonidin is found in many foods, some of which are almond, radish (variety), garden tomato, and tarragon.
Catalpol
Catalpol is an organic molecular entity. It has a role as a metabolite. Catalpol is a natural product found in Verbascum lychnitis, Plantago atrata, and other organisms with data available. See also: Rehmannia glutinosa Root (part of). Catalpol (Catalpinoside), an iridoid glycoside found in Rehmannia glutinosa. Catalpol has neuroprotective, hypoglycemic, anti-inflammatory, anti-cancer, anti-spasmodic, anti-oxidant effects and anti-HBV effects[1][2][3]. Catalpol (Catalpinoside), an iridoid glycoside found in Rehmannia glutinosa. Catalpol has neuroprotective, hypoglycemic, anti-inflammatory, anti-cancer, anti-spasmodic, anti-oxidant effects and anti-HBV effects[1][2][3].
Sesamolin
Constituent of sesame oil. Sesamolin is found in flaxseed, fats and oils, and sesame. Sesamolin is found in fats and oils. Sesamolin is a constituent of sesame oil. Sesaminol, isolated from Sesamum indicum, has antioxidative activity, Sesaminol inhibits lipid peroxidation and shows neuroprotection effect. Sesaminol potently inhibits MAPK cascades by preventing phosphorylation of JNK, p38 MAPKs, and caspase-3 but not ERK-MAPK expression[1][2][3][4]. Sesaminol, isolated from Sesamum indicum, has antioxidative activity, Sesaminol inhibits lipid peroxidation and shows neuroprotection effect. Sesaminol potently inhibits MAPK cascades by preventing phosphorylation of JNK, p38 MAPKs, and caspase-3 but not ERK-MAPK expression[1][2][3][4].
Pelargonin
Pelargonin is a member of the class of compounds known as anthocyanidin-5-o-glycosides. Anthocyanidin-5-o-glycosides are phenolic compounds containing one anthocyanidin moiety which is O-glycosidically linked to a carbohydrate moiety at the C5-position. Pelargonin is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Pelargonin can be found in a number of food items such as green bean, grass pea, pomegranate, and yellow wax bean, which makes pelargonin a potential biomarker for the consumption of these food products. Pelargonin is an anthocyanin. It is the 3,5-O-diglucoside of pelargonidin . Pelargonin, also known as pelargonin chloride (CAS: 17334-58-6), belongs to the class of organic compounds known as anthocyanidin-5-O-glycosides. These are phenolic compounds containing one anthocyanidin moiety which is O-glycosidically linked to a carbohydrate moiety at the C5-position. Pelargonin is a pigment found in barberries, the petals of the scarlet pelargonium flower pomegranates, and red wine. Pelargonin is found in common bean.
Verbasoside
Verbasoside is found in root vegetables. Verbasoside is isolated from Stachys sieboldii (Chinese artichoke). Isolated from Stachys sieboldii (Chinese artichoke). Verbasoside is found in root vegetables.
Hydroxytyrosol 1-O-glucoside
Hydroxytyrosol 1-O-glucoside is found in fruits. Hydroxytyrosol 1-O-glucoside is a constituent of Prunus sp. Constituent of Prunus species Hydroxytyrosol 1-O-glucoside is found in fruits.
Echinacoside
Forsythiaside
Geniposide
C17H24O10 (388.13694039999996)
Salidroside
Salidroside is a member of the class of compounds known as O-glycosyl compounds. O-glycosyl compounds are glycoside in which a sugar group is bonded through one carbon to another group via a O-glycosidic bond. Salidroside is soluble (in water) and a very weakly acidic compound (based on its pKa). Salidroside can be found in olive, which makes salidroside a potential biomarker for the consumption of this food product. Salidroside (Rhodioloside) is a glucoside of tyrosol found in the plant Rhodiola rosea. It is thought to be one of the compounds responsible for the antidepressant and anxiolytic actions of this plant, along with rosavin. Salidroside may be more active than rosavin, even though many commercially marketed Rhodiola rosea extracts are standardised for rosavin content rather than salidroside . Salidroside is a prolyl endopeptidase inhibitor. Salidroside alleviates cachexia symptoms in mouse models of cancer cachexia via activating mTOR signalling. Salidroside protects dopaminergic neurons by enhancing PINK1/Parkin-mediated mitophagy. Salidroside is a prolyl endopeptidase inhibitor. Salidroside alleviates cachexia symptoms in mouse models of cancer cachexia via activating mTOR signalling. Salidroside protects dopaminergic neurons by enhancing PINK1/Parkin-mediated mitophagy.
Verbascoside
Methyl ferulate
Methyl ferulate, also known as methyl ferulic acid, belongs to coumaric acids and derivatives class of compounds. Those are aromatic compounds containing Aromatic compounds containing a cinnamic acid moiety (or a derivative thereof) hydroxylated at the C2 (ortho-), C3 (meta-), or C4 (para-) carbon atom of the benzene ring. Methyl ferulate is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Methyl ferulate can be found in garden onion, which makes methyl ferulate a potential biomarker for the consumption of this food product. Ferulic acid methyl ester (Methyl ferulate) is a derivative of ferulic acid, isolated from Stemona tuberosa, with anti-inflammatory and antioxidant properties[1][2]. Ferulic acid methyl ester is a cell membrane and brain permeable compound, shows free radical scavenging ability, used in the research of neurodegenerative disorders[1]. Ferulic acid methyl ester inhibits COX-2 expression, blocks p-p38 and p-JNK in primary bone marrow derived-macrophages[2]. Ferulic acid methyl ester (Methyl ferulate) is a derivative of ferulic acid, isolated from Stemona tuberosa, with anti-inflammatory and antioxidant properties[1][2]. Ferulic acid methyl ester is a cell membrane and brain permeable compound, shows free radical scavenging ability, used in the research of neurodegenerative disorders[1]. Ferulic acid methyl ester inhibits COX-2 expression, blocks p-p38 and p-JNK in primary bone marrow derived-macrophages[2].
sesamin
D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents > D000924 - Anticholesteremic Agents D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D020011 - Protective Agents > D000975 - Antioxidants D009676 - Noxae > D000963 - Antimetabolites relative retention time with respect to 9-anthracene Carboxylic Acid is 1.233 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.236 Asarinin is a natural product found in Piper mullesua, Machilus thunbergii, and other organisms with data available. (-)-Asarinin is a natural product found in Zanthoxylum austrosinense, Horsfieldia irya, and other organisms with data available. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. Sesamin, abundant lignan found in sesame oil, is a potent and selective delta 5 desaturase inhibitor in polyunsaturated fatty acid biosynthesis. Sesamin exerts effective neuroprotection against cerbral ischemia[1][2]. Sesamin, abundant lignan found in sesame oil, is a potent and selective delta 5 desaturase inhibitor in polyunsaturated fatty acid biosynthesis. Sesamin exerts effective neuroprotection against cerbral ischemia[1][2].
Sesamolin
Sesamolin is a member of benzodioxoles. Sesamolin is a natural product found in Lantana camara, Torenia violacea, and other organisms with data available. See also: Sesame Oil (part of). Sesaminol, isolated from Sesamum indicum, has antioxidative activity, Sesaminol inhibits lipid peroxidation and shows neuroprotection effect. Sesaminol potently inhibits MAPK cascades by preventing phosphorylation of JNK, p38 MAPKs, and caspase-3 but not ERK-MAPK expression[1][2][3][4]. Sesaminol, isolated from Sesamum indicum, has antioxidative activity, Sesaminol inhibits lipid peroxidation and shows neuroprotection effect. Sesaminol potently inhibits MAPK cascades by preventing phosphorylation of JNK, p38 MAPKs, and caspase-3 but not ERK-MAPK expression[1][2][3][4].
Verbascoside
Acteoside is a glycoside that is the alpha-L-rhamnosyl-(1->3)-beta-D-glucoside of hydroxytyrosol in which the hydroxy group at position 4 of the glucopyranosyl moiety has undergone esterification by formal condensation with trans-caffeic acid. It has a role as a neuroprotective agent, an antileishmanial agent, an anti-inflammatory agent, a plant metabolite and an antibacterial agent. It is a cinnamate ester, a disaccharide derivative, a member of catechols, a polyphenol and a glycoside. It is functionally related to a hydroxytyrosol and a trans-caffeic acid. Acteoside is under investigation in clinical trial NCT02662283 (Validity and Security of Reh-acteoside Therapy for Patients of IgA Nephropathy). Acteoside is a natural product found in Orobanche amethystea, Barleria lupulina, and other organisms with data available. See also: Harpagophytum zeyheri root (part of). A glycoside that is the alpha-L-rhamnosyl-(1->3)-beta-D-glucoside of hydroxytyrosol in which the hydroxy group at position 4 of the glucopyranosyl moiety has undergone esterification by formal condensation with trans-caffeic acid. D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D064449 - Sequestering Agents > D002614 - Chelating Agents D020011 - Protective Agents > D000975 - Antioxidants D000890 - Anti-Infective Agents D000970 - Antineoplastic Agents Verbascoside is isolated from Acanthus mollis, acts as an ATP-competitive inhibitor of PKC, with an IC50 of 25 μM, and has antitumor, anti-inflammatory and antineuropathic pain activity. Verbascoside is isolated from Acanthus mollis, acts as an ATP-competitive inhibitor of PKC, with an IC50 of 25 μM, and has antitumor, anti-inflammatory and antineuropathic pain activity.
Liriodendrin
(-)-syringaresinol O,O-bis(beta-D-glucoside) is a beta-D-glucoside that is the 4,4-bis(beta-D-glucosyl) derivative of (-)-syringaresinol. It has a role as a plant metabolite, an antioxidant and an anti-inflammatory agent. It is functionally related to a (-)-syringaresinol. Acanthoside D is a natural product found in Crescentia cujete, Daphne giraldii, and other organisms with data available. A beta-D-glucoside that is the 4,4-bis(beta-D-glucosyl) derivative of (-)-syringaresinol. Eleutheroside E is an important component of Acanthopanax, which has anti-inflammatory and protective effects on ischemic heart. Eleutheroside E is an important component of Acanthopanax, which has anti-inflammatory and protective effects on ischemic heart. Syringaresinol diglucoside is a natural compound from bamboo leaves[1]. Syringaresinol diglucoside is a natural compound from bamboo leaves[1].
Echinacoside
Echinacoside is an oligosaccharide. Echinacoside is a phenylethanoid glycoside isolated from Echinacea angustifolia in 1950, and currently being investigated for the treatment of Parkinsons, Alzheimers, atherosclerosis, osteoporosis, acute colitis, wound treatment, and hepatitis. Echinacoside has demonstrated inhibition of apoptosis in neural cell lines, demonstrating potential for use in the treatment of neurological conditions. Echinacoside is a natural product found in Jasminum mesnyi, Pedicularis plicata, and other organisms with data available. Echinacoside, one of the phenylethanoids isolated from the stems of Cistanche deserticola, effectively inhibits Wnt/β-catenin signaling. Echinacoside elicits neuroprotection by activating Trk receptors and their downstream signal pathways. Antiosteoporotic activity[1][2][3]. Echinacoside, one of the phenylethanoids isolated from the stems of Cistanche deserticola, effectively inhibits Wnt/β-catenin signaling. Echinacoside elicits neuroprotection by activating Trk receptors and their downstream signal pathways. Antiosteoporotic activity[1][2][3].
harpagide
C15H24O10 (364.13694039999996)
Origin: Plant; SubCategory_DNP: Monoterpenoids, Harpagide monoterpenoids Harpagide is a class of iridoid glycoside isolated from Scrophularia ningpoensis and has antiparasitic activity, which exhibits good in vitro trypanocidal activities against African trypanosomes (T.b. rhodesiense) with an IC50 of 21 μg/mL. Harpagide exerts significant antileishmanial activity against L. donovani with an IC50 value of 2.0 μg/mL. Harpagide also possess significant anti-inflammatory activities[1][2]. Harpagide is a class of iridoid glycoside isolated from Scrophularia ningpoensis and has antiparasitic activity, which exhibits good in vitro trypanocidal activities against African trypanosomes (T.b. rhodesiense) with an IC50 of 21 μg/mL. Harpagide exerts significant antileishmanial activity against L. donovani with an IC50 value of 2.0 μg/mL. Harpagide also possess significant anti-inflammatory activities[1][2].
Methyl ferulate
Ferulic acid methyl ester (Methyl ferulate) is a derivative of ferulic acid, isolated from Stemona tuberosa, with anti-inflammatory and antioxidant properties[1][2]. Ferulic acid methyl ester is a cell membrane and brain permeable compound, shows free radical scavenging ability, used in the research of neurodegenerative disorders[1]. Ferulic acid methyl ester inhibits COX-2 expression, blocks p-p38 and p-JNK in primary bone marrow derived-macrophages[2]. Ferulic acid methyl ester (Methyl ferulate) is a derivative of ferulic acid, isolated from Stemona tuberosa, with anti-inflammatory and antioxidant properties[1][2]. Ferulic acid methyl ester is a cell membrane and brain permeable compound, shows free radical scavenging ability, used in the research of neurodegenerative disorders[1]. Ferulic acid methyl ester inhibits COX-2 expression, blocks p-p38 and p-JNK in primary bone marrow derived-macrophages[2].
Luteolin
Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.976 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.975 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.968 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.971 Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3]. Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3].
Diosmetin
Diosmetin is a natural flavonoid which inhibits human CYP1A enzyme activity with an IC50 of 40 μM in HepG2 cell. Diosmetin is a natural flavonoid which inhibits human CYP1A enzyme activity with an IC50 of 40 μM in HepG2 cell.
lupeol
D000893 - Anti-Inflammatory Agents Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1]. Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1].
Agnuside
C22H26O11 (466.14750460000005)
Agnuside is a benzoate ester resulting from the formal condensation of the carboxy group of 4-hydroxybenzoic acid with the primary hydroxy group of aucubin. It is an iridoid glycoside found in several Vitex plants including Vitex agnus-castus. It has a role as a plant metabolite, an anti-inflammatory agent, a pro-angiogenic agent and a cyclooxygenase 2 inhibitor. It is a terpene glycoside, an iridoid monoterpenoid, a benzoate ester, a member of phenols, a beta-D-glucoside, a cyclopentapyran and a monosaccharide derivative. It is functionally related to an aucubin. Agnuside is a natural product found in Crescentia cujete, Vitex peduncularis, and other organisms with data available. See also: Chaste tree fruit (part of); Vitex negundo leaf (part of). A benzoate ester resulting from the formal condensation of the carboxy group of 4-hydroxybenzoic acid with the primary hydroxy group of aucubin. It is an iridoid glycoside found in several Vitex plants including Vitex agnus-castus. Agnuside is a compound isolated from Vitex negundo, down-regulates pro-inflammatory mediators PGE2 and LTB4, and reduces the expression of cytokines, with anti-arthritic activity[1]. Agnuside is used in the study of asthma, inflammation, and angiogenic diseases. Agnuside is an orally active compound that can be extracted from Vitex negundo[1][2][3][4]. Agnuside is a compound isolated from Vitex negundo, down-regulates pro-inflammatory mediators PGE2 and LTB4, and reduces the expression of cytokines, with anti-arthritic activity[1].
Aucubin
Aucubin is an organic molecular entity. It has a role as a metabolite. Aucubin is a natural product found in Verbascum lychnitis, Plantago media, and other organisms with data available. See also: Chaste tree fruit (part of); Rehmannia glutinosa Root (part of); Plantago ovata seed (part of). Origin: Plant; SubCategory_DNP: Monoterpenoids, Iridoid monoterpenoids SubCategory_DNP: Monoterpenoids, Iridoid monoterpenoids; Origin: Plant Aucubin, an iridoid glucoside, is isolated from Plantago asiatica, Eucommia ulmoides, the leaves of Aucuba japonica and more recently from butterfly larva. Aucubin has many biological activities, such as antioxidant, anti-aging, anti-inflammatory, antimicrobial, anti-fibrotic, anti-cancer, hepatoprotective, neuroprotective and osteoprotective effects[1][2][3]. Aucubin, an iridoid glucoside, is isolated from Plantago asiatica, Eucommia ulmoides, the leaves of Aucuba japonica and more recently from butterfly larva. Aucubin has many biological activities, such as antioxidant, anti-aging, anti-inflammatory, antimicrobial, anti-fibrotic, anti-cancer, hepatoprotective, neuroprotective and osteoprotective effects[1][2][3].
Luteolin 7-O-glucoside
Loganic acid
C16H24O10 (376.13694039999996)
8-Epiloganic acid is a natural product found in Plantago atrata, Lonicera japonica, and other organisms with data available. 8-Epiloganic acid, an iridoid glucoside, can be found in Linaria cymbalaria (Scrophulariaceae)[1]. 8-Epiloganic acid, an iridoid glucoside, can be found in Linaria cymbalaria (Scrophulariaceae)[1]. Loganic acid is an iridoid isolated from cornelian cherry fruits. Loganic acid can modulate diet-induced atherosclerosis and redox status. Loganic acid has strong free radical scavenging activity and remarkable cyto-protective effect against heavy metal mediated toxicity[1][2]. Loganic acid is an iridoid isolated from cornelian cherry fruits. Loganic acid can modulate diet-induced atherosclerosis and redox status. Loganic acid has strong free radical scavenging activity and remarkable cyto-protective effect against heavy metal mediated toxicity[1][2].
Geniposidic acid
Geniposidic acid has radiation protection and anti-cancer activity. Geniposidic acid has radiation protection and anti-cancer activity.
2-[2-(3,4-dihydroxyphenyl)ethoxy]-6-(hydroxymethyl)oxane-3,4,5-triol
Cinnamamide
CONFIDENCE standard compound; INTERNAL_ID 8178 (E)-Cinnamamide, the less active isomer of Cinnamamide. Cinnamamide, a derivative of the plant secondary compound Cinnamic acid. Cinnamamide is effective as a non-lethal chemical repellent suitable for reducing avian pest damage[1].
Sesamolinol
Sesaminol, isolated from Sesamum indicum, has antioxidative activity, Sesaminol inhibits lipid peroxidation and shows neuroprotection effect. Sesaminol potently inhibits MAPK cascades by preventing phosphorylation of JNK, p38 MAPKs, and caspase-3 but not ERK-MAPK expression[1][2][3][4]. Sesaminol, isolated from Sesamum indicum, has antioxidative activity, Sesaminol inhibits lipid peroxidation and shows neuroprotection effect. Sesaminol potently inhibits MAPK cascades by preventing phosphorylation of JNK, p38 MAPKs, and caspase-3 but not ERK-MAPK expression[1][2][3][4].
Verbasoside
pelargonidin
An anthocyanidin cation that is flavylium substituted by a hydroxy groups at positions 3, 5, 7 and 4.
Cyanin
An anthocyanin cation that is cyanidin(1+) carrying two beta-D-glucosyl residues at positions 3 and 5.
Cornin
C17H24O10 (388.13694039999996)
Verbenalin is Verbena glycoside, with anti-inflammatory, anti-fungal anti-virus activities. Verbenalin can be used for the research of prostatitis. Verbenalin can reduce cerebral ischemia-reperfusion injury[1][2]. Verbenalin is Verbena glycoside, with anti-inflammatory, anti-fungal anti-virus activities. Verbenalin can be used for the research of prostatitis. Verbenalin can reduce cerebral ischemia-reperfusion injury[1][2].
cyanin betaine
An oxonium betaine that is the conjugate base of cyanin, arising from regioselective deprotonation of the 7-hydroxy group. Major structure at pH 7.3
2-(hydroxymethyl)-6-[2-(4-hydroxyphenyl)ethoxy]oxane-3,4,5-triol
2-[2-(3,4-dihydroxyphenyl)ethoxy]-6-(hydroxymethyl)oxane-3,4,5-triol
threo-1-(4-hydroxy-3-methoxyphenyl)-2-{4-[-(E)-3-hydroxy-1-propenyl]-2-methoxyphenoxy}-1,3-propanediol
A member of the class of propane-1,3-diols that is propane-1,3-diol substituted at position 1 by a 4-hydroxy-3-methoxyphenyl and at position 2 by a 4-[(1E)-3-hydroxyprop-1-en-1-yl]-2-methoxyphenoxy group (the 1R,2R stereoisomer). It is isolated from the whole plant of Lepisorus contortus.
Pelargonin
An anthocyanidin glycoside that is pelargonidin in which the two phenolic hydrogens at positions 3 and 5 have been replaced by beta-D-glucosyl residues.
Calceolarioside B
C23H26O11 (478.14750460000005)
A natural product found in Lepisorus contortus.
[(1s,4ar,5s,7as)-5-hydroxy-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,7ah-cyclopenta[c]pyran-7-yl]methyl benzoate
C22H26O10 (450.15258960000006)
methyl (1s,4as,7s,7as)-7-hydroxy-7-methyl-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7ah-cyclopenta[c]pyran-4-carboxylate
4-(methoxycarbonyl)-5-oxo-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,6h,7h,7ah-cyclopenta[c]pyran-4a-carboxylic acid
7-(hydroxymethyl)-4-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-1-yl 3-methylbutanoate
[(2s,4s,5s,10s)-5-hydroxy-10-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-2-yl]methyl benzoate
C22H26O11 (466.14750460000005)
(1s,4as,5r,7r,7ar)-5-{[(3e,7z)-3,7-dimethyl-2,9-dioxonona-3,7-dien-1-yl]oxy}-7-methyl-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-4-carbaldehyde
methyl (1s,4as,6s,7as)-6-hydroxy-7-methylidene-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7ah-cyclopenta[c]pyran-4-carboxylate
C17H24O10 (388.13694039999996)
(5-hydroxy-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,7ah-cyclopenta[c]pyran-7-yl)methyl 3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate
4-({[3,4-dihydroxy-6-(hydroxymethyl)-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}methyl)-7-(hydroxymethyl)-1h,4ah,5h,7ah-cyclopenta[c]pyran-1-yl 3-methylbutanoate
(1r,4ar,7r,7ar)-4-({[(2s,3s,4s,5s,6s)-3,4-dihydroxy-6-(hydroxymethyl)-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}methyl)-7-(hydroxymethyl)-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-1-yl 3-methylbutanoate
[(1s,4as,5r,7as)-5-hydroxy-1-{[(2s,3s,4r,5s,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,7ah-cyclopenta[c]pyran-7-yl]methyl (2e)-3-phenylprop-2-enoate
C24H28O10 (476.16823880000004)
methyl (1s,4ar,5r,7s,7ar)-4a,5-dihydroxy-7-methyl-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,5h,6h,7h,7ah-cyclopenta[c]pyran-4-carboxylate
3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 2,6-dimethyl-8-oxoocta-2,6-dienoate
methyl (1s,4as,7r,7ar)-7-(hydroxymethyl)-5-oxo-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,6h,7h,7ah-cyclopenta[c]pyran-4-carboxylate
C17H24O11 (404.13185539999995)
[(1s,4ar,5s,7as)-5-hydroxy-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,7ah-cyclopenta[c]pyran-7-yl]methyl (2z)-3-(4-hydroxyphenyl)prop-2-enoate
C24H28O11 (492.16315380000003)
methyl 5-hydroxy-7-(hydroxymethyl)-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-4-carboxylate
3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 5-hydroxy-7-methyl-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-4-carboxylate
methyl (1s,4ar,5s,7s,7ar)-5-hydroxy-7-methyl-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-4-carboxylate
(2r,3r,4r,5r,6r)-5-hydroxy-6-[2-(3-hydroxy-4-methoxyphenyl)ethoxy]-2-(hydroxymethyl)-4-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl (2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate
5-[(3,7-dimethyl-2,9-dioxonona-3,7-dien-1-yl)oxy]-7-methyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-4-carbaldehyde
2-(3,5-dihydroxy-4-oxidophenyl)-5,7-dihydroxy-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1λ⁴-chromen-1-ylium
C21H20O12 (464.09547200000003)
4-({[3,4-dihydroxy-6-(hydroxymethyl)-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}methyl)-7-(hydroxymethyl)-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-1-yl 3-methylbutanoate
(1s,4ar,5s,7as)-7-(hydroxymethyl)-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,7ah-cyclopenta[c]pyran-5-yl 4-methoxybenzoate
C23H28O11 (480.16315380000003)
(2r,5r,6r)-2-[2-(3,4-dihydroxyphenyl)ethoxy]-5-hydroxy-6-(hydroxymethyl)oxane-3,4-dione
methyl (1s,4ar,5s,7r,7ar)-5-hydroxy-7-methyl-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-4-carboxylate
(1s,4as,7as)-4-({[(2r,3s,5r,6r)-3,5-dihydroxy-6-(hydroxymethyl)-4-oxooxan-2-yl]oxy}methyl)-7-(hydroxymethyl)-1h,4ah,5h,7ah-cyclopenta[c]pyran-1-yl 3-methylbutanoate
1-(3-methoxy-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)ethanone
methyl (1s,4as,5r,7r,7ar)-5-hydroxy-7-methyl-1-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-4-carboxylate
[(1s,2s,4s,5s,6r,10s)-5-hydroxy-10-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-2-yl]methyl benzoate
C22H26O11 (466.14750460000005)
4a-hydroxy-7-methyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-hexahydro-1h-cyclopenta[c]pyran-4-carbaldehyde
(2r,3s,4r,5r,6r)-6-[2-(3,4-dihydroxyphenyl)ethoxy]-4,5-dihydroxy-2-(hydroxymethyl)oxan-3-yl (2e)-3-(3,4-dihydroxyphenyl)prop-2-enoate
C23H26O11 (478.14750460000005)
2-{3a,7,8-trihydroxy-9a,11a-dimethyl-5-oxo-1h,2h,3h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl}-2,6-dihydroxy-6-methylheptan-3-yl 3-hydroxybutanoate
(2s,3r,4s,5s,6r)-2-{[(1s,4ar,7r,7ar)-4-formyl-4a-hydroxy-7-methyl-1h,5h,6h,7h,7ah-cyclopenta[c]pyran-1-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl (2e)-3-(4-hydroxyphenyl)prop-2-enoate
methyl 4a,6,7-trihydroxy-7-methyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,5h,6h,7ah-cyclopenta[c]pyran-4-carboxylate
C17H26O12 (422.14241960000004)
(1s,4as,7s,7as)-4-({[(2r,3s,5r,6r)-3,5-dihydroxy-6-(hydroxymethyl)-4-oxooxan-2-yl]oxy}methyl)-7-(hydroxymethyl)-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-1-yl 3-methylbutanoate
methyl 5,6-dihydroxy-7-methyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-4-carboxylate
(2r,3r,4s,5s,6r)-2-[2-(3,4-dihydroxyphenyl)ethoxy]-6-(hydroxymethyl)oxane-3,4,5-triol
4-formyl-7-methyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-5-yl 8-hydroxy-2,6-dimethylocta-2,6-dienoate
(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (2e,5r,6e)-5,8-dihydroxy-2,6-dimethylocta-2,6-dienoate
(2s,3r,4s,5s,6r)-2-{[(1s,2s,4s,5s,6r,10s)-5-hydroxy-2-(hydroxymethyl)-3,9-dioxatricyclo[4.4.0.0²,⁴]decan-10-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
C15H24O10 (364.13694039999996)
methyl 4a-hydroxy-5-[(8-hydroxy-2,6-dimethylocta-2,6-dienoyl)oxy]-7-methyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,5h,6h,7h,7ah-cyclopenta[c]pyran-4-carboxylate
methyl (1s,4ar,7s,7ar)-4a-hydroxy-7-methyl-5-oxo-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,6h,7h,7ah-cyclopenta[c]pyran-4-carboxylate
C17H24O11 (404.13185539999995)
6-hydroxy-7-methylidene-4-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-1h,4ah,5h,6h,7ah-cyclopenta[c]pyran-1-yl 3-methylbutanoate
(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (2e,6e)-2,6-dimethyl-8-oxoocta-2,6-dienoate
methyl 6-hydroxy-7-methylidene-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7ah-cyclopenta[c]pyran-4-carboxylate
C17H24O10 (388.13694039999996)
1-{3-methoxy-4-[(3,4,5-trihydroxy-6-{[(3,4,5-trihydroxyoxan-2-yl)oxy]methyl}oxan-2-yl)oxy]phenyl}ethanone
4a-hydroxy-7-methyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,5h,6h,7h,7ah-cyclopenta[c]pyran-4-carbaldehyde
(1s,4ar,7ar)-4-({[(2s,3s,4r,5s,6s)-3,4-dihydroxy-6-(hydroxymethyl)-5-{[(2s,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}methyl)-7-(hydroxymethyl)-1h,4ah,5h,7ah-cyclopenta[c]pyran-1-yl 3-methylbutanoate
{6-[2-(3,4-dihydroxyphenyl)ethoxy]-3,4,5-trihydroxyoxan-2-yl}methyl 8-hydroxy-2,6-dimethylocta-2,6-dienoate
[(2r,3s,4s,5r,6r)-6-[2-(3,4-dihydroxyphenyl)ethoxy]-3,4,5-trihydroxyoxan-2-yl]methyl (2e,5r,6e)-5,8-dihydroxy-2,6-dimethylocta-2,6-dienoate
methyl (1s,4ar,7s,7ar)-4a-hydroxy-7-(hydroxymethyl)-5-oxo-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,6h,7h,7ah-cyclopenta[c]pyran-4-carboxylate
{6-[2-(3,4-dihydroxyphenyl)ethoxy]-3,4,5-trihydroxyoxan-2-yl}methyl 5,8-dihydroxy-2,6-dimethylocta-2,6-dienoate
(2r,3r,4r,5r,6r)-5-hydroxy-6-[2-(3-hydroxy-4-methoxyphenyl)ethoxy]-4-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-2-({[(2r,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxan-3-yl (2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate
2-[(acetyloxy)methyl]-6-[2-(3,4-dihydroxyphenyl)ethoxy]-5-hydroxy-4-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-3-yl 3-(3,4-dihydroxyphenyl)prop-2-enoate
(2s,3r,4s,5s,6r)-2-{[(1s,4ar,5r,7s,7as)-5,7-dihydroxy-7-methyl-1h,4ah,5h,6h,7ah-cyclopenta[c]pyran-1-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
(1s,4as,5r,7r,7as)-4a,5-dihydroxy-7-methyl-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,5h,6h,7ah-cyclopenta[c]pyran-7-yl acetate
3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 8-hydroxy-2,6-dimethylocta-2,6-dienoate
(1s,4as,7s,7as)-7-(hydroxymethyl)-4-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-1-yl 3-methylbutanoate
6-[2-(3,4-dihydroxyphenyl)ethoxy]-5-hydroxy-2-(hydroxymethyl)-4-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-3-yl 3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate
2-(4-hydroxyphenyl)-5-{[4,5,6-trihydroxy-3-(hydroxymethyl)oxan-2-yl]oxy}-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-7-one
(1s,4as,5r,7r,7ar)-5-{[(3e,7e)-3,7-dimethyl-2,9-dioxonona-3,7-dien-1-yl]oxy}-7-methyl-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-4-carbaldehyde
(1s,4as,7as)-4-({[(2r,3s,4r,6s)-3,4-dihydroxy-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}methyl)-7-(hydroxymethyl)-1h,4ah,5h,7ah-cyclopenta[c]pyran-1-yl 3-methylbutanoate
methyl (1r,4ar,7s,7ar)-4a-hydroxy-7-methyl-5-oxo-1-{[(2r,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,6h,7h,7ah-cyclopenta[c]pyran-4-carboxylate
C17H24O11 (404.13185539999995)
(1r,4ar,7ar)-4-({[(2s,3r,4r,6r)-3,4-dihydroxy-6-({[(2s,3s,4r,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}methyl)-7-(hydroxymethyl)-1h,4ah,5h,7ah-cyclopenta[c]pyran-1-yl 3-methylbutanoate
(2r,3r,4s,5r,6r)-5-(acetyloxy)-4-{[(2s,3r,4s,5r,6s)-5-(acetyloxy)-3,4-dihydroxy-6-methyloxan-2-yl]oxy}-6-[2-(3,4-dihydroxyphenyl)ethoxy]-2-(hydroxymethyl)oxan-3-yl (2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate
(1s,4as,5r,7r,7ar)-5-{[(3e,7e)-9-hydroxy-3,7-dimethyl-2-oxonona-3,7-dien-1-yl]oxy}-7-methyl-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-4-carbaldehyde
methyl (4ar,7as)-7-(hydroxymethyl)-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,7ah-cyclopenta[c]pyran-4-carboxylate
C17H24O10 (388.13694039999996)
6-{[2-(3,4-dihydroxyphenyl)-5-hydroxy-4-oxochromen-7-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid
(2s,3r,4s,5s,6r)-2-{[(1s,4ar,7as)-7-(hydroxymethyl)-1h,4ah,5h,7ah-cyclopenta[c]pyran-1-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
methyl 4a,7-dihydroxy-7-methyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,5h,6h,7ah-cyclopenta[c]pyran-4-carboxylate
3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 5,8-dihydroxy-2,6-dimethylocta-2,6-dienoate
methyl (1s,4ar,6s,7s,7ar)-4a,6-dihydroxy-7-methyl-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,5h,6h,7h,7ah-cyclopenta[c]pyran-4-carboxylate
methyl (1s,4ar,5r,7r,7ar)-4a-hydroxy-5-{[(2e,6e)-8-hydroxy-2,6-dimethylocta-2,6-dienoyl]oxy}-7-methyl-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,5h,6h,7h,7ah-cyclopenta[c]pyran-4-carboxylate
(1s,4as,6s,7s,7ar)-6-hydroxy-7-(hydroxymethyl)-4-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-1-yl 3-methylbutanoate
(2s,3r,4s,5s,6r)-2-{[(4ar,7ar)-5-hydroxy-7-(hydroxymethyl)-1h,4ah,5h,7ah-cyclopenta[c]pyran-1-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
(2r,3r,4r,5r,6r)-5-hydroxy-6-[2-(4-hydroxy-3-methoxyphenyl)ethoxy]-2-(hydroxymethyl)-4-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl (2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate
methyl (1s,4as,7s,7ar)-7-(hydroxymethyl)-5-oxo-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,6h,7h,7ah-cyclopenta[c]pyran-4-carboxylate
C17H24O11 (404.13185539999995)
(1s,3as,5ar,7r,8s,9ar,9br,11ar)-1-[(2s)-2,6-dihydroxy-6-methylheptan-2-yl]-3a,7,8-trihydroxy-9a,11a-dimethyl-1h,2h,3h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-5-one
(1s,4as,7as)-7-(hydroxymethyl)-4-({[(2r,3s,4r,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-1h,4ah,5h,7ah-cyclopenta[c]pyran-1-yl 3-methylbutanoate
5-hydroxy-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-2-(3,4,5-trihydroxyphenyl)chromen-7-one
C21H20O12 (464.09547200000003)
(2r,3r,4r,5r,6r)-6-[2-(3,4-dihydroxyphenyl)ethoxy]-5-hydroxy-2-(hydroxymethyl)-4-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl (2e)-3-(3-hydroxy-4-methoxyphenyl)prop-2-enoate
(1s,4as,7s,7ar)-4-({[(2r,3s,5s,6s)-3,5-dihydroxy-6-(hydroxymethyl)-4-oxooxan-2-yl]oxy}methyl)-7-(hydroxymethyl)-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-1-yl 3-methylbutanoate
methyl (1s,4as,5r,7r,7ar)-5-hydroxy-7-methyl-1-{[(2r,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-4-carboxylate
methyl (1s,4ar,7r,7ar)-4a-hydroxy-7-methyl-5-oxo-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,6h,7h,7ah-cyclopenta[c]pyran-4-carboxylate
C17H24O11 (404.13185539999995)
methyl 4a,6-dihydroxy-7-oxo-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,5h,6h,7ah-cyclopenta[c]pyran-4-carboxylate
5,7-dihydroxy-2-(4-hydroxyphenyl)-1λ⁴-chromen-1-ylium-3-olate
(1s,2s,4s,5s,6r,10s)-2-(hydroxymethyl)-10-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-5-yl (2e,6e)-8-hydroxy-2,6-dimethylocta-2,6-dienoate
[(1s)-5-hydroxy-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,7ah-cyclopenta[c]pyran-7-yl]methyl benzoate
C22H26O10 (450.15258960000006)
(2r,3r,4r,5r,6r)-5-hydroxy-6-[2-(3-hydroxy-4-methoxyphenyl)ethoxy]-2-(hydroxymethyl)-4-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl (2z)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate
[(2r,3r,4s,5r,6r)-6-[2-(3,4-dihydroxyphenyl)ethoxy]-3,5-dihydroxy-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]methyl (2e)-3-(3,4-dihydroxyphenyl)prop-2-enoate
[(2r,3s,4s,5r,6s)-3,4,5-trihydroxy-6-{[(1s,2s,4s,5r,6s,10r)-5-hydroxy-2-({[(2e)-3-phenylprop-2-enoyl]oxy}methyl)-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-10-yl]oxy}oxan-2-yl]methyl (2e)-3-(4-hydroxyphenyl)prop-2-enoate
[(1s,2s,4s,5s,6r,10r)-5-hydroxy-10-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-2-yl]methyl (2e)-3-phenylprop-2-enoate
C24H28O11 (492.16315380000003)
methyl 7-(hydroxymethyl)-5-oxo-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,6h,7h,7ah-cyclopenta[c]pyran-4-carboxylate
C17H24O11 (404.13185539999995)
(2s,3r,4r,5r,6s)-2-{[(2r,3r,4s,5r,6r)-2-[2-(3,4-dihydroxyphenyl)ethoxy]-3,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy}-6-methyloxane-3,4,5-triol
3a,7,8-trihydroxy-9a,11a-dimethyl-1-(2,3,6-trihydroxy-6-methylheptan-2-yl)-1h,2h,3h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-5-one
(5-hydroxy-10-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-2-yl)methyl 3-phenylprop-2-enoate
C24H28O11 (492.16315380000003)
(5-hydroxy-10-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-2-yl)methyl benzoate
C22H26O11 (466.14750460000005)
(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (2e,6e)-5-hydroxy-8-{[(2e,6e)-8-hydroxy-2,6-dimethylocta-2,6-dienoyl]oxy}-2,6-dimethylocta-2,6-dienoate
5,7-dihydroxy-2-(4-hydroxy-3-oxidophenyl)-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1λ⁴-chromen-1-ylium
(1s,5ar,7r,8s,9ar,11ar)-3a,7,8-trihydroxy-9a,11a-dimethyl-1-(2,3,6-trihydroxy-5,6-dimethylheptan-2-yl)-1h,2h,3h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-5-one
(1s,4as,5r,7r,7ar)-4-formyl-7-methyl-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-5-yl (2e,6e)-8-hydroxy-2,6-dimethylocta-2,6-dienoate
5,7-dihydroxy-2-(4-hydroxy-3-oxidophenyl)-3-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}-1λ⁴-chromen-1-ylium
(2r,3r,4r,5r,6r)-6-[2-(3,4-dihydroxyphenyl)ethoxy]-5-hydroxy-2-(hydroxymethyl)-4-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl (2z)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate
(1s,2s,4s,5s,6r,10s)-2-(hydroxymethyl)-10-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-5-yl 3,4-dimethoxybenzoate
[(1s,4ar,5s,7as)-5-hydroxy-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,7ah-cyclopenta[c]pyran-7-yl]methyl (2e)-3-(4-hydroxyphenyl)prop-2-enoate
C24H28O11 (492.16315380000003)
(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (2e,6e)-8-{[(2e,6e)-8-{[(2e,6e)-5,8-dihydroxy-2,6-dimethylocta-2,6-dienoyl]oxy}-5-hydroxy-2,6-dimethylocta-2,6-dienoyl]oxy}-5-hydroxy-2,6-dimethylocta-2,6-dienoate
methyl (1s,4as,7s,7as)-7-(hydroxymethyl)-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-4-carboxylate
(1s,4as,5r,7r,7ar)-4-formyl-7-methyl-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-5-yl (2e,6z)-8-hydroxy-2,6-dimethylocta-2,6-dienoate
methyl 4a,5-dihydroxy-7-methyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,5h,6h,7h,7ah-cyclopenta[c]pyran-4-carboxylate
7-(hydroxymethyl)-4-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-1h,4ah,5h,7ah-cyclopenta[c]pyran-1-yl 3-methylbutanoate
methyl (1s,4as,6s,7s,7as)-6-hydroxy-7-methyl-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-4-carboxylate
(1r,4ar,7r,7ar)-7-hydroxy-7-methyl-1-{[(2r,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7ah-cyclopenta[c]pyran-4-carboxylic acid
C16H24O10 (376.13694039999996)
(1s,4r,4ar,7r,7ar)-4a-hydroxy-7-methyl-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-hexahydro-1h-cyclopenta[c]pyran-4-carbaldehyde
(2s,3r,4s,5s,6r)-2-{[(1s,2s,4s,5s,6s,10s)-5-hydroxy-2-(hydroxymethyl)-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-10-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
(1s,4as,7as)-4,7-bis(hydroxymethyl)-7a-methyl-1h,4ah,5h-cyclopenta[c]pyran-1-yl 3-methylbutanoate
(2r,3s,4s,5r,6s)-2-(hydroxymethyl)-6-[2-(4-hydroxyphenyl)ethoxy]oxane-3,4,5-triol
(1r,4ar,7r,7ar)-4a-hydroxy-7-methyl-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,5h,6h,7h,7ah-cyclopenta[c]pyran-4-carbaldehyde
[(1s,2s,4s,5s,6r,10s)-5-hydroxy-10-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-2-yl]methyl (2e)-3-phenylprop-2-enoate
C24H28O11 (492.16315380000003)
(2r,3r,4r,5r,6r)-6-[2-(3,4-dihydroxyphenyl)ethoxy]-5-hydroxy-2-(hydroxymethyl)-4-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl (2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate
methyl (1s,4ar,5r,7r,7ar)-4a,5-dihydroxy-7-methyl-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,5h,6h,7h,7ah-cyclopenta[c]pyran-4-carboxylate
(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (2e,6e)-8-hydroxy-2,6-dimethylocta-2,6-dienoate
4,4a-dimethyl (1s,4ar,7ar)-5-oxo-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,6h,7h,7ah-cyclopenta[c]pyran-4,4a-dicarboxylate
(5-hydroxy-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,7ah-cyclopenta[c]pyran-7-yl)methyl 3-(4-hydroxyphenyl)prop-2-enoate
C24H28O11 (492.16315380000003)
1-(3-methoxy-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}methyl)oxan-2-yl]oxy}phenyl)ethanone
methyl (1s,4as,5s,7as)-4a,5-dihydroxy-7-methyl-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,5h,7ah-cyclopenta[c]pyran-4-carboxylate
C17H24O11 (404.13185539999995)
methyl (1s,4ar,5r,7r,7ar)-4a,5-dihydroxy-7-methyl-1-{[(2s,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,5h,6h,7h,7ah-cyclopenta[c]pyran-4-carboxylate
methyl (1s,4as,6r,7r,7as)-6-hydroxy-7-methyl-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-4-carboxylate
methyl 7-methyl-5-oxo-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,6h,7h,7ah-cyclopenta[c]pyran-4-carboxylate
C17H24O10 (388.13694039999996)
methyl (1s,4ar,6s,7ar)-4a,6-dihydroxy-7-oxo-1-{[(2r,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,5h,6h,7ah-cyclopenta[c]pyran-4-carboxylate
(1s,4as,6r,7s,7as)-6,7-dihydroxy-7-methyl-4-[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-methoxyoxan-2-yl]-1h,4ah,5h,6h,7ah-cyclopenta[c]pyran-1-yl 3-methylbutanoate
(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (2e,6z)-2,6-dimethyl-8-oxoocta-2,6-dienoate
(2s,3r,4s,5s,6r)-2-{[(1s,4as,7ar)-7-(hydroxymethyl)-1h,4ah,5h,7ah-cyclopenta[c]pyran-1-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
methyl 7-hydroxy-7-methyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7ah-cyclopenta[c]pyran-4-carboxylate
(5-hydroxy-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,7ah-cyclopenta[c]pyran-7-yl)methyl benzoate
C22H26O10 (450.15258960000006)
6-hydroxy-7-methylidene-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7ah-cyclopenta[c]pyran-4-carboxylic acid
{3,4,5-trihydroxy-6-[(5-hydroxy-2-{[(3-phenylprop-2-enoyl)oxy]methyl}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-10-yl)oxy]oxan-2-yl}methyl 3-(4-hydroxyphenyl)prop-2-enoate
(2r,3r,4r,5r,6r)-2-({[(2r,3r,4r)-3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}methyl)-6-[2-(3,4-dihydroxyphenyl)ethoxy]-5-hydroxy-4-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl (2e)-3-(3,4-dihydroxyphenyl)prop-2-enoate
(5-hydroxy-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,7ah-cyclopenta[c]pyran-7-yl)methyl 3-phenylprop-2-enoate
C24H28O10 (476.16823880000004)
(1s,4as,7s,7as)-4-({[(2r,3r,4r,5s,6r)-3,4-dihydroxy-6-(hydroxymethyl)-5-{[(2s,3r,4r,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}methyl)-7-(hydroxymethyl)-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-1-yl 3-methylbutanoate
(2e,6e)-8-{[(1r,2s,4s,5s,6s,10s)-5-hydroxy-10-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-2-yl]methoxy}-3,7-dimethyl-8-oxoocta-2,6-dien-1-yl (2e,6z)-8-hydroxy-2,6-dimethylocta-2,6-dienoate
methyl (1s,4ar,5r,6r,7s,7ar)-5,6-dihydroxy-7-methyl-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-4-carboxylate
[(2r,3s,4s,5r,6r)-6-[2-(3,4-dihydroxyphenyl)ethoxy]-3,4,5-trihydroxyoxan-2-yl]methyl (2e,6e)-8-hydroxy-2,6-dimethylocta-2,6-dienoate
(1s,2s,4s,5s,6r,10s)-2-(hydroxymethyl)-10-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-5-yl (2e)-3-(4-hydroxyphenyl)prop-2-enoate
(2s,3s,4s,5r,6r)-3,4,5-trihydroxy-6-{[5-hydroxy-2-(4-hydroxyphenyl)-4-oxochromen-7-yl]oxy}oxane-2-carboxylic acid
methyl (1s,4ar,5s,7s,7ar)-5-hydroxy-7-(hydroxymethyl)-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-4-carboxylate
(1s,4as,7as)-4-({[(2r,3r,4r,5s,6r)-3,4-dihydroxy-6-(hydroxymethyl)-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}methyl)-7-(hydroxymethyl)-1h,4ah,5h,7ah-cyclopenta[c]pyran-1-yl 3-methylbutanoate
[(2r,3s,4s,5r,6s)-3,4,5-trihydroxy-6-{[(1s,2s,4s,5s,6r,10r)-5-hydroxy-2-({[(2e)-3-phenylprop-2-enoyl]oxy}methyl)-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-10-yl]oxy}oxan-2-yl]methyl (2e)-3-(4-hydroxyphenyl)prop-2-enoate
1-(2,6-dihydroxy-6-methylheptan-2-yl)-3a,7,8-trihydroxy-9a,11a-dimethyl-1h,2h,3h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-5-one
(4a,5-dihydroxy-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,5h,7ah-cyclopenta[c]pyran-7-yl)methyl 3-(4-hydroxyphenyl)prop-2-enoate
(1s,4as,7as)-7-(hydroxymethyl)-4-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-1h,4ah,5h,7ah-cyclopenta[c]pyran-1-yl 3-methylbutanoate
4-formyl-7-methyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-5-yl (2z,6e)-8-hydroxy-2,6-dimethylocta-2,6-dienoate
[(1s,4ar,5s,7as)-5-hydroxy-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,7ah-cyclopenta[c]pyran-7-yl]methyl (2e)-3-phenylprop-2-enoate
C24H28O10 (476.16823880000004)
(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (4as,5r,7r,7ar)-5-hydroxy-7-methyl-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-4-carboxylate
(3r,4r,6r)-6-[2-(3,4-dihydroxyphenyl)ethoxy]-5-hydroxy-2-(hydroxymethyl)-4-{[(2s,3s,5r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl (2e)-3-(3,4-dihydroxyphenyl)prop-2-enoate
3a,7,8-trihydroxy-9a,11a-dimethyl-1-(2,3,6-trihydroxy-5,6-dimethylheptan-2-yl)-1h,2h,3h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-5-one
(1r,3ar,5as,7s,8r,9as,11as)-3a,7,8-trihydroxy-9a,11a-dimethyl-1-[(2s,3s,5s)-2,3,6-trihydroxy-5,6-dimethylheptan-2-yl]-1h,2h,3h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-5-one
5-[(9-hydroxy-3,7-dimethyl-2-oxonona-3,7-dien-1-yl)oxy]-7-methyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-4-carbaldehyde
(2r,3r,4r,5r,6r)-6-[2-(3,4-dihydroxyphenyl)ethoxy]-5-hydroxy-2-(hydroxymethyl)-4-{[(2s,3r,4s,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl (2e)-3-(3,4-dihydroxyphenyl)prop-2-enoate
(2r,3r)-2-[(1s,3as,5ar,7r,8s,9ar,9br,11ar)-3a,7,8-trihydroxy-9a,11a-dimethyl-5-oxo-1h,2h,3h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]-2,6-dihydroxy-6-methylheptan-3-yl (3r)-3-hydroxybutanoate
methyl 4a,6-dihydroxy-7-methyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,5h,6h,7h,7ah-cyclopenta[c]pyran-4-carboxylate
5-(acetyloxy)-4-{[5-(acetyloxy)-3,4-dihydroxy-6-methyloxan-2-yl]oxy}-6-[2-(3,4-dihydroxyphenyl)ethoxy]-2-(hydroxymethyl)oxan-3-yl 3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate
5-(acetyloxy)-6-[2-(3,4-dihydroxyphenyl)ethoxy]-2-(hydroxymethyl)-4-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-3-yl 3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate
8-[(5-hydroxy-10-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-2-yl)methoxy]-3,7-dimethyl-8-oxoocta-2,6-dien-1-yl 8-hydroxy-2,6-dimethylocta-2,6-dienoate
(2r,3r,4r,5r,6r)-6-[2-(3,4-dihydroxyphenyl)ethoxy]-5-hydroxy-2-(hydroxymethyl)-4-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl (2z)-3-(3,4-dihydroxyphenyl)prop-2-enoate
6-hydroxy-7-methyl-4-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-1-yl 3-methylbutanoate
(1s,3as,5ar,7r,8s,9ar,9br,11ar)-1-[(2r,3r,5r)-5-ethyl-2,3,6-trihydroxy-6-methylheptan-2-yl]-3a,7,8-trihydroxy-9a,11a-dimethyl-1h,2h,3h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-5-one
6-[2-(3,4-dihydroxyphenyl)ethoxy]-5-hydroxy-4-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-2-{[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]methyl}oxan-3-yl 3-(3,4-dihydroxyphenyl)prop-2-enoate
1-(5-ethyl-2,3,6-trihydroxy-6-methylheptan-2-yl)-3a,7,8-trihydroxy-9a,11a-dimethyl-1h,2h,3h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-5-one
(1s,4as,6s,7r,7as)-6-hydroxy-7-methyl-4-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-1-yl 3-methylbutanoate
methyl (1s,4ar,5r,7r,7ar)-4a,5-dihydroxy-7-methyl-1-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,5h,6h,7h,7ah-cyclopenta[c]pyran-4-carboxylate
2-{[(4as,7s)-4a,5,7-trihydroxy-7-methyl-1h,5h,6h,7ah-cyclopenta[c]pyran-1-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
C15H24O10 (364.13694039999996)
[(1s,4ar,5s,7as)-5-hydroxy-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,7ah-cyclopenta[c]pyran-7-yl]methyl (2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate
4-({[3,5-dihydroxy-6-(hydroxymethyl)-4-oxooxan-2-yl]oxy}methyl)-7-(hydroxymethyl)-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-1-yl 3-methylbutanoate
(2s,3r,4s,5s,6r)-2-{[(1s,4ar,7r,7ar)-4-formyl-4a-hydroxy-7-methyl-1h,5h,6h,7h,7ah-cyclopenta[c]pyran-1-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl (2e,6e)-8-hydroxy-2,6-dimethylocta-2,6-dienoate
methyl 5-hydroxy-7-methyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-4-carboxylate
methyl (1r,4ar,5s,7s,7as)-5-hydroxy-7-methyl-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-4-carboxylate
(2r,3r,4r,5r,6r)-4-{[(2s,3r,4s,5r,6s)-5-(acetyloxy)-3,4-dihydroxy-6-methyloxan-2-yl]oxy}-6-[2-(3,4-dihydroxyphenyl)ethoxy]-5-hydroxy-2-(hydroxymethyl)oxan-3-yl (2e)-3-(3,4-dihydroxyphenyl)prop-2-enoate
2-(hydroxymethyl)-10-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-5-yl (2e)-6-hydroxy-2,6-dimethylocta-2,7-dienoate
(2r,3r,4r,5r,6r)-2-[(acetyloxy)methyl]-6-[2-(3,4-dihydroxyphenyl)ethoxy]-5-hydroxy-4-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl (2e)-3-(3,4-dihydroxyphenyl)prop-2-enoate
2-{[5-hydroxy-2-(hydroxymethyl)-3,9-dioxatricyclo[4.4.0.0²,⁴]decan-10-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
C15H24O10 (364.13694039999996)
4-{[5-(acetyloxy)-3,4-dihydroxy-6-methyloxan-2-yl]oxy}-6-[2-(3,4-dihydroxyphenyl)ethoxy]-5-hydroxy-2-(hydroxymethyl)oxan-3-yl 3-(3,4-dihydroxyphenyl)prop-2-enoate
(2r)-2-{[(1r,2s,6s)-5-hydroxy-2-(hydroxymethyl)-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-10-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
(2r,3r,4s,5r,6r)-5-(acetyloxy)-6-[2-(3,4-dihydroxyphenyl)ethoxy]-2-(hydroxymethyl)-4-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl (2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate
(2r,3r,4r,5r,6r)-6-[2-(3,4-dihydroxyphenyl)ethoxy]-5-hydroxy-4-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-2-({[(2r,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxan-3-yl (2e)-3-(3,4-dihydroxyphenyl)prop-2-enoate
2-[2-(3,4-dihydroxyphenyl)ethoxy]-5-hydroxy-6-(hydroxymethyl)oxane-3,4-dione
(1s,4ar,7ar)-4-(methoxycarbonyl)-5-oxo-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,6h,7h,7ah-cyclopenta[c]pyran-4a-carboxylic acid
(1s,4ar,7s,7ar)-4a,7-dihydroxy-7-methyl-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,5h,6h,7ah-cyclopenta[c]pyran-4-carbaldehyde
C16H24O10 (376.13694039999996)
[(1s,4ar,5s,7as)-5-hydroxy-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,7ah-cyclopenta[c]pyran-7-yl]methyl (2e)-3-phenylprop-2-enoate
C24H28O10 (476.16823880000004)