Gene Association: OXSM

UniProt Search: OXSM (PROTEIN_CODING)
Function Description: 3-oxoacyl-ACP synthase, mitochondrial

found 47 associated metabolites with current gene based on the text mining result from the pubmed database.

Nookatone

2(3H)-Naphthalenone, 4,4a,5,6,7,8-hexahydro-4,4a-dimethyl-6-(1-methylethenyl)-, [4R-(4.alpha.,4a.alpha.,6.beta.)]-

C15H22O (218.1671)


Nootkatone is a natural organic compound and is the most important and expensive aromatic of grapefruit. It is a sesquiterpene and a ketone. Nootkatone was previously thought to be one of the main chemical components of the smell and flavour of grapefruits. In its solid form it is usually found as crystals. As a liquid, it is viscous and yellow. Nootkatone is typically extracted from grapefruit, but can also be manufactured with genetically modified organisms, or through the chemical or biochemical oxidation of valencene. It is also found in Alaska yellow cedar trees and vetiver grass. (+)-nootkatone is a sesquiterpenoid that is 4,4a,5,6,7,8-hexahydronaphthalen-2(3H)-one which is substituted by methyl groups at positions 4 and 4a, and by an isopropenyl group at position 6 (the 4R,4aS,6R stereoisomer). It has a role as a plant metabolite, a fragrance and an insect repellent. It is a sesquiterpenoid, an enone and a carbobicyclic compound. Nootkatone is a natural product found in Teucrium asiaticum, Teucrium oxylepis, and other organisms with data available. Constituent of grapefruit oil and juice. Flavouring ingredient. Nootkatone is found in many foods, some of which are citrus, sweet orange, lime, and lemon. Nootkatone is an organic compound, a sesquiterpenoid, which means that it is a C15 derivative that also contains an oxygen-containing functional group (a ketone). It is the most valuable aroma compound of grapefruit.[2] Nootkatone was originally isolated from the wood of the Alaskan yellow cedar, Cupressus nootkatensis. The species name, nootkatensis, is derived from the language of the Nuu-Chah-Nulth people of Canada (formerly referred to as the Nootka people).[3] Nootkatone, a neuroprotective agent from Vitis vinifera, has antioxidant and anti-inflammatory effects[1]. Nootkatone improves cognitive impairment in lipopolysaccharide-induced mouse model of Alzheimer's disease[2]. Nootkatone, a neuroprotective agent from Vitis vinifera, has antioxidant and anti-inflammatory effects[1]. Nootkatone improves cognitive impairment in lipopolysaccharide-induced mouse model of Alzheimer's disease[2].

   

Capsiate

6-nonenoic acid, 8-methyl-, (4-hydroxy-3-methoxyphenyl)methyl ester, (6E)-

C18H26O4 (306.1831)


Capsiate is a carboxylic ester obtained by formal condensation of the carboxy group of (6E)-8-methylnon-6-enoic acid with the benzylic hydroxy group of vanillyl alcohol. A non-pungent analogue of capsaicin with a similar biological profile. It has a role as a plant metabolite, a hypoglycemic agent, an anti-allergic agent, an antioxidant, an angiogenesis inhibitor, an anti-inflammatory agent and a capsaicin receptor agonist. It is a carboxylic ester, a monomethoxybenzene and a member of phenols. It is functionally related to a vanillyl alcohol. Capsiate is a natural product found in Apis cerana with data available. A carboxylic ester obtained by formal condensation of the carboxy group of (6E)-8-methylnon-6-enoic acid with the benzylic hydroxy group of vanillyl alcohol. A non-pungent analogue of capsaicin with a similar biological profile. Constituent of fruits of Capsicum annuum. Capsiate is found in many foods, some of which are orange bell pepper, herbs and spices, yellow bell pepper, and italian sweet red pepper. Capsiate is found in fruits. Capsiate is a constituent of fruits of Capsicum annuum Capsiate, as a capsaicin analogue extracted from a non-pungent cultivar of CH-19 sweet red pepper, is an orally active agonist of TRPV1[1]. Capsiate, as a capsaicin analogue extracted from a non-pungent cultivar of CH-19 sweet red pepper, is an orally active agonist of TRPV1[1].

   

N1-Acetylspermine

N-(3-((4-((3-Aminopropyl)amino)butyl)amino)propyl)-acetamide

C12H28N4O (244.2263)


N1-Acetylspermine belongs to the class of organic compounds known as acetamides. These are organic compounds with the general formula RNHC(=O)CH3, where R= organyl group. N1-Acetylspermine exists in all living species, ranging from bacteria to humans. Outside of the human body, N1-Acetylspermine has been detected, but not quantified in several different foods, such as purple lavers, jutes, yams, pineapples, and fireweeds. This could make N1-acetylspermine a potential biomarker for the consumption of these foods. N1-Acetylspermine is a polyamine that has been postulated to be an intermediate in the conversion of spermine to spermidine. N1-Acetylspermine is a polyamine that has been postulated to be an intermediate in the conversion of spermine to spermidine [HMDB]. N1-Acetylspermine is found in many foods, some of which are chinese cinnamon, purple laver, common sage, and mexican oregano. Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID A111; [MS2] KO008807 KEIO_ID A111; [MS3] KO008809 KEIO_ID A111; [MS3] KO008808 KEIO_ID A111

   

Malonyl-CoA

3-[(2-{3-[(2R)-3-[({[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)methyl]-2-hydroxy-3-methylbutanamido]propanamido}ethyl)sulfanyl]-3-oxopropanoic acid

C24H38N7O19P3S (853.1156)


Malonyl-CoA belongs to the class of organic compounds known as acyl-CoAs. These are organic compounds containing a coenzyme A substructure linked to an acyl chain. Thus, malonyl-CoA is considered to be a fatty ester lipid molecule. Malonyl-CoA is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Within humans, malonyl-CoA participates in a number of enzymatic reactions. In particular, malonyl-CoA can be biosynthesized from acetyl-CoA; which is mediated by the enzyme acetyl-CoA carboxylase 1. In addition, malonyl-CoA can be converted into malonic acid and coenzyme A; which is catalyzed by the enzyme fatty acid synthase. Outside of the human body, malonyl-CoA has been detected, but not quantified in, several different foods, such as rapes, mamey sapotes, jews ears, pepper (C. chinense), and Alaska wild rhubarbs. This could make malonyl-CoA a potential biomarker for the consumption of these foods. Malonyl-CoA is a coenzyme A derivative that plays a key role in fatty acid synthesis in the cytoplasmic and microsomal systems. Malonyl-coa, also known as malonyl coenzyme a or coenzyme a, s-(hydrogen propanedioate), is a member of the class of compounds known as acyl coas. Acyl coas are organic compounds containing a coenzyme A substructure linked to an acyl chain. Thus, malonyl-coa is considered to be a fatty ester lipid molecule. Malonyl-coa is slightly soluble (in water) and an extremely strong acidic compound (based on its pKa). Malonyl-coa can be found in a number of food items such as root vegetables, sourdock, ceylon cinnamon, and buffalo currant, which makes malonyl-coa a potential biomarker for the consumption of these food products. Malonyl-coa exists in E.coli (prokaryote) and yeast (eukaryote).

   

Sotalol

N-(4-{1-hydroxy-2-[(propan-2-yl)amino]ethyl}phenyl)methanesulfonamide

C12H20N2O3S (272.1195)


Sotalol is only found in individuals that have used or taken this drug. It is an adrenergic beta-antagonist that is used in the treatment of life-threatening arrhythmias (PubChem). Sotalol has both beta-adrenoreceptor blocking (Vaughan Williams Class I) and cardiac action potential duration prolongation (Vaughan Williams Class I) antiarrhythmic properties. Sotalol is a racemic mixture of d- and l-sotalol. Both isomers have similar Class I antiarrhythmic effects, while the l-isomer is responsible for virtually all of the beta-blocking activity. Sotalol inhibits response to adrenergic stimuli by competitively blocking β1-adrenergic receptors within the myocardium and β2-adrenergic receptors within bronchial and vascular smooth muscle. The electrophysiologic effects of sotalol may be due to its selective inhibition of the rapidly activating component of the potassium channel involved in the repolarization of cardiac cells. The class II electrophysiologic effects are caused by an increase in sinus cycle length (slowed heart rate), decreased AV nodal conduction, and increased AV nodal refractoriness, while the class III electrophysiological effects include prolongation of the atrial and ventricular monophasic action potentials, and effective refractory period prolongation of atrial muscle, ventricular muscle, and atrio-ventricular accessory pathways (where present) in both the anterograde and retrograde directions.

   

Methylmalonyl-CoA

(2S)-3-{[2-(3-{3-[({[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)methyl]-2-hydroxy-3-methylbutanamido}propanamido)ethyl]sulfanyl}-2-methyl-3-oxopropanoic acid

C25H40N7O19P3S (867.1312)


Methylmalonyl-CoA is an intermediate in the metabolism of Propanoate. It is a substrate for Malonyl-CoA decarboxylase (mitochondrial), Methylmalonyl-CoA mutase (mitochondrial) and Methylmalonyl-CoA epimerase (mitochondrial). [HMDB] Methylmalonyl-CoA is an intermediate in the metabolism of Propanoate. It is a substrate for Malonyl-CoA decarboxylase (mitochondrial), Methylmalonyl-CoA mutase (mitochondrial) and Methylmalonyl-CoA epimerase (mitochondrial).

   

Triclosan

5-Chloro-2-(2,4-dichloro-phenoxy)-phenol

C12H7Cl3O2 (287.9512)


Triclosan is an antibacterial and antifungal agent. It is a polychloro phenoxy phenol. It is widely used as a preservative and antimicrobial agent in personal care products such as soaps, skin creams, toothpaste and deodorants as well as in household items such as plastic chopping boards, sports equipment and shoes. According to the Food and Drug Administration (FDA) at the present time there is no evidence that triclosan in personal care products provides an extra benefit to health beyond its anti-gingivitis effect in toothpaste. The FDA does not recommend changing consumer use of triclosan containing products one way or the other due to currently insufficient safety evidence. Studies by the Environmental Protection Agency (EPA) found triclosan to be an effective antibacterial. Triclosan safety is currently under review by the FDA and Health Canada. Triclosan is only found in individuals that have used or taken this drug. D - Dermatologicals > D08 - Antiseptics and disinfectants > D08A - Antiseptics and disinfectants > D08AE - Phenol and derivatives D - Dermatologicals > D09 - Medicated dressings > D09A - Medicated dressings > D09AA - Medicated dressings with antiinfectives D000963 - Antimetabolites > D000960 - Hypolipidemic Agents > D054872 - Fatty Acid Synthesis Inhibitors D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 8632 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 8246 CONFIDENCE standard compound; EAWAG_UCHEM_ID 168 D009676 - Noxae > D000963 - Antimetabolites D000890 - Anti-Infective Agents C254 - Anti-Infective Agent

   

OXADIXYL

OXADIXYL

C14H18N2O4 (278.1267)


CONFIDENCE standard compound; EAWAG_UCHEM_ID 3100 CONFIDENCE standard compound; INTERNAL_ID 525; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7509; ORIGINAL_PRECURSOR_SCAN_NO 7506 CONFIDENCE standard compound; INTERNAL_ID 525; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7589; ORIGINAL_PRECURSOR_SCAN_NO 7585 CONFIDENCE standard compound; INTERNAL_ID 525; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7575; ORIGINAL_PRECURSOR_SCAN_NO 7571 CONFIDENCE standard compound; INTERNAL_ID 525; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7572; ORIGINAL_PRECURSOR_SCAN_NO 7568 CONFIDENCE standard compound; INTERNAL_ID 525; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7583; ORIGINAL_PRECURSOR_SCAN_NO 7581 CONFIDENCE standard compound; INTERNAL_ID 525; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7621; ORIGINAL_PRECURSOR_SCAN_NO 7618

   

Cerulenin

(2R,3S)-3-(Nona-4,7-dienoyl)oxirane-2-carboximidate

C12H17NO3 (223.1208)


Cerulenin is an antifungal antibiotic that inhibits sterol and fatty acid biosynthesis. In fatty acid synthesis, reported to bind in equimolar ratio to b-keto-acyl-ACP synthase. In sterol synthesis, inhibits HMG-CoA synthetase activity. It is also shown to inhibit feeding and induce dramatic weight loss in mice. It is found naturally in the Cephalosporium caerulensfungus. [Wikipedia] D000963 - Antimetabolites > D000960 - Hypolipidemic Agents > D054872 - Fatty Acid Synthesis Inhibitors Acquisition and generation of the data is financially supported in part by CREST/JST. D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D009676 - Noxae > D000963 - Antimetabolites Cerulenin, a potent, natural inhibitor of fatty acid synthase (FASN), is an epoxide produced by the fungus Cephalosporium caeruleus. Cerulenin inhibits topoisomerase I catalytic activity and augments SN-38-induced apoptosis. Cerulenin has antifungal and antitumor activies[1][2][3][4]. Cerulenin, a potent, natural inhibitor of fatty acid synthase (FASN), is an epoxide produced by the fungus Cephalosporium caeruleus. Cerulenin inhibits topoisomerase I catalytic activity and augments SN-38-induced apoptosis. Cerulenin has antifungal and antitumor activies[1][2][3][4].

   

CERCOSPORIN

Cercosporin from Cercospora hayii

C29H26O10 (534.1526)


An organic heterohexacyclic compound that is perylo[1,12-def][1,3]dioxepine-6,11-dione substituted by hydroxy groups at positions 5 and 12, by methoxy groups at positions 7 and 10, and by 2-hydroxypropyl groups at positions 8 and 9 (the R,R-stereoisomer). It is a phytotoxin which was first isolated from the pathogenic soybean fungus, Cercospora kikuchii and later found in multiple members of the genus Cercospora. CONFIDENCE isolated standard

   

Naphthalene-1,2-diol

1,2-Dihydroxynaphthalene monohydrate

C10H8O2 (160.0524)


This compound belongs to the family of Naphthols and Derivatives. These are hydroxylated naphthalenes.

   

Pantetheine

2,4-dihydroxy-3,3-dimethyl-N-{2-[(2-sulfanylethyl)carbamoyl]ethyl}butanamide

C11H22N2O4S (278.13)


Pantetheine is the mercaptoethyl conjugated amide analogue of pantothenic acid (Vitamin B5). The dimer of this compound, pantethine is more commonly known, and is considered to be a more potent form of vitamin B5 than pantothenic acid. Pantetheine is an intermediate in the production of Coenzyme A by the body. An intermediate in the pathway of coenzyme A formation in mammalian liver and some microorganisms. Pantetheine is the mercaptoethyl conjugated amide analogue of pantothenic acid (Vitamin B5). The dimer of this compound, pantethine is more commonly known, and is considered to be a more potent form of vitamin B5 than pantothenic acid. Pantetheine is an intermediate in the production of Coenzyme A by the body. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Acetoacetyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({hydroxy[(3R)-3-hydroxy-2,2-dimethyl-3-{[2-({2-[(3-oxobutanoyl)sulfanyl]ethyl}carbamoyl)ethyl]carbamoyl}propoxy]phosphoryl}oxy)phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C25H40N7O18P3S (851.1363)


Acetoacetyl-CoA is an intermediate in the metabolism of Butanoate. It is a substrate for Succinyl-CoA:3-ketoacid-coenzyme A transferase 1 (mitochondrial), Hydroxymethylglutaryl-CoA synthase (mitochondrial), Short chain 3-hydroxyacyl-CoA dehydrogenase (mitochondrial), Trifunctional enzyme beta subunit (mitochondrial), Hydroxymethylglutaryl-CoA synthase (cytoplasmic), Peroxisomal bifunctional enzyme, Acetyl-CoA acetyltransferase (cytosolic), Acetyl-CoA acetyltransferase (mitochondrial), 3-hydroxyacyl-CoA dehydrogenase type II, Succinyl-CoA:3-ketoacid-coenzyme A transferase 2 (mitochondrial), 3-ketoacyl-CoA thiolase (mitochondrial), 3-ketoacyl-CoA thiolase (peroxisomal) and Trifunctional enzyme alpha subunit (mitochondrial). [HMDB]. Acetoacetyl-CoA is found in many foods, some of which are bog bilberry, lemon balm, pineapple, and pak choy. Acetoacetyl-CoA belongs to the class of organic compounds known as aminopiperidines. Aminopiperidines are compounds containing a piperidine that carries an amino group. Acetoacetyl-CoA is a strong basic compound (based on its pKa). In humans, acetoacetyl-CoA is involved in the metabolic disorder called the short-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (HADH) pathway. Acetoacetyl-CoA is an intermediate in the metabolism of butanoate. It is a substrate for succinyl-CoA:3-ketoacid-coenzyme A transferase, hydroxymethylglutaryl-CoA synthase, short-chain 3-hydroxyacyl-CoA dehydrogenase, peroxisomal bifunctional enzyme, acetyl-CoA acetyltransferase, and 3-ketoacyl-CoA thiolase.

   

Scytalone

3,4-Dihydro-3,6,8-trihydoroxy-1(2H)-napthalenone

C10H10O4 (194.0579)


   

Pantetheine 4'-phosphate

[(3R)-3-hydroxy-2,2-dimethyl-3-({2-[(2-sulfanylethyl)carbamoyl]ethyl}carbamoyl)propoxy]phosphonic acid

C11H23N2O7PS (358.0964)


Pantetheine 4-phosphate, or 4-phosphopantetheine, is a metabolite in the pantothenate and coenzyme A biosynthesis pathway. It can be generated from Pantatheine (via pantothenate kinase 1) or R-4-Phospho-pantothenoyl-L-cysteine (via phosphopantothenoylcysteine decarboxylase) or Dephospho-CoA (via 4-phosphopantetheine adenylyl-transferase and ectonucleotide pyrophosphatase). In most mammals, coenzyme A can be hydrolyzed to pantetheine and pantothenate in the intestinal lumen via the following series of reactions: coenzyme A leads to phosphopantetheine leads to pantetheine leads to pantothenate. The conversion of 4-phosphopantetheine (4-PP) to dephospho-CoA, is catalyzed by 4-phosphopantetheine adenylyl-transferase. In mammalian systems, this step may occur in the mitochondria or in the cytosol. (PMID: 1746161) It has been identified as an essential cofactor in in the biosynthesis of fatty acids, polyketides, depsipeptides, peptides, and compounds derived from both carboxylic and amino acid precursors. In particular it is a key prosthetic group of acyl carrier protein (ACP) and peptidyl carrier proteins (PCP) and aryl carrier proteins (ArCP) derived from Coenzyme A. Phosphopantetheine fulfils two demands. Firstly, the intermediates remain covalently linked to the synthases (or synthetases) in an energy-rich thiol ester linkage. Secondly, the flexibility and length of phosphopantetheine chain (approximately 2 nm) allows the covalently tethered intermediates to have access to spatially distinct enzyme active sites. 4-phosphopantetheine is a metabolite in the pantothenate and coenzyme A biosynthesis pathway. It can be generated from Pantatheine (via pantothenate kinase 1) or R-4-Phospho-pantothenoyl-L-cysteine (via phosphopantothenoylcysteine decarboxylase) or Dephospho-CoA (via 4-phosphopantetheine adenylyl-transferase and ectonucleotide pyrophosphatase). In most mammals, coenzyme A can be hydrolyzed to pantetheine and pantothenate in the intestinal lumen via the following series of reactions: coenzyme A leads to phosphopantetheine leads to pantetheine leads to pantothenate. The conversion of 4-phosphopantetheine (4-PP) to dephospho-CoA, is catalyzed by 4-phosphopantetheine adenylyl-transferase. In mammalian systems, this step may occur in the mitochondria or in the cytosol. (PMID: 1746161) It has been identified as an essential cofactor in in the biosynthesis of fatty acids, polyketides, depsipeptides, peptides, and compounds derived from both carboxylic and amino acid precursors. In particular it is a key prosthetic group of acyl carrier protein (ACP) and peptidyl carrier proteins (PCP) and aryl carrier proteins (ArCP) derived from Coenzyme A. Phosphopantetheine fulfils two demands. Firstly, the intermediates remain covalently linked to the synthases (or synthetases) in an energy-rich thiol ester linkage. Secondly, the flexibility and length of phosphopantetheine chain (approximately 2 nm) allows the covalently tethered intermediates to have access to spatially distinct enzyme active sites. [HMDB]

   

6-Methylsalicylic acid

2-HYDROXY-6-METHYLBENZOIC ACID

C8H8O3 (152.0473)


A monohydroxybenzoic acid that is salicylic acid in which the hydrogen ortho to the carboxylic acid group is substituted by a methyl group. D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates

   

6-deoxyerythronolide B

6-deoxyerythronolide B

C21H38O6 (386.2668)


   

1,3,6,8-Naphthalenetetrol

1,3,6,8-Tetrahydroxynaphthalene

C10H8O4 (192.0423)


   

Actinorhodin

Actinorhodin

C32H26O14 (634.1322)


A member of the class of benzoisochromanequinone that is produced by Streptomyces coelicolor A3(2) and exhibits antibiotic activity. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents

   

Tetracenomycin

Tetracenomycin C

C23H20O11 (472.1006)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents

   

Swainsonine

1,2,8-INDOLIZINETRIOL, OCTAHYDRO-, (1S-(1.ALPHA.,2.ALPHA.,8.BETA.,8A.BETA.))-

C8H15NO3 (173.1052)


Swainsonine is an indolizidine alkaloid isolated from the plant Swainsona canescens with three hydroxy substituents at positions 1, 2 and 8. It has a role as an antineoplastic agent, an immunological adjuvant, an EC 3.2.1.114 (mannosyl-oligosaccharide 1,3-1,6-alpha-mannosidase) inhibitor and a plant metabolite. An indolizidine alkaloid from the plant Swainsona canescens that is a potent alpha-mannosidase inhibitor. Swainsonine also exhibits antimetastatic, antiproliferative, and immunomodulatory activity. Swainsonine is a natural product found in Slafractonia leguminicola, Astragalus whitneyi, and other organisms with data available. Swainsonine is a plant toxin found in locoweed (families Fabaceae, Oxytropis, Astragalus and Swainsona) and some fungi (Metarhizium anisopliae, Rizoctonia leguminicola). It has been known to cause a potentially lethal central nervous system condition in livestock known as locoism and is a significant cause of economic losses in livestock industries. Along with slaframine, the other biologially active compound of R. leguminicola, it may contribute to a condition called "slobbers syndrome" in livestock that has ingested contaminated feed. (L1248, A3092) An indolizidine alkaloid from the plant Swainsona canescens that is a potent alpha-mannosidase inhibitor. Swainsonine also exhibits antimetastatic, antiproliferative, and immunomodulatory activity. An indolizidine alkaloid isolated from the plant Swainsona canescens with three hydroxy substituents at positions 1, 2 and 8. C308 - Immunotherapeutic Agent > C129820 - Antineoplastic Immunomodulating Agent > C2117 - Carbohydrate Processing Inhibitor C26170 - Protective Agent > C2459 - Chemoprotective Agent > C2080 - Cytoprotective Agent C471 - Enzyme Inhibitor > C2119 - Golgi Alpha-Mannosidase II Inhibitor C274 - Antineoplastic Agent > C2196 - Antimetastatic Agent D000970 - Antineoplastic Agents D007155 - Immunologic Factors D004791 - Enzyme Inhibitors

   

Bikaverin

Bikaverin

C20H14O8 (382.0689)


A organic heterotetracyclic compound that is 10H-benzo[b]xanthene-7,10,12-trione substituted by hydroxy groups at positions 6 and 11, methoxy groups at positions 3 and 8 and a methyl group at position 1.

   

Thiolactomycin

(5R)-4-hydroxy-3,5-dimethyl-5-[(1E)-2-methylbuta-1,3-dienyl]thiophen-2-one

C11H14O2S (210.0714)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents

   

nonactin

Upjohn 170t (high melting)

C40H64O12 (736.4398)


   

Soraphen A

(1S,2S,3E,5R,6S,11S,14S,16R,17S,18S)-15,17-dihydroxy-5,6,16-trimethoxy-2,14,18-trimethyl-11-phenyl-12,19-dioxabicyclo[13.3.1]nonadec-3-en-13-one

C29H44O8 (520.3036)


A macrolide and an agent highly effective against plant-pathogenic fungi. It was extensively researched for agricultural use until it was discovered to be a teratogen.

   

Tylactone

Tylactone; Protylonolide

C23H38O5 (394.2719)


A 16-membererd macrolide that is the aglycone of the antibiotic 5-O-beta-D-mycaminosyltylactone.

   

2-Amino-9,10-epoxy-8-oxodecanoic acid

2-amino-8-oxo-9,10-epoxy-decanoic acid

C10H17NO4 (215.1158)


   

Tetrangomycin

Tetrangomycin

C19H14O5 (322.0841)


An angucycline antibiotic that is 3,4-dihydrotetraphene-1,7,12(2H)-trione substituted by hydroxy groups at positions 3 and 8 and a methyl group at position 3 (the 3R stereoisomer) ring system. It is an antibiotic isolated from Streptomyces sp.

   

Leinamycin

Leinamycin

C22H26N2O6S3 (510.0953)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams

   

Cephabacin

Cephabacin F3; Cephabacin

C32H51N11O13S (829.3388)


   

FA 32:0;O

mycolic acid (C32);synthetic mycolic acid

C32H64O3 (496.4855)


A thirty-two membered mycolic acid consisting of 3-hydroxystearic acid having a tetradecyl group at the 2-position.

   

1,3,6,8-Tetrahydroxynaphthalene

1,3,6,8-Tetrahydroxynaphthalene

C10H8O4 (192.0423)


   

4-Phosphopantetheine

4-Phosphopantetheine

C11H23N2O7PS (358.0964)


   

sotalol

sotalol

C12H20N2O3S (272.1195)


C - Cardiovascular system > C07 - Beta blocking agents > C07A - Beta blocking agents > C07AA - Beta blocking agents, non-selective C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013565 - Sympatholytics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents C93038 - Cation Channel Blocker CONFIDENCE Reference Standard (Level 1)

   

Cerulenin

cis-2-epoxy-4-oxo-7E,10E-dodecadienamide

C12H17NO3 (223.1208)


An epoxydodecadienamide isolated from several species, including Acremonium, Acrocylindrum and Helicoceras. It inhibits the biosynthesis of several lipids by interfering with enzyme function. D000963 - Antimetabolites > D000960 - Hypolipidemic Agents > D054872 - Fatty Acid Synthesis Inhibitors D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D009676 - Noxae > D000963 - Antimetabolites Cerulenin, a potent, natural inhibitor of fatty acid synthase (FASN), is an epoxide produced by the fungus Cephalosporium caeruleus. Cerulenin inhibits topoisomerase I catalytic activity and augments SN-38-induced apoptosis. Cerulenin has antifungal and antitumor activies[1][2][3][4]. Cerulenin, a potent, natural inhibitor of fatty acid synthase (FASN), is an epoxide produced by the fungus Cephalosporium caeruleus. Cerulenin inhibits topoisomerase I catalytic activity and augments SN-38-induced apoptosis. Cerulenin has antifungal and antitumor activies[1][2][3][4].

   

capsiate

(4-hydroxy-3-methoxyphenyl)methyl (6E)-8-methylnon-6-enoate

C18H26O4 (306.1831)


Capsiate, as a capsaicin analogue extracted from a non-pungent cultivar of CH-19 sweet red pepper, is an orally active agonist of TRPV1[1]. Capsiate, as a capsaicin analogue extracted from a non-pungent cultivar of CH-19 sweet red pepper, is an orally active agonist of TRPV1[1].

   

2-Amino-9,10-epoxy-8-oxodecanoic acid

2-amino-8-oxo-9,10-epoxy-decanoic acid

C10H17NO4 (215.1158)


   

Malonyl CoA

Coenzyme A, S-(hydrogen propanedioate);S-(Hydrogen malonyl)coenzyme A

C24H38N7O19P3S (853.1156)


   

Coenzyme A, S-(hydrogen methylpropanedioate)

Coenzyme A, S-(hydrogen methylpropanedioate)

C25H40N7O19P3S (867.1312)


   

triclosan

triclosan

C12H7Cl3O2 (287.9512)


D - Dermatologicals > D08 - Antiseptics and disinfectants > D08A - Antiseptics and disinfectants > D08AE - Phenol and derivatives D - Dermatologicals > D09 - Medicated dressings > D09A - Medicated dressings > D09AA - Medicated dressings with antiinfectives D000963 - Antimetabolites > D000960 - Hypolipidemic Agents > D054872 - Fatty Acid Synthesis Inhibitors D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites D000890 - Anti-Infective Agents C254 - Anti-Infective Agent

   
   

Nootkatone

2(3H)-Naphthalenone, 4,4a,5,6,7,8-hexahydro-4,4a-dimethyl-6-(1-methylethenyl)-, [4R-(4.alpha.,4a.alpha.,6.beta.)]-

C15H22O (218.1671)


(+)-nootkatone is a sesquiterpenoid that is 4,4a,5,6,7,8-hexahydronaphthalen-2(3H)-one which is substituted by methyl groups at positions 4 and 4a, and by an isopropenyl group at position 6 (the 4R,4aS,6R stereoisomer). It has a role as a plant metabolite, a fragrance and an insect repellent. It is a sesquiterpenoid, an enone and a carbobicyclic compound. Nootkatone is a natural product found in Teucrium asiaticum, Teucrium oxylepis, and other organisms with data available. A sesquiterpenoid that is 4,4a,5,6,7,8-hexahydronaphthalen-2(3H)-one which is substituted by methyl groups at positions 4 and 4a, and by an isopropenyl group at position 6 (the 4R,4aS,6R stereoisomer). Nootkatone, a neuroprotective agent from Vitis vinifera, has antioxidant and anti-inflammatory effects[1]. Nootkatone improves cognitive impairment in lipopolysaccharide-induced mouse model of Alzheimer's disease[2]. Nootkatone, a neuroprotective agent from Vitis vinifera, has antioxidant and anti-inflammatory effects[1]. Nootkatone improves cognitive impairment in lipopolysaccharide-induced mouse model of Alzheimer's disease[2].

   

benzocatechol

Naphthalene-1,2-diol

C10H8O2 (160.0524)


   

Pantetheine

(R)-Pantetheine

C11H22N2O4S (278.13)


An amide obtained by formal condensation of the carboxy group of pantothenic acid and the amino group of cysteamine. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Malonyl-CoA

Malonyl-CoA

C24H38N7O19P3S (853.1156)


The S-malonyl derivative of coenzyme A.

   

Tetracenomycin C

Tetracenomycin C

C23H20O11 (472.1006)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents

   

Cercosporin from Cercospora hayii

Cercosporin from Cercospora hayii

C29H26O10 (534.1526)