Triclosan (BioDeep_00000002212)

   

human metabolite blood metabolite Chemicals and Drugs Industrial Pollutants


代谢物信息卡片


5-Chloro-2-(2,4-dichloro-phenoxy)-phenol

化学式: C12H7Cl3O2 (287.9512)
中文名称: 5-氯-2-(2,4-二氯苯氧基)苯酚, 三氯生
谱图信息: 最多检出来源 Homo sapiens(blood) 20.14%

分子结构信息

SMILES: c1(Oc2c(cc(Cl)cc2)Cl)c(cc(Cl)cc1)O
InChI: InChI=1S/C12H7Cl3O2/c13-7-1-3-11(9(15)5-7)17-12-4-2-8(14)6-10(12)16/h1-6,16H

描述信息

Triclosan is an antibacterial and antifungal agent. It is a polychloro phenoxy phenol. It is widely used as a preservative and antimicrobial agent in personal care products such as soaps, skin creams, toothpaste and deodorants as well as in household items such as plastic chopping boards, sports equipment and shoes. According to the Food and Drug Administration (FDA) at the present time there is no evidence that triclosan in personal care products provides an extra benefit to health beyond its anti-gingivitis effect in toothpaste. The FDA does not recommend changing consumer use of triclosan containing products one way or the other due to currently insufficient safety evidence. Studies by the Environmental Protection Agency (EPA) found triclosan to be an effective antibacterial. Triclosan safety is currently under review by the FDA and Health Canada. Triclosan is only found in individuals that have used or taken this drug.
D - Dermatologicals > D08 - Antiseptics and disinfectants > D08A - Antiseptics and disinfectants > D08AE - Phenol and derivatives
D - Dermatologicals > D09 - Medicated dressings > D09A - Medicated dressings > D09AA - Medicated dressings with antiinfectives
D000963 - Antimetabolites > D000960 - Hypolipidemic Agents > D054872 - Fatty Acid Synthesis Inhibitors
D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents
CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 8632
CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 8246
CONFIDENCE standard compound; EAWAG_UCHEM_ID 168
D009676 - Noxae > D000963 - Antimetabolites
D000890 - Anti-Infective Agents
C254 - Anti-Infective Agent

同义名列表

36 个代谢物同义名

5-Chloro-2-(2,4-dichloro-phenoxy)-phenol; 2-Hydroxy-2,4,4-trichlorodiphenyl ether; 2,4,4-Trichloro-2-hydroxydiphenyl ether; Johnson and johnson brand OF triclosan; 5-chloro-2-(2,4-dichlorophenoxy)phenol; Procter and gamble brand OF triclosan; GlaxoSmithKline brand OF triclosan; trans Canaderm brand OF triclosan; Pharmachem brand OF triclosan; Dermtek brand OF triclosan; Triclosan pharmachem brand; Reckitt brand OF triclosan; Ster-zac bath concentrate; Ster zac bath concentrate; Clearasil daily face wash; SterZac bath concentrate; Triclosan reckitt brand; Stri-dex cleansing bar; SSL Brand OF triclosan; Irgasan DP 300; DP300, Irgasan; Microshield T; Irgasan-DP300; Oxy skin wash; Irgasan DP300; Tersaseptic; Triclosanum; Cliniclean; triclosan; Sapoderm; Manusept; Aquasept; Phisohex; Trisan; TCS; Triclosan



数据库引用编号

24 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

1 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 12 AHR, AKT1, AR, CASP3, CAT, CYP1A1, FASN, GPX1, MAPK14, PIK3CA, PPARG, TLR4
Peripheral membrane protein 2 CYP1A1, CYP1B1
Endosome membrane 1 TLR4
Endoplasmic reticulum membrane 2 CYP1A1, CYP1B1
Nucleus 8 AHR, AKT1, AR, CASP3, MAPK14, NR1I2, PPARA, PPARG
cytosol 10 AHR, AKT1, AR, CASP3, CAT, FASN, GPX1, MAPK14, PIK3CA, PPARG
nuclear body 1 NR1I2
nucleoplasm 8 AHR, AKT1, AR, CASP3, MAPK14, NR1I2, PPARA, PPARG
RNA polymerase II transcription regulator complex 1 PPARG
Cell membrane 3 AKT1, TLR4, TNF
lamellipodium 2 AKT1, PIK3CA
cell cortex 1 AKT1
cell surface 2 TLR4, TNF
glutamatergic synapse 3 AKT1, CASP3, MAPK14
Golgi apparatus 1 FASN
Golgi membrane 1 INS
mitochondrial inner membrane 1 CYP1A1
neuronal cell body 3 CASP3, INHA, TNF
postsynapse 1 AKT1
plasma membrane 8 AKT1, AR, BCHE, FASN, IGHE, PIK3CA, TLR4, TNF
Membrane 6 AKT1, AR, CAT, CYP1B1, FASN, TLR4
extracellular exosome 2 CAT, FASN
extracellular space 5 BCHE, IGHE, INHA, INS, TNF
perinuclear region of cytoplasm 3 PIK3CA, PPARG, TLR4
intercalated disc 1 PIK3CA
mitochondrion 5 CAT, CYP1A1, CYP1B1, GPX1, MAPK14
protein-containing complex 4 AHR, AKT1, AR, CAT
intracellular membrane-bounded organelle 4 CAT, CYP1A1, CYP1B1, PPARG
Microsome membrane 2 CYP1A1, CYP1B1
postsynaptic density 1 CASP3
Single-pass type I membrane protein 2 IGHE, TLR4
Secreted 3 BCHE, INHA, INS
extracellular region 7 BCHE, CAT, IGHE, INHA, INS, MAPK14, TNF
mitochondrial matrix 2 CAT, GPX1
transcription regulator complex 2 AHR, NR1I2
photoreceptor inner segment 1 INHA
photoreceptor outer segment 1 INHA
external side of plasma membrane 2 TLR4, TNF
microtubule cytoskeleton 1 AKT1
Early endosome 1 TLR4
cell-cell junction 1 AKT1
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
vesicle 1 AKT1
Mitochondrion inner membrane 1 CYP1A1
Membrane raft 1 TNF
focal adhesion 1 CAT
spindle 1 AKT1
Peroxisome 1 CAT
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 1 CAT
Mitochondrion intermembrane space 1 AKT1
mitochondrial intermembrane space 1 AKT1
nuclear speck 2 AR, MAPK14
Cell projection, ruffle 1 TLR4
ruffle 1 TLR4
receptor complex 2 PPARG, TLR4
ciliary basal body 1 AKT1
chromatin 5 AHR, AR, NR1I2, PPARA, PPARG
IgE immunoglobulin complex 1 IGHE
phagocytic cup 2 TLR4, TNF
inhibin A complex 1 INHA
spindle pole 1 MAPK14
blood microparticle 1 BCHE
[Isoform 2]: Cell membrane 1 IGHE
endosome lumen 1 INS
aryl hydrocarbon receptor complex 1 AHR
Melanosome 1 FASN
intermediate filament cytoskeleton 1 NR1I2
lipopolysaccharide receptor complex 1 TLR4
ficolin-1-rich granule lumen 2 CAT, MAPK14
secretory granule lumen 3 CAT, INS, MAPK14
Golgi lumen 1 INS
endoplasmic reticulum lumen 2 BCHE, INS
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
transport vesicle 1 INS
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
nuclear envelope lumen 1 BCHE
death-inducing signaling complex 1 CASP3
[Isoform 3]: Cell membrane 1 IGHE
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
[Isoform 1]: Secreted 1 IGHE
IgE B cell receptor complex 1 IGHE
immunoglobulin complex, circulating 1 IGHE
catalase complex 1 CAT
inhibin B complex 1 INHA
inhibin-betaglycan-ActRII complex 1 INHA
nuclear aryl hydrocarbon receptor complex 1 AHR
cytosolic aryl hydrocarbon receptor complex 1 AHR
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA
glycogen granule 1 FASN
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Xingcheng Liu, Qian Pu, Ying Cheng, Ji Wu, Jin Yan, Zejun Wang, Xuedong Wang, Huili Wang, Qiuhui Qian. Comparative impact of pristine and aged microplastics with triclosan on lipid metabolism in larval zebrafish: Unveiling the regulatory role of miR-217. The Science of the total environment. 2024 Jun; 929(?):172580. doi: 10.1016/j.scitotenv.2024.172580. [PMID: 38657822]
  • Qiu E Yang, Xiaodan Ma, Minchun Li, Mengshi Zhao, Lingshuang Zeng, Minzhen He, Hui Deng, Hanpeng Liao, Christopher Rensing, Ville-Petri Friman, Shungui Zhou, Timothy R Walsh. Evolution of triclosan resistance modulates bacterial permissiveness to multidrug resistance plasmids and phages. Nature communications. 2024 Apr; 15(1):3654. doi: 10.1038/s41467-024-48006-9. [PMID: 38688912]
  • Imen Bouzidi, Anis Fkiri, Wiem Saidani, Abdelhafidh Khazri, Amine Mezni, Karine Mougin, Hamouda Beyrem, Badreddine Sellami. The pharmaceutical triclosan induced oxidative stress and physiological disorder in marine organism and nanoparticles as a potential mitigating tool. Marine environmental research. 2024 Apr; 196(?):106424. doi: 10.1016/j.marenvres.2024.106424. [PMID: 38428315]
  • Jinyun Li, Lu Fang, Miaocui Xi, Anyu Ni, Qiuhui Qian, Zejun Wang, Huili Wang, Jin Yan. Toxic effects of triclosan on hepatic and intestinal lipid accumulation in zebrafish via regulation of m6A-RNA methylation. Aquatic toxicology (Amsterdam, Netherlands). 2024 Apr; 269(?):106884. doi: 10.1016/j.aquatox.2024.106884. [PMID: 38458066]
  • Wencan Wang, Chong Zhou, Zhangqiang Ma, Lianjie Zeng, Houpeng Wang, Xiu Cheng, Chenchen Zhang, Yue Xue, Yangyang Yuan, Jia Li, Liaoliao Hu, Jian Huang, Tao Luo, Liping Zheng. Co-exposure to polystyrene nanoplastics and triclosan induces synergistic cytotoxicity in human KGN granulosa cells by promoting reactive oxygen species accumulation. Ecotoxicology and environmental safety. 2024 Mar; 273(?):116121. doi: 10.1016/j.ecoenv.2024.116121. [PMID: 38402792]
  • J M Castaño-Ortiz, F Romero, L Cojoc, D Barceló, J L Balcázar, S Rodríguez-Mozaz, L H M L M Santos. Accumulation of polyethylene microplastics in river biofilms and effect on the uptake, biotransformation and toxicity of the antimicrobial triclosan. Environmental pollution (Barking, Essex : 1987). 2024 Mar; 344(?):123369. doi: 10.1016/j.envpol.2024.123369. [PMID: 38253165]
  • Jin Yan, Jinyun Li, Yang Wang, Jie Song, Anyu Ni, Lu Fang, Miaocui Xi, Qiuhui Qian, Zejun Wang, Huili Wang. Deciphering the molecular mediators of triclosan-induced lipid accumulation: Intervention via short-chain fatty acids and miR-101a. Environmental pollution (Barking, Essex : 1987). 2024 Feb; 343(?):123153. doi: 10.1016/j.envpol.2023.123153. [PMID: 38103713]
  • Alena Grasserová, Natividad I N Pacheco, Jaroslav Semerád, Alena Filipová, Petra Innemanová, Aleš Hanč, Petra Procházková, Tomáš Cajthaml. New insights into vermiremediation of sewage sludge: The effect of earthworms on micropollutants and vice versa. Waste management (New York, N.Y.). 2024 Feb; 174(?):496-508. doi: 10.1016/j.wasman.2023.12.016. [PMID: 38128368]
  • Paula Burkhardt, Susana Alejandra Palma-Duran, Astrud R R Tuck, Kalle Norgren, Xinyi Li, Violetta Nikiforova, Julian L Griffin, Vesna Munic Kos. Environmental chemicals change extracellular lipidome of mature human white adipocytes. Chemosphere. 2024 Feb; 349(?):140852. doi: 10.1016/j.chemosphere.2023.140852. [PMID: 38048832]
  • Jingshen Zhuang, Qianling Chen, Luyao Xu, Xuebing Chen. Effects of chronic triclosan exposure on nephrotoxicity and gut microbiota dysbiosis in adult mice. Ecotoxicology and environmental safety. 2024 Feb; 271(?):115866. doi: 10.1016/j.ecoenv.2023.115866. [PMID: 38199221]
  • Jia-Da Zhang, Sen He, Ting-Ting He, Chuan-Hai Li, Bing-Hua Yan, Yuan Yang, Jian Yang, Lin Luo, Yu-Long Yin, Lin-Ying Cao. Triclocarban exhibits higher adipogenic activity than triclosan through peroxisome proliferator-activated receptors pathways. Environmental pollution (Barking, Essex : 1987). 2024 Feb; 342(?):123030. doi: 10.1016/j.envpol.2023.123030. [PMID: 38030110]
  • Imen Bouzidi, Karine Mougin, Hamouda Beyrem, Badreddine Sellami. Biochemical and physiological alterations caused by Diuron and Triclosan in mussels (Mytilus galloprovincialis). Pesticide biochemistry and physiology. 2024 Jan; 198(?):105714. doi: 10.1016/j.pestbp.2023.105714. [PMID: 38225063]
  • Waleed A Alsiary, Mahmoud M Y Madany, Hamada AbdElgawad. The pleiotropic role of Salinicoccus bacteria in enhancing ROS homeostasis and detoxification metabolism in soybean and oat to cope with pollution of triclosan. Plant physiology and biochemistry : PPB. 2023 Dec; 207(?):108327. doi: 10.1016/j.plaphy.2023.108327. [PMID: 38271860]
  • Sheng-Long Chen, Tian-Yang Wang, Cong-Cong Tang, Rong Wang, Zhang-Wei He, Zhi-Hua Li, Yu Tian, Xiaochang C Wang. Revealing mechanisms of triclosan on the removal and distribution of nitrogen and phosphorus in microalgal-bacterial symbiosis system. Environmental pollution (Barking, Essex : 1987). 2023 Nov; 337(?):122539. doi: 10.1016/j.envpol.2023.122539. [PMID: 37699452]
  • Feng Li, Jiangli Deng, Zhilin Zhang, Cheng Wang, Yahui Mao. FabV, the Unique Enoyl-Acyl Carrier Protein Reductase in Xanthomonas arboricola pv. juglandis Associated with Walnut Bacterial Blight, Is essential for the Growth, and Confers Triclosan-Resistance to the Strain. Phytopathology. 2023 Nov; ?(?):. doi: 10.1094/phyto-08-23-0272-r. [PMID: 37913555]
  • Amanda Teixeira de Rezende, Ann H Mounteer. Ecological risk assessment of pharmaceuticals and endocrine disrupting compounds in Brazilian surface waters. Environmental pollution (Barking, Essex : 1987). 2023 Sep; 338(?):122628. doi: 10.1016/j.envpol.2023.122628. [PMID: 37783413]
  • Shiwen Deng, Caifeng Li, Junqi Chen, Zhao Cui, Tong Lei, Hongjun Yang, Peng Chen. Effects of triclosan exposure on stem cells from human exfoliated deciduous teeth (SHED) fate. The Science of the total environment. 2023 Sep; 905(?):167053. doi: 10.1016/j.scitotenv.2023.167053. [PMID: 37709070]
  • Malihe Moazeni, Karim Ebrahimpour, Farzaneh Mohammadi, Zahra Heidari, Afshin Ebrahimi. Human health risk assessment of Triclosan in water: spatial analysis of a drinking water system. Environmental monitoring and assessment. 2023 Sep; 195(10):1171. doi: 10.1007/s10661-023-11789-3. [PMID: 37682384]
  • Xue Wang, Liming Fu, Shaoning Guo, Xuedong Fang. A meta-analysis examined the effect of topical nursing application of antimicrobial as a prophylaxis for the stoppage of surgical wound infection in colorectal surgery. International wound journal. 2023 Aug; 20(6):2010-2019. doi: 10.1111/iwj.14064. [PMID: 36727574]
  • Débora Jesabel Pérez, Lucas Rodrigo Lombardero, William Joseph Doucette. Influence of exposure time, physicochemical properties, and plant transpiration on the uptake dynamics and translocation of pharmaceutical and personal care products in the aquatic macrophyte Typha latifolia. The Science of the total environment. 2023 Jun; ?(?):165107. doi: 10.1016/j.scitotenv.2023.165107. [PMID: 37364828]
  • Ying Ou, Yaqi Li, Shoushuai Feng, Qiong Wang, Hailin Yang. Transcriptome Analysis Reveals an Eicosapentaenoic Acid Accumulation Mechanism in a Schizochytrium sp. Mutant. Microbiology spectrum. 2023 Apr; ?(?):e0013023. doi: 10.1128/spectrum.00130-23. [PMID: 37093006]
  • Jiao-Jiao Zhang, Yu-Mei Feng, Jun-Rong Zhang, Wan-Lin Xiao, Shuai-Shuai Liu, Xiang Zhou, Heng Zhang, Pei-Yi Wang, Li-Wei Liu, Song Yang. Resistance-driven innovations in the discovery of bactericides: novel triclosan derivatives decorating isopropanolamine moiety as promising anti-biofilm agents against destructive plant bacterial diseases. Pest management science. 2023 Feb; ?(?):. doi: 10.1002/ps.7419. [PMID: 36810950]
  • Carlos M Ardila, Jader Alexander Bedoya-García. Bacterial resistance to antiseptics used in dentistry: A systematic scoping review of randomized clinical trials. International journal of dental hygiene. 2023 Feb; 21(1):141-148. doi: 10.1111/idh.12629. [PMID: 36269218]
  • Wei Huang, Guodong Cao, Chengliang Deng, Yanyan Chen, Tao Wang, Da Chen, Zongwei Cai. Adverse effects of triclosan on kidney in mice: Implication of lipid metabolism disorders. Journal of environmental sciences (China). 2023 Feb; 124(?):481-490. doi: 10.1016/j.jes.2021.11.032. [PMID: 36182156]
  • Xin Li, Jia-Da Zhang, Han Xiao, Sen He, Ting-Ting He, Xiao-Min Ren, Bing-Hua Yan, Lin Luo, Yu-Long Yin, Lin-Ying Cao. Triclocarban and triclosan exacerbate high-fat diet-induced hepatic lipid accumulation at environmental related levels: The potential roles of estrogen-related receptors pathways. The Science of the total environment. 2023 Feb; 858(Pt 3):160079. doi: 10.1016/j.scitotenv.2022.160079. [PMID: 36372182]
  • Surindra Suthar, Naveen Chand, Vineet Singh. Fate and toxicity of triclosan in tidal flow constructed wetlands amended with cow dung biochar. Chemosphere. 2023 Jan; 311(Pt 1):136875. doi: 10.1016/j.chemosphere.2022.136875. [PMID: 36270527]
  • Xiuxiu Yan, Jing An, Lijie Zhang, Lingyan Zhang, Xu Zhou, Shuhe Wei. Ecotoxicological effects and bioaccumulation in Eichhornia crassipes induced by long-term exposure to triclosan. Plant physiology and biochemistry : PPB. 2022 Dec; 193(?):90-98. doi: 10.1016/j.plaphy.2022.10.013. [PMID: 36343464]
  • Abrar Shahriar, David Hanigan, Paul Verburg, Krishna Pagilla, Yu Yang. Modeling the fate of ionizable pharmaceutical and personal care products (iPPCPs) in soil-plant systems: pH and speciation. Environmental pollution (Barking, Essex : 1987). 2022 Dec; 315(?):120367. doi: 10.1016/j.envpol.2022.120367. [PMID: 36240970]
  • Rashmishree K N, Bhaskar S, Shrihari S, Arun Kumar Thalla. Extraction of iron from laterite soil and green synthesis of laterite nano iron catalyst (GLaNICs) for its application as Fenton's catalyst in the degradation of triclosan. Water science and technology : a journal of the International Association on Water Pollution Research. 2022 Dec; 86(12):3195-3204. doi: 10.2166/wst.2022.395. [PMID: 36579878]
  • Mahaboubeh Hosseinzadeh, Alejandra Gilabert, Cinta Porte. Precision cut tissue slices to investigate the effects of triclosan exposure in Mytilus galloprovincialis. Toxicology in vitro : an international journal published in association with BIBRA. 2022 Dec; 85(?):105477. doi: 10.1016/j.tiv.2022.105477. [PMID: 36122805]
  • Caio Rodrigues Nobre, Beatriz Barbosa Moreno, Aline Vecchio Alves, Jonas de Lima Rosa, Mayana Karoline Fontes, Bruno Galvão de Campos, Leticia Fernanda da Silva, Luís Felipe de Almeida Duarte, Denis Moledo de Souza Abessa, Rodrigo Brasil Choueri, Paloma Kachel Gusso-Choueri, Camilo Dias Seabra Pereira. Combined effects of polyethylene spiked with the antimicrobial triclosan on the swamp ghost crab (Ucides cordatus; Linnaeus, 1763). Chemosphere. 2022 Oct; 304(?):135169. doi: 10.1016/j.chemosphere.2022.135169. [PMID: 35671813]
  • Markéta Spáčilová, Simona Krejcikova, Ywetta Maleterova, Frantisek Kastanek, Olga Solcova. Scale-up of photoreactor with TiO2 thin layer for wastewater treatment. Water science and technology : a journal of the International Association on Water Pollution Research. 2022 Oct; 86(8):1981-1990. doi: 10.2166/wst.2022.313. [PMID: 36315090]
  • Pan-Pan Chen, Pan Yang, Chong Liu, Yan-Ling Deng, Qiong Luo, Yu Miao, Min Zhang, Fei-Peng Cui, Jia-Yue Zeng, Tian Shi, Ting-Ting Lu, Da Chen, Long-Qiang Wang, Chun-Ping Liu, Ming Jiang, Qiang Zeng. Urinary concentrations of phenols, oxidative stress biomarkers and thyroid cancer: Exploring associations and mediation effects. Journal of environmental sciences (China). 2022 Oct; 120(?):30-40. doi: 10.1016/j.jes.2022.01.009. [PMID: 35623770]
  • Yuchen Song, Cui Zhang, Hehua Lei, Mengyu Qin, Gui Chen, Fang Wu, Chuan Chen, Zheng Cao, Ce Zhang, Mengjing Wu, Xiaoyu Chen, Limin Zhang. Characterization of triclosan-induced hepatotoxicity and triclocarban-triggered enterotoxicity in mice by multiple omics screening. The Science of the total environment. 2022 Sep; 838(Pt 4):156570. doi: 10.1016/j.scitotenv.2022.156570. [PMID: 35690209]
  • Yu-Wei Jia, Ping Wang, Sheng Yang, Zheng Huang, Yue-Hong Liu, Jian-Liang Zhao. Influence of microplastics on triclosan bioaccumulation and metabolomics variation in Tilapia fish tissues. Environmental science and pollution research international. 2022 Sep; 29(42):62984-62993. doi: 10.1007/s11356-022-20278-y. [PMID: 35445920]
  • Inés Aguilar-Romero, Pieter van Dillewijn, Joseph Nesme, Søren J Sørensen, Rogelio Nogales, Laura Delgado-Moreno, Esperanza Romero. A novel and affordable bioaugmentation strategy with microbial extracts to accelerate the biodegradation of emerging contaminants in different media. The Science of the total environment. 2022 Aug; 834(?):155234. doi: 10.1016/j.scitotenv.2022.155234. [PMID: 35427621]
  • Donglei Sun, Chao Zuo, Wei Huang, Jingjing Wang, Zunzhen Zhang. Triclosan targeting of gut microbiome ameliorates hepatic steatosis in high fat diet-fed mice. The Journal of antibiotics. 2022 06; 75(6):341-353. doi: 10.1038/s41429-022-00522-w. [PMID: 35440769]
  • Guanxiang Yuan, Yue Ma, Yuxing Zeng, Haibin Pan, Peiyi Liu, Yu Liu, Guihua Liu, Jinquan Cheng, Yinsheng Guo. Associations between low-dose triclosan exposure and semen quality in a Chinese population. Environmental pollution (Barking, Essex : 1987). 2022 Apr; 299(?):118926. doi: 10.1016/j.envpol.2022.118926. [PMID: 35101560]
  • Mmadili N Ilozumba, Weilin L Shelver, Chi-Chen Hong, Christine B Ambrosone, Ting-Yuan David Cheng. Urinary Concentrations of Triclosan, Bisphenol A, and Brominated Flame Retardants and the Association of Triclosan with Demographic Characteristics and Body Fatness among Women with Newly Diagnosed Breast Cancer. International journal of environmental research and public health. 2022 04; 19(8):. doi: 10.3390/ijerph19084681. [PMID: 35457549]
  • Emanuel Sager, Paola Scarcia, Damián Marino, Tomás Mac Loughlin, Andrea Rossi, Fernando de La Torre. Oxidative stress responses after exposure to triclosan sublethal concentrations: an integrated biomarker approach with a native (Corydoras paleatus) and a model fish species (Danio rerio). Journal of toxicology and environmental health. Part A. 2022 04; 85(7):291-306. doi: 10.1080/15287394.2021.2007435. [PMID: 34879786]
  • Chao Zuo, Dong-Lei Sun, Tian-He Zhao, Jing-Jing Wang, Zun-Zhen Zhang. [Mechanism of Triclosan in the Treatment of Nonalcoholic Fatty Liver Disease Based on Network Pharmacology]. Zhongguo yi xue ke xue yuan xue bao. Acta Academiae Medicinae Sinicae. 2022 Apr; 44(2):253-261. doi: 10.3881/j.issn.1000-503x.14189. [PMID: 35538760]
  • Habibeh Nasab, Saeed Rajabi, Moghaddameh Mirzaee, Majid Hashemi. Association of urinary triclosan, methyl triclosan, triclocarban, and 2,4-dichlorophenol levels with anthropometric and demographic parameters in children and adolescents in 2020 (case study: Kerman, Iran). Environmental science and pollution research international. 2022 Apr; 29(20):30754-30763. doi: 10.1007/s11356-021-18466-3. [PMID: 34993832]
  • Juliana Tonini Mesquita, Maiara Maria Romanelli, Cristiana de Melo Trinconi Trinconi Cm, Juliana Mariotti Guerra, Noemi Nosomi Taniwaki, Silvia Reni Bortolin Uliana, Juliana Quero Reimão, Andre Gustavo Tempone. Repurposing topical triclosan for cutaneous leishmaniasis: Preclinical efficacy in a murine Leishmania (L.) amazonensis model. Drug development research. 2022 04; 83(2):285-295. doi: 10.1002/ddr.21725. [PMID: 32767443]
  • Slawomir Gonkowski, Manolis Tzatzarakis, Elena Vakonaki, Krystyna Makowska, Aristidis M Tsatsakis, Joanna Wojtkiewicz. The Presence of Triclosan in Human Hair Samples in Poland-A Pilot Study. International journal of environmental research and public health. 2022 03; 19(7):. doi: 10.3390/ijerph19073796. [PMID: 35409481]
  • Xianping Wei, Yu Hu, Qingqing Zhu, Jia Gao, Chunyang Liao, Guibin Jiang. Co-exposure and health risks of several typical endocrine disrupting chemicals in general population in eastern China. Environmental research. 2022 03; 204(Pt D):112366. doi: 10.1016/j.envres.2021.112366. [PMID: 34774506]
  • Birgit Wolters, Kristin Hauschild, Khald Blau, Ines Mulder, Benjamin Justus Heyde, Søren J Sørensen, Jan Siemens, Sven Jechalke, Kornelia Smalla, Joseph Nesme. Biosolids for safe land application: does wastewater treatment plant size matters when considering antibiotics, pollutants, microbiome, mobile genetic elements and associated resistance genes?. Environmental microbiology. 2022 03; 24(3):1573-1589. doi: 10.1111/1462-2920.15938. [PMID: 35192222]
  • Longyao Xu, Yu Hu, Qingqing Zhu, Chunyang Liao, Guibin Jiang. Several typical endocrine-disrupting chemicals in human urine from general population in China: Regional and demographic-related differences in exposure risk. Journal of hazardous materials. 2022 02; 424(Pt B):127489. doi: 10.1016/j.jhazmat.2021.127489. [PMID: 34689090]
  • Enguang Nie, Haiyan Wang, Yan Chen, Yuhui Lu, Kashif Akhtar, Muhammad Riaz, Sufen Zhang, Zhiyang Yu, Qingfu Ye. Distinct uptake and accumulation profiles of triclosan in youdonger (Brassica campestris subsp. Chinensis var. communis) under two planting systems: Evidence from 14C tracing techniques. Chemosphere. 2022 Feb; 288(Pt 3):132651. doi: 10.1016/j.chemosphere.2021.132651. [PMID: 34699880]
  • Hua Zhang, Jingxia Li, Yulin An, Desheng Wang, Jianfu Zhao, Meixiao Zhan, Weiguo Xu, Ligong Lu, Yunfei Gao. Concentrations of bisphenols, benzophenone-type ultraviolet filters, triclosan, and triclocarban in the paired urine and blood samples from young adults: Partitioning between urine and blood. Chemosphere. 2022 Feb; 288(Pt 2):132563. doi: 10.1016/j.chemosphere.2021.132563. [PMID: 34653480]
  • Peng Zhang, Liyang Zheng, Yitao Duan, Yuting Gao, Huihui Gao, Daqing Mao, Yi Luo. Gut microbiota exaggerates triclosan-induced liver injury via gut-liver axis. Journal of hazardous materials. 2022 01; 421(?):126707. doi: 10.1016/j.jhazmat.2021.126707. [PMID: 34315018]
  • Wenting Zhu, Chong Xie, Shasha Zhao, Dan Zhang, Hao Zhang. Environmental Exposure to Triclosan and Male Fecundity: A Prospective Study in China. Frontiers in public health. 2022; 10(?):814927. doi: 10.3389/fpubh.2022.814927. [PMID: 35480573]
  • Marie Usal, Sylvie Veyrenc, Marie Darracq-Ghitalla-Ciock, Christophe Regnault, Sophie Sroda, Jean-Baptiste Fini, Muriel Raveton, Stéphane Reynaud. Exposure to a mixture of benzo[a]pyrene and triclosan induces multi-and transgenerational metabolic disorders associated with decreased female investment in reproduction in Silurana (Xenopus) tropicalis. Environmental pollution (Barking, Essex : 1987). 2022 Jan; 292(Pt B):118418. doi: 10.1016/j.envpol.2021.118418. [PMID: 34737028]
  • Min-Hua Lin, She-Yu Chiu, Wen-Chao Ho, Kai-Hsien Chi, Tsung-Yun Liu, I-Jen Wang. Effect of triclosan on the pathogenesis of allergic diseases among children. Journal of exposure science & environmental epidemiology. 2022 01; 32(1):60-68. doi: 10.1038/s41370-021-00304-w. [PMID: 33654271]
  • Jiezhang Mo, Qianju Qi, Yongrong Hao, Yuan Lei, Jiahua Guo. Transcriptional response of a green alga (Raphidocelis subcapitata) exposed to triclosan: photosynthetic systems and DNA repair. Journal of environmental sciences (China). 2022 Jan; 111(?):400-411. doi: 10.1016/j.jes.2021.04.023. [PMID: 34949369]
  • Minghui Han, Yuanping Wang, Chuanxi Tang, Hongji Fang, Dongjian Yang, Jingui Wu, Hexing Wang, Yue Chen, Qingwu Jiang. Association of triclosan and triclocarban in urine with obesity risk in Chinese school children. Environment international. 2021 12; 157(?):106846. doi: 10.1016/j.envint.2021.106846. [PMID: 34455189]
  • Hua Zhang, Jingxia Li, Yanfang Chen, Desheng Wang, Weiguo Xu, Yunfei Gao. Profiles of parabens, benzophenone-type ultraviolet filters, triclosan, and triclocarban in paired urine and indoor dust samples from Chinese university students: Implications for human exposure. The Science of the total environment. 2021 Dec; 798(?):149275. doi: 10.1016/j.scitotenv.2021.149275. [PMID: 34333440]
  • Paulina Jedynak, Jörg Tost, Antonia M Calafat, Ekaterina Bourova-Flin, Florence Busato, Anne Forhan, Barbara Heude, Milan Jakobi, Sophie Rousseaux, Joel Schwartz, Rémy Slama, Daniel Vaiman, Claire Philippat, Johanna Lepeule. Pregnancy exposure to synthetic phenols and placental DNA methylation - An epigenome-wide association study in male infants from the EDEN cohort. Environmental pollution (Barking, Essex : 1987). 2021 Dec; 290(?):118024. doi: 10.1016/j.envpol.2021.118024. [PMID: 34523531]
  • Dyhia Amrane, Nicolas Primas, Christophe-Sébastien Arnold, Sébastien Hutter, Béatrice Louis, Julen Sanz-Serrano, Amaya Azqueta, Nadia Amanzougaghene, Shahin Tajeri, Dominique Mazier, Pierre Verhaeghe, Nadine Azas, Cyrille Botté, Patrice Vanelle. Antiplasmodial 2-thiophenoxy-3-trichloromethyl quinoxalines target the apicoplast of Plasmodium falciparum. European journal of medicinal chemistry. 2021 Nov; 224(?):113722. doi: 10.1016/j.ejmech.2021.113722. [PMID: 34364164]
  • Kyung Sik Yoon, Seung Jun Kwack. In vitro and in vivo estrogenic activity of triclosan. Journal of toxicology and environmental health. Part A. 2021 10; 84(19):800-809. doi: 10.1080/15287394.2021.1944940. [PMID: 34193021]
  • Dongfeng Yang, Sifang Kong, Feng Wang, Lap Ah Tse, Zhi Tang, Yang Zhao, Chun Li, Minhui Li, Zihan Li, Shaoyou Lu. Urinary triclosan in south China adults and implications for human exposure. Environmental pollution (Barking, Essex : 1987). 2021 Oct; 286(?):117561. doi: 10.1016/j.envpol.2021.117561. [PMID: 34126513]
  • Guangzhu Dong, Rui Zhang, Hongyu Huang, Chuncheng Lu, Yankai Xia, Xinru Wang, Guizhen Du. Exploration of the developmental toxicity of TCS and PFOS to zebrafish embryos by whole-genome gene expression analyses. Environmental science and pollution research international. 2021 Oct; 28(40):56032-56042. doi: 10.1007/s11356-021-14527-9. [PMID: 34046830]
  • Anna H Wu, Adrian A Franke, Lynne R Wilkens, Chiuchen Tseng, Shannon M Conroy, Yuqing Li, Meera Sangaramoorthy, Linda M Polfus, Mindy C DeRouen, Christian Caberto, Christopher Haiman, Daniel O Stram, Loïc Le Marchand, Iona Cheng. Risk of breast cancer and prediagnostic urinary excretion of bisphenol A, triclosan and parabens: The Multiethnic Cohort Study. International journal of cancer. 2021 10; 149(7):1426-1434. doi: 10.1002/ijc.33692. [PMID: 34013527]
  • Saurav Kumar, Tapas Paul, S P Shukla, Kundan Kumar, Sutanu Karmakar, Kuntal Krishna Bera, Chandra Bhushan Kumar. Biomarkers-based assessment of triclosan toxicity in aquatic environment: A mechanistic review. Environmental pollution (Barking, Essex : 1987). 2021 Oct; 286(?):117569. doi: 10.1016/j.envpol.2021.117569. [PMID: 34438492]
  • Donglei Sun, Tianhe Zhao, Keyan Long, Mei Wu, Zunzhen Zhang. Triclosan down-regulates fatty acid synthase through microRNAs in HepG2 cells. European journal of pharmacology. 2021 Sep; 907(?):174261. doi: 10.1016/j.ejphar.2021.174261. [PMID: 34144025]
  • Yun Wang, Guoliang Li, Qingqing Zhu, Chunyang Liao. Occurrence of parabens, triclosan and triclocarban in paired human urine and indoor dust from two typical cities in China and its implications for human exposure. The Science of the total environment. 2021 Sep; 786(?):147485. doi: 10.1016/j.scitotenv.2021.147485. [PMID: 33975120]
  • Jianhua Tan, Hongxuan Kuang, Congcong Wang, Jian Liu, Qihua Pang, Qilai Xie, Ruifang Fan. Human exposure and health risk assessment of an increasingly used antibacterial alternative in personal care products: Chloroxylenol. The Science of the total environment. 2021 Sep; 786(?):147524. doi: 10.1016/j.scitotenv.2021.147524. [PMID: 33975105]
  • Joshua D Alampi, Bruce P Lanphear, Joseph M Braun, Aimin Chen, Tim K Takaro, Gina Muckle, Tye E Arbuckle, Lawrence C McCandless. Association Between Gestational Exposure to Toxicants and Autistic Behaviors Using Bayesian Quantile Regression. American journal of epidemiology. 2021 09; 190(9):1803-1813. doi: 10.1093/aje/kwab065. [PMID: 33779718]
  • Zi-Feng Zhang, Lu Wang, Xianming Zhang, Xue Zhang, Yi-Fan Li, Anatoly Nikolaev, Wen-Long Li. Fate processes of Parabens, Triclocarban and Triclosan during wastewater treatment: assessment via field measurements and model simulations. Environmental science and pollution research international. 2021 Sep; 28(36):50602-50610. doi: 10.1007/s11356-021-14141-9. [PMID: 33963991]
  • Xiaohong Song, Xuegeng Wang, Xin Li, Xiaoyu Yan, Yanpeng Liang, Yuequn Huang, Liangliang Huang, Honghu Zeng. Histopathology and transcriptome reveals the tissue-specific hepatotoxicity and gills injury in mosquitofish (Gambusia affinis) induced by sublethal concentration of triclosan. Ecotoxicology and environmental safety. 2021 Sep; 220(?):112325. doi: 10.1016/j.ecoenv.2021.112325. [PMID: 34052755]
  • Mary E Gilbert, Katherine L O'Shaughnessy, Susan E Thomas, Cal Riutta, Carmen R Wood, Alicia Smith, Wendy O Oshiro, Richard L Ford, Michelle Gatien Hotchkiss, Iman Hassan, Jermaine L Ford. Thyroid Disruptors: Extrathyroidal Sites of Chemical Action and Neurodevelopmental Outcome-An Examination Using Triclosan and Perfluorohexane Sulfonate. Toxicological sciences : an official journal of the Society of Toxicology. 2021 08; 183(1):195-213. doi: 10.1093/toxsci/kfab080. [PMID: 34460931]
  • Qiyang Tan, Jinmei Chen, Yifan Chu, Wei Liu, Lingli Yang, Lin Ma, Yi Zhang, Dongru Qiu, Zhenbin Wu, Feng He. Triclosan weakens the nitrification process of activated sludge and increases the risk of the spread of antibiotic resistance genes. Journal of hazardous materials. 2021 08; 416(?):126085. doi: 10.1016/j.jhazmat.2021.126085. [PMID: 34492900]
  • Danliu Peng, Anran Liu, Wenjing Wang, Yue Zhang, Zichen Han, Xiaozhou Li, Gang Wang, Chunfeng Guan, Jing Ji. Mechanism of growth amelioration of triclosan-stressed tobacco (Nicotiana tabacum) by endogenous salicylic acid. Environmental pollution (Barking, Essex : 1987). 2021 Aug; 282(?):117032. doi: 10.1016/j.envpol.2021.117032. [PMID: 33831628]
  • Yanyan Li, Guozhong Dong, Jianye Li, Jianxing Xiang, Jingrui Yuan, Huili Wang, Xuedong Wang. A solid-phase microextraction fiber coating based on magnetic covalent organic framework for highly efficient extraction of triclosan and methyltriclosan in environmental water and human urine samples. Ecotoxicology and environmental safety. 2021 Aug; 219(?):112319. doi: 10.1016/j.ecoenv.2021.112319. [PMID: 33993090]
  • Qiong Luo, Hongna Zhang, Yanqiu Zhou, Zehua Liu, Zongwei Cai. Simultaneous determination of triclosan, triclocarban, triclocarban metabolites and byproducts in urine and serum by ultra-high-performance liquid chromatography/electrospray ionization tandem mass spectrometry. Rapid communications in mass spectrometry : RCM. 2021 Jul; 35(14):e9117. doi: 10.1002/rcm.9117. [PMID: 33928686]
  • Ju Hee Kim, Jung Min Kwak, Hyunjin Kang. Web-based behavioral intervention to reduce exposure to phthalate metabolites, bisphenol A, triclosan, and parabens in mothers with young children: A randomized controlled trial. International journal of hygiene and environmental health. 2021 07; 236(?):113798. doi: 10.1016/j.ijheh.2021.113798. [PMID: 34186503]
  • Anjali Patel, Subhasis Dey, Kamal Shokeen, Tomasz M Karpiński, Senthilkumar Sivaprakasam, Sachin Kumar, Debasis Manna. Sulfonium-based liposome-encapsulated antibiotics deliver a synergistic antibacterial activity. RSC medicinal chemistry. 2021 Jun; 12(6):1005-1015. doi: 10.1039/d1md00091h. [PMID: 34223166]
  • Engy Elekhnawy, Fatma Sonbol, Ahmed Abdelaziz, Tarek Elbanna. An investigation of the impact of triclosan adaptation on Proteus mirabilis clinical isolates from an Egyptian university hospital. Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology]. 2021 Jun; 52(2):927-937. doi: 10.1007/s42770-021-00485-4. [PMID: 33826115]
  • Eulalia María Beltrán, Carlos Fernández-Torija, María Victoria Pablos, Miguel Ángel Porcel, Pilar García-Hortigüela, Miguel González-Doncel. The effect of PFOs on the uptake and translocation of emerging contaminants by crops cultivated under soil and soilless conditions. Ecotoxicology and environmental safety. 2021 Jun; 215(?):112103. doi: 10.1016/j.ecoenv.2021.112103. [PMID: 33740485]
  • Limei Sun, Ming Gao, Qiuhui Qian, Ziyi Guo, Peng Zhu, Xuedong Wang, Huili Wang. Triclosan-induced abnormal expression of miR-30b regulates fto-mediated m6A methylation level to cause lipid metabolism disorder in zebrafish. The Science of the total environment. 2021 May; 770(?):145285. doi: 10.1016/j.scitotenv.2021.145285. [PMID: 33515893]
  • Danliu Peng, Wenjing Wang, Anran Liu, Yue Zhang, Xiaozhou Li, Gang Wang, Chao Jin, Chunfeng Guan, Jing Ji. Comparative transcriptome combined with transgenic analysis reveal the involvement of salicylic acid pathway in the response of Nicotiana tabacum to triclosan stress. Chemosphere. 2021 May; 270(?):129456. doi: 10.1016/j.chemosphere.2020.129456. [PMID: 33418217]
  • Sara E Gallego R, Gustavo A Peñuela, Emma Martínez-López. Enzymatic activity changes in striped catfish Pseudoplatystoma magdaleniatum, induced by exposure to different concentrations of ibuprofen and triclosan. Chemosphere. 2021 May; 271(?):129399. doi: 10.1016/j.chemosphere.2020.129399. [PMID: 33482525]
  • Mark J Henderson, Kathleen A Trychta, Shyh-Ming Yang, Susanne Bäck, Adam Yasgar, Emily S Wires, Carina Danchik, Xiaokang Yan, Hideaki Yano, Lei Shi, Kuo-Jen Wu, Amy Q Wang, Dingyin Tao, Gergely Zahoránszky-Kőhalmi, Xin Hu, Xin Xu, David Maloney, Alexey V Zakharov, Ganesha Rai, Fumihiko Urano, Mikko Airavaara, Oksana Gavrilova, Ajit Jadhav, Yun Wang, Anton Simeonov, Brandon K Harvey. A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome. Cell reports. 2021 04; 35(4):109040. doi: 10.1016/j.celrep.2021.109040. [PMID: 33910017]
  • Hongna Zhang, Katherine Z Sanidad, Lin Zhu, Julie Parsonnet, Thomas D Haggerty, Guodong Zhang, Zongwei Cai. Frequent occurrence of triclosan hydroxylation in mammals: A combined theoretical and experimental investigation. Journal of hazardous materials. 2021 04; 407(?):124803. doi: 10.1016/j.jhazmat.2020.124803. [PMID: 33338815]
  • Carolin Tschersich, Aline Murawski, Gerda Schwedler, Enrico Rucic, Rebecca K Moos, Monika Kasper-Sonnenberg, Holger M Koch, Thomas Brüning, Marike Kolossa-Gehring. Bisphenol A and six other environmental phenols in urine of children and adolescents in Germany - human biomonitoring results of the German Environmental Survey 2014-2017 (GerES V). The Science of the total environment. 2021 Apr; 763(?):144615. doi: 10.1016/j.scitotenv.2020.144615. [PMID: 33383503]
  • Concepción Abril, Juan Luis Santos, Julia Martín, Irene Aparicio, Esteban Alonso. Uptake and translocation of multiresidue industrial and household contaminants in radish grown under controlled conditions. Chemosphere. 2021 Apr; 268(?):128823. doi: 10.1016/j.chemosphere.2020.128823. [PMID: 33160654]
  • Xiaojing Li, Yi Zhong, Weiyun He, Senyuan Huang, Qin Li, Chongshan Guo, Shengtao Ma, Guiying Li, Yingxin Yu. Co-exposure and health risks of parabens, bisphenols, triclosan, phthalate metabolites and hydroxyl polycyclic aromatic hydrocarbons based on simultaneous detection in urine samples from guangzhou, south China. Environmental pollution (Barking, Essex : 1987). 2021 Mar; 272(?):115990. doi: 10.1016/j.envpol.2020.115990. [PMID: 33199068]
  • Paweł Radwan, Bartosz Wielgomas, Michał Radwan, Rafał Krasiński, Anna Klimowska, Radosław Zajdel, Dorota Kaleta, Joanna Jurewicz. Triclosan exposure and in vitro fertilization treatment outcomes in women undergoing in vitro fertilization. Environmental science and pollution research international. 2021 Mar; 28(10):12993-12999. doi: 10.1007/s11356-020-11287-w. [PMID: 33097990]
  • Yanshan Liang, Hongna Zhang, Zongwei Cai. New insights into the cellular mechanism of triclosan-induced dermal toxicity from a combined metabolomic and lipidomic approach. The Science of the total environment. 2021 Feb; 757(?):143976. doi: 10.1016/j.scitotenv.2020.143976. [PMID: 33310578]
  • Nicole Soares Guidony, João Luís Rheingantz Scaini, Matheus William Bandeira Oliveira, Karina Santos Machado, Cláudio Bastos, Ana Laura Escarrone, Marta Marques Souza. ABC proteins activity and cytotoxicity in zebrafish hepatocytes exposed to triclosan. Environmental pollution (Barking, Essex : 1987). 2021 Feb; 271(?):116368. doi: 10.1016/j.envpol.2020.116368. [PMID: 33383428]
  • Chengzhi Zhou, Yanping Wang, Shaoyu Tang, Ya Wang, Haiying Yu, Junfeng Niu. Insights into the electrochemical degradation of triclosan from human urine: Kinetics, mechanism and toxicity. Chemosphere. 2021 Feb; 264(Pt 2):128598. doi: 10.1016/j.chemosphere.2020.128598. [PMID: 33068970]
  • Cheng Sheng, Shenghu Zhang, Yan Zhang. The influence of different polymer types of microplastics on adsorption, accumulation, and toxicity of triclosan in zebrafish. Journal of hazardous materials. 2021 01; 402(?):123733. doi: 10.1016/j.jhazmat.2020.123733. [PMID: 33254764]
  • Tyler Pollock, Tye E Arbuckle, Margot Guth, Maryse F Bouchard, Annie St-Amand. Associations among urinary triclosan and bisphenol A concentrations and serum sex steroid hormone measures in the Canadian and U.S. Populations. Environment international. 2021 01; 146(?):106229. doi: 10.1016/j.envint.2020.106229. [PMID: 33161203]
  • Emanuel Sager, Andrea Rossi, Tomás Mac Loughlin, Damián Marino, Fernando DE LA Torre. Multibiomarker responses in Danio rerio after exposure to sediment spiked with triclosan. Anais da Academia Brasileira de Ciencias. 2021; 93(suppl 3):e20201938. doi: 10.1590/0001-3765202120201938. [PMID: 34550207]
  • Claire Philippat, Antonia M Calafat. Comparison of strategies to efficiently combine repeated urine samples in biomarker-based studies. Environmental research. 2021 01; 192(?):110275. doi: 10.1016/j.envres.2020.110275. [PMID: 33022216]
  • Mei-Fei Yueh, Feng He, Chen Chen, Catherine Vu, Anupriya Tripathi, Rob Knight, Michael Karin, Shujuan Chen, Robert H Tukey. Triclosan leads to dysregulation of the metabolic regulator FGF21 exacerbating high fat diet-induced nonalcoholic fatty liver disease. Proceedings of the National Academy of Sciences of the United States of America. 2020 12; 117(49):31259-31266. doi: 10.1073/pnas.2017129117. [PMID: 33229553]
  • Sinye Lim. The associations between personal care products use and urinary concentrations of phthalates, parabens, and triclosan in various age groups: The Korean National Environmental Health Survey Cycle 3 2015-2017. The Science of the total environment. 2020 Nov; 742(?):140640. doi: 10.1016/j.scitotenv.2020.140640. [PMID: 32721747]
  • Xiaying Xin, Gordon Huang, Chunjiang An, Chen Lu, Wenhui Xiong. Exploring the biophysicochemical alteration of green alga Asterococcus superbus interactively affected by nanoparticles, triclosan and illumination. Journal of hazardous materials. 2020 11; 398(?):122855. doi: 10.1016/j.jhazmat.2020.122855. [PMID: 32473326]
  • Xueyuan Bai, Bo Zhang, Yuan He, Danhong Hong, Shiming Song, Yingyan Huang, Tao Zhang. Triclosan and triclocarbon in maternal-fetal serum, urine, and amniotic fluid samples and their implication for prenatal exposure. Environmental pollution (Barking, Essex : 1987). 2020 Nov; 266(Pt 1):115117. doi: 10.1016/j.envpol.2020.115117. [PMID: 32650159]
  • Suraj Sangroula, Alan Y Baez Vasquez, Prakash Raut, Bright Obeng, Juyoung K Shim, Grace D Bagley, Bailey E West, John E Burnell, Marissa S Kinney, Christian M Potts, Sasha R Weller, Joshua B Kelley, Samuel T Hess, Julie A Gosse. Triclosan disrupts immune cell function by depressing Ca2+ influx following acidification of the cytoplasm. Toxicology and applied pharmacology. 2020 10; 405(?):115205. doi: 10.1016/j.taap.2020.115205. [PMID: 32835763]