Gene Association: BIRC3

UniProt Search: BIRC3 (PROTEIN_CODING)
Function Description: baculoviral IAP repeat containing 3

found 45 associated metabolites with current gene based on the text mining result from the pubmed database.

Sudan_IV

2-Naphthalenol, 1-(2-(2-methyl-4-(2-(2-methylphenyl)diazenyl)phenyl)diazenyl)-

C24H20N4O (380.1637)


Sudan IV is a bis(azo) compound that is 2-naphthol substituted at position 1 by a {2-methyl-4-[(2-methylphenyl)diazenyl]phenyl}diazenyl group. A fat-soluble dye predominantly used for demonstrating triglycerides in frozen sections, but which may also stain some protein bound lipids in paraffin sections. It has a role as a histological dye, a fluorochrome and a carcinogenic agent. It is a bis(azo) compound, a member of naphthols and a member of azobenzenes. It is functionally related to a 2-naphthol. D004396 - Coloring Agents

   

Taurochenodesoxycholic acid

2-[[(4R)-4-[(3R,5S,7R,8R,9S,10S,13R,14S,17R)-3,7-dihydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoyl]amino]ethanesulfonic acid

C26H45NO6S (499.2967)


Taurochenodesoxycholic acid is a bile acid formed in the liver by conjugation of chenodeoxycholate with taurine, usually as the sodium salt. Bile acids are steroid acids found predominantly in the bile of mammals. The distinction between different bile acids is minute, depending only on the presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g. membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues (PMID: 11316487, 16037564, 12576301, 11907135). Taurochenodesoxycholic acid has been found to be a microbial metabolite. Taurochenodesoxycholic acid is a bile acid formed in the liver by conjugation of chenodeoxycholate with taurine, usually as the sodium salt. Bile acids are steroid acids found predominantly in bile of mammals. The distinction between different bile acids is minute, depends only on presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g., membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues. (PMID: 11316487, 16037564, 12576301, 11907135) [HMDB] Taurochenodeoxycholic acid is a bile acid taurine conjugate of chenodeoxycholic acid. It has a role as a mouse metabolite and a human metabolite. It is functionally related to a chenodeoxycholic acid. It is a conjugate acid of a taurochenodeoxycholate. Taurochenodeoxycholic acid is an experimental drug that is normally produced in the liver. Its physiologic function is to emulsify lipids such as cholesterol in the bile. As a medication, taurochenodeoxycholic acid reduces cholesterol formation in the liver, and is likely used as a choleretic to increase the volume of bile secretion from the liver and as a cholagogue to increase bile discharge into the duodenum. It is also being investigated for its role in inflammation and cancer therapy. Taurochenodeoxycholic acid is a natural product found in Trypanosoma brucei and Homo sapiens with data available. A bile salt formed in the liver by conjugation of chenodeoxycholate with taurine, usually as the sodium salt. It acts as detergent to solubilize fats in the small intestine and is itself absorbed. It is used as a cholagogue and choleretic. Taurochenodeoxycholic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=516-35-8 (retrieved 2024-07-01) (CAS RN: 516-35-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Taurochenodeoxycholic acid (12-Deoxycholyltaurine) is one of the main bioactive substances of animals' bile acid. Taurochenodeoxycholic acid induces apoptosis and shows obvious anti-inflammatory and immune regulation properties[1][2].

   

(R)-Methysticin

5-Hydroxy-3-methoxy-7-(3,4-(methylenedioxy)phenyl)-2,6-heptadienoic acid gamma-lactone

C15H14O5 (274.0841)


Methysticin is a member of 2-pyranones and an aromatic ether. Methysticin is a natural product found in Piper methysticum and Piper majusculum with data available. See also: Piper methysticum root (part of). (R)-Methysticin is found in beverages. (R)-Methysticin is found in kava (Piper methysticum). FDA advises against use of kava in food due to potential risk of severe liver damage (2002). Found in kava (Piper methysticum). FDA advises against use of kava in food due to potential risk of severe liver damage (2002) Methylsticin is a kavalactone isolated from the Piper methysticum . Methylsticin exhibit osteoclast formation inhibitory activity[1]. Methylsticin is a kavalactone isolated from the Piper methysticum . Methylsticin exhibit osteoclast formation inhibitory activity[1].

   

Sanguinarine

24-methyl-5,7,18,20-tetraoxa-24-azahexacyclo[11.11.0.0^{2,10}.0^{4,8}.0^{14,22}.0^{17,21}]tetracosa-1(13),2,4(8),9,11,14(22),15,17(21),23-nonaen-24-ium

[C20H14NO4]+ (332.0923)


Sanguinarine is a benzophenanthridine alkaloid, an alkaloid antibiotic and a botanical anti-fungal agent. Sanguinarine is a natural product found in Fumaria capreolata, Fumaria kralikii, and other organisms with data available. Sanguinarine is found in opium poppy. Consumption of Sanguinarine, present in poppy seeds and in the oil of Argemone mexicana which has been used as an adulterant for mustard oil in India, has been linked to development of glaucoma. Sanguinarine is banned by FDA. Sanguinarine is a quaternary ammonium salt from the group of benzylisoquinoline alkaloids. It is extracted from some plants, including bloodroot (Sanguinaria canadensis), Mexican prickly poppy Argemone mexicana, Chelidonium majus and Macleaya cordata. It is also found in the root, stem and leaves of the opium poppy but not in the capsule. Sanguinarine is a toxin that kills animal cells through its action on the Na+-K+-ATPase transmembrane protein. Epidemic dropsy is a disease that results from ingesting sanguinarine. Sanguinarine has been shown to exhibit antibiotic, anti-apoptotic, anti-fungal, anti-inflammatory and anti-angiogenic functions Sanguinarine belongs to the family of Benzoquinolines. These are organic compounds containing a benzene fused to a quinoline ring system. (A3208, A3209, A3208, A3208, A3208). See also: Sanguinaria canadensis root (part of); Chelidonium majus flowering top (part of). Sanguinarine is found in opium poppy. Consumption of Sanguinarine, present in poppy seeds and in the oil of Argemone mexicana which has been used as an adulterant for mustard oil in India, has been linked to development of glaucoma. Sanguinarine is banned by FDA. Sanguinarine is a quaternary ammonium salt from the group of benzylisoquinoline alkaloids. It is extracted from some plants, including bloodroot (Sanguinaria canadensis), Mexican prickly poppy Argemone mexicana, Chelidonium majus and Macleaya cordata. It is also found in the root, stem and leaves of the opium poppy but not in the capsule.[citation needed]; Sanguinarine is a toxin that kills animal cells through its action on the Na+-K+-ATPase transmembrane protein. Epidemic dropsy is a disease that results from ingesting sanguinarine Sanguinarine (13-methyl[1,3]benzodioxolo[5,6-c]-1,3-dioxolo[4,5-i]phenanthridinium) is derived from the root of Sanguinaria canadensis and other poppy-fumaria species (for references, see Ref. 1). This benzophenanthridine alkaloid is a structural homologue of chelerythrine, which is a potent inhibitor of protein kinase C (2). Sanguinarine has been shown to display antitumor (3) and anti-inflammatory properties in animals (4) and to inhibit neutrophil function, including degranulation and phagocytosis in vitro(5). It is also a potent inhibitor of Na-K-dependent ATPase (6, 7, 8) and cholinesterase (9).

   

Dicentrine

(12S)-16,17-dimethoxy-11-methyl-3,5-dioxa-11-azapentacyclo[10.7.1.02,6.08,20.014,19]icosa-1(20),2(6),7,14,16,18-hexaene

C20H21NO4 (339.1471)


Dicentrine is an aporphine alkaloid. Dicentrine is a natural product found in Cissampelos pareira, Stephania abyssinica, and other organisms with data available. Dicentrine is an anticancer compound isolated from Lindera, a species of flowering plants. Dicentrine is a natural product isolated from the plant Stephania epigaea Lo with antihypertensive effect. Dicentrine is an α1-adrenoceptor antagonist which has effective against human hyperplastic prostates[1].

   

(-)-alpha-Bisabolol

3-CYCLOHEXENE-1-METHANOL, .ALPHA.,4-DIMETHYL-.ALPHA.-(4-METHYL-3-PENTEN-1-YL)-, (.ALPHA.S,1S)-

C15H26O (222.1984)


(-)-alpha-Bisabolol is a sesquiterpenoid. Bisabolol, or more formally α-(−)-bisabolol or also known as levomenol, (-)-alpha-Bisabolol is found in fats and oils. (-)-alpha-Bisabolol is isolated from essential oil of Matricaria chamomilla (German chamomile) (-)-alpha-Bisabolol belongs to the family of Sesquiterpenes. These are terpenes with three consecutive isoprene units. Levomenol is a natural product found in Santolina pectinata, Carthamus glaucus, and other organisms with data available. See also: Chamomile (part of); Adenosine; levomenol (component of); Adenosine; Ascorbic Acid; LEVOMENOL (component of) ... View More ... (-)-alpha-Bisabolol is found in fats and oils. (-)-alpha-Bisabolol is isolated from essential oil of Matricaria chamomilla (German chamomile). alpha-Bisabolol is a nontoxic sesquiterpene alcohol present in natural essential oil, with anticancer activity. alpha-Bisabolol exerts selective anticancer effect on A549 NSCLC cells (IC50=15 μM) via induction of cell cycle arrest, mitochondrial apoptosis and inhibition of PI3K/Akt signalling pathways. alpha-Bisabolol also strongly induces apoptosis in glioma cells[1][2]. alpha-Bisabolol is a nontoxic sesquiterpene alcohol present in natural essential oil, with anticancer activity. alpha-Bisabolol exerts selective anticancer effect on A549 NSCLC cells (IC50=15 μM) via induction of cell cycle arrest, mitochondrial apoptosis and inhibition of PI3K/Akt signalling pathways. alpha-Bisabolol also strongly induces apoptosis in glioma cells[1][2]. Levomenol ((-)-α-Bisabolol), a monocyclic sesquiterpene alcohol, exerts antioxidant, anti-inflammatory, and anti-apoptotic activities. Levomenol also has neuroprotective effects and prevents neuronal damage and memory deficits through reduction of proinflammatory markers induced by permanent focal cerebral ischemia in mice. Levomenol attenuates nociceptive behaviour and central sensitisation in a rodent model of trigeminal neuropathic pain. Orally active[1][2]. Levomenol ((-)-α-Bisabolol), a monocyclic sesquiterpene alcohol, exerts antioxidant, anti-inflammatory, and anti-apoptotic activities. Levomenol also has neuroprotective effects and prevents neuronal damage and memory deficits through reduction of proinflammatory markers induced by permanent focal cerebral ischemia in mice. Levomenol attenuates nociceptive behaviour and central sensitisation in a rodent model of trigeminal neuropathic pain. Orally active[1][2].

   

Glycine chenodeoxycholate

2-[[(4R)-4-[(3R,5S,7R,8R,9S,10S,13R,14S,17R)-3,7-dihydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoyl]amino]acetic acid

C26H43NO5 (449.3141)


Chenodeoxycholic acid glycine conjugate is an acyl glycine and a bile acid-glycine conugate. It is a secondary bile acid produced by the action of enzymes existing in the microbial flora of the colonic environment. In hepatocytes, both primary and secondary bile acids undergo amino acid conjugation at the C-24 carboxylic acid on the side chain, and almost all bile acids in the bile duct therefore exist in a glycine conjugated form (PMID: 16949895). This compound usually exists as the sodium salt and acts as a detergent to solubilize fats for absorption and is itself absorbed. It is a cholagogue and choleretic. Glycochenodeoxycholic acid (Chenodeoxycholylglycine) is a bile acid formed in the liver from chenodeoxycholate and glycine. It acts as a detergent to solubilize fats for absorption and is itself absorbed. Glycochenodeoxycholic acid (Chenodeoxycholylglycine) induces hepatocyte apoptosis[1][2].

   

Microcystin RR

Microcystin RR

C49H75N13O12 (1037.5658)


A microcystin consisting of D-alanyl, L-arginyl, (3S)-3-methyl-D-beta-aspartyl, L-arginyl, (2S,3S,4E,6E,8S,9S)-3-amino-4,5,6,7-tetradehydro-9-methoxy-2,6,8-trimethyl-10-phenyldecanoyl, D-gamma-glutamyl, and 2,3-didehydro-N-methylalanyl residues joined into a 25-membered macrocycle. D009676 - Noxae > D002273 - Carcinogens > D052998 - Microcystins D009676 - Noxae > D011042 - Poisons > D008387 - Marine Toxins CONFIDENCE standard compound; EAWAG_UCHEM_ID 3250 CONFIDENCE standard compound; UCHEM_ID 3250; NaToxAq - Natural Toxins and Drinking Water Quality - From Source to Tap (https://natoxaq.ku.dk); EQ cyanopeptide spectra replaced with more comprehensive acquisition. CONFIDENCE standard compound; UCHEM_ID 3250; NaToxAq - Natural Toxins and Drinking Water Quality - From Source to Tap (https://natoxaq.ku.dk)

   

Docetaxel

Benzenepropanoic acid, beta-(((1,1-dimethylethoxy)carbonyl)amino)-alpha-hydroxy-, (2aR,4S,4aR,6R,9S,11S,12S,12aS,12bS)-12b-(acetyloxy)-12-(benzoyloxy)-2a,3,4,4a,5,6,9,10,11,12,12a,12b-dodecahydro-4,4a,6,11-tetrahydroxy-8,12a,13,13-tetramethyl-5-oxo-7,11-methano-1H-cyclodeca(3,4)benz(1,2-b)oxet-9-yl ester, (alphaR)-, hydrate (1:3)

C43H53NO14 (807.3466)


Docetaxel (sold under the brand name Taxotere) is a clinically well-established anti-mitotic chemotherapy medication (that is, it interferes with cell division). It is used mainly for the treatment of breast, ovarian, prostate, and non-small cell lung cancer. Docetaxel binds to microtubules reversibly with high affinity and has a maximum stoichiometry of 1 mole docetaxel per mole tubulin in microtubules. Docetaxel has been FDA-approved to treat patients who have locally advanced, or metastatic breast, or non-small-cell lung cancer who have undergone anthracycline-based chemotherapy and failed to stop cancer progression or relapsed. Docetaxel has a European approval for use in hormone-refractory prostate cancer. Docetaxel is a chemotherapeutic agent and is a cytotoxic compound. It is effectively a biologically damaging drug. As with all chemotherapy, adverse effects are common and many varying side-effects have been documented. Because docetaxel is a cell-cycle specific agent, it is cytotoxic to all dividing cells in the body. This includes tumour cells as well as hair follicles, bone marrow, and other germ cells. For this reason, common chemotherapy side effects such as alopecia occur (this can sometimes be permanent). The drug company Sanofi Aventis claims that they do not routinely keep this data. A survey being conducted in northwest France aims to establish exactly how many patients are being disfigured in this way. Independent studies show it could be as high as 6.3\\\% which puts this ASE in the common and frequent classification. Docetaxel is mainly metabolized in the liver by the cytochrome P450 CYP3A4 and CYP3A5 subfamilies of isoenzymes. Metabolism is principally oxidative and at the tert-butylpropionate side chain, resulting first in an alcohol docetaxel (M2), which is then cyclized to three further metabolites (M1, M3, and M4). M1 and M3 are two diastereomeric hydroxyoxazolidinones and M4 is an oxazolidinedione. Phase II trials of 577 patients showed that docetaxel clearance is related to body surface area and plasma levels of hepatic enzyme alpha-1-acid glycoprotein. Docetaxel is of the chemotherapy drug class taxane and is a semi-synthetic analogue of paclitaxel (Taxol), an extract from the bark of the rare Pacific yew tree Taxus brevifolia. Due to the scarcity of paclitaxel, extensive research was carried out which lead to the formulation of docetaxel, an esterified product of 10-deacetylbaccatin III. It was extracted from the renewable and readily available European yew tree. Drug interactions may be the result of altered pharmacokinetics or pharmacodynamics due to one of the drugs involved. Cisplatin, dexamethasone, doxorubicin, etoposide, and vinblastine are all potentially co-administered with docetaxel and did not modify docetaxel plasma binding in phase II studies. Cisplatin is known to have a complex interaction with some CYPs and has, in some events, been shown to reduce docetaxel clearance by up to 25\\\%. Anticonvulsants induce some metabolic pathways relevant to docetaxel. CYP450 and CYP3A show increased expression in response to the use of anticonvulsants and the metabolism of docetaxel metabolite M4 is processed by these CYPs. A corresponding increase in clearance of M4 by 25\\\% is observed in patients taking phenytoin and phenobarbital, common anticonvulsants. STAMPEDE is a UK-based six-arm, five-stage, open-label randomized controlled trial involving more than 3000 men. Arms C and E of this trial involve administering docetaxel to men starting long-term hormone therapy for the first time. This could be newly diagnosed metastatic, non-metastatic, or high-risk, previously-treated prostate cancer. The trial tests the value of the drug earlier in the treatment pathway instead of waiting until it has become androgen-independent. Docetaxel anhydrous is a tetracyclic diterpenoid that is paclitaxel with the N-benzyloxycarbonyl group replaced by N-tert-butoxycarbonyl, and the acetoxy group at position 10 replaced by a hydroxy group. It has a role as an antineoplastic agent, a photosensitizing agent and an antimalarial. It is a tetracyclic diterpenoid and a secondary alpha-hydroxy ketone. It derives from a hydride of a taxane. Docetaxel is a clinically well established anti-mitotic chemotherapy medication used mainly for the treatment of breast, ovarian, and non-small cell lung cancer. Docetaxel reversibly binds to tubulin with high affinity in a 1:1 stoichiometric ratio Docetaxel anhydrous is a Microtubule Inhibitor. The physiologic effect of docetaxel anhydrous is by means of Microtubule Inhibition. Docetaxel is an antineoplastic agent that has a unique mechanism of action as an inhibitor of cellular mitosis and that currently plays a central role in the therapy of many solid tumors including breast and lung cancer. Docetaxel therapy is frequently associated with serum enzyme elevations which are usually transient and mild, but more importantly has been linked to rapid onset, severe hypersensitivity reactions that can be associated with acute hepatic necrosis, liver failure and death. Docetaxel is a natural product found in Penicillium ubiquetum with data available. Docetaxel is a semi-synthetic, second-generation taxane derived from a compound found in the European yew tree, Taxus baccata. Docetaxel displays potent and broad antineoplastic properties; it binds to and stabilizes tubulin, thereby inhibiting microtubule disassembly which results in cell- cycle arrest at the G2/M phase and cell death. This agent also inhibits pro-angiogenic factors such as vascular endothelial growth factor (VEGF) and displays immunomodulatory and pro-inflammatory properties by inducing various mediators of the inflammatory response. Docetaxel has been studied for use as a radiation-sensitizing agent. (NCI04) Docetaxel Anhydrous is the anhydrous form of docetaxel, a semisynthetic side-chain analogue of paclitaxel with antineoplastic property. Docetaxel binds specifically to the beta-tubulin subunit of microtubules and thereby antagonizes the disassembly of the microtubule proteins. This results in the persistence of aberrant microtubule structures and results in cell-cycle arrest and subsequent cell death. Docetaxel is a clinically well established anti-mitotic chemotherapy medication used mainly for the treatment of breast, ovarian, and non-small cell lung cancer. Docetaxel binds to microtubules reversibly with high affinity and has a maximum stoichiometry of one mole docetaxel per mole tubulin in microtubules. A semisynthetic analog of PACLITAXEL used in the treatment of locally advanced or metastatic BREAST NEOPLASMS and NON-SMALL CELL LUNG CANCER. L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01C - Plant alkaloids and other natural products > L01CD - Taxanes C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C273 - Antimitotic Agent D050258 - Mitosis Modulators > D050256 - Antimitotic Agents > D050257 - Tubulin Modulators D000970 - Antineoplastic Agents > D050256 - Antimitotic Agents Same as: D07866 Docetaxel (RP-56976) is a microtubule?depolymerization inhibitor, with an IC50 of 0.2 μM. Docetaxel attenuates the effects of?bcl-2 and bcl-xL gene expression. Docetaxel arrests the cell cycle at G2/M and leads to cell apoptosis. Docetaxel has anti-cancer activity[1][3].

   

Topotecan

(19S)-8-[(dimethylamino)methyl]-19-ethyl-7,19-dihydroxy-17-oxa-3,13-diazapentacyclo[11.8.0.0^{2,11}.0^{4,9}.0^{15,20}]henicosa-1(21),2(11),3,5,7,9,15(20)-heptaene-14,18-dione

C23H23N3O5 (421.1638)


Topotecan is only found in individuals that have used or taken this drug. It is an antineoplastic agent used to treat ovarian cancer. It works by inhibiting DNA topoisomerases, type I. [PubChem]Topotecan has the same mechanism of action as irinotecan and is believed to exert its cytotoxic effects during the S-phase of DNA synthesis. Topoisomerase I relieves torsional strain in DNA by inducing reversible single strand breaks. Topotecan binds to the topoisomerase I-DNA complex and prevents religation of these single strand breaks. This ternary complex interferes with the moving replication fork, which leads to the induction of replication arrest and lethal double-stranded breaks in DNA. As mammalian cells cannot efficiently repair these double strand breaks, the formation of this ternary complex eventually leads to apoptosis (programmed cell death).Topotecan mimics a DNA base pair and binds at the site of DNA cleavage by intercalating between the upstream (−1) and downstream (+1) base pairs. Intercalation displaces the downstream DNA, thus preventing religation of the cleaved strand. By specifically binding to the enzyme–substrate complex, Topotecan acts as an uncompetitive inhibitor. Topotecan is a pyranoindolizinoquinoline used as an antineoplastic agent. It is a derivative of camptothecin and works by binding to the topoisomerase I-DNA complex and preventing religation of these 328 single strand breaks. It has a role as an EC 5.99.1.2 (DNA topoisomerase) inhibitor and an antineoplastic agent. An antineoplastic agent used to treat ovarian cancer. It works by inhibiting DNA topoisomerases, type I. Topotecan is a Topoisomerase Inhibitor. The mechanism of action of topotecan is as a Topoisomerase Inhibitor. Topotecan is a semisynthetic derivative of camptothecin, a cytotoxic, quinoline-based alkaloid extracted from the Asian tree Camptotheca acuminata. Topotecan inhibits topoisomerase I activity by stabilizing the topoisomerase I-DNA covalent complexes during S phase of cell cycle, thereby inhibiting religation of topoisomerase I-mediated single-strand DNA breaks and producing potentially lethal double-strand DNA breaks when encountered by the DNA replication machinery. An antineoplastic agent used to treat ovarian cancer. It works by inhibiting DNA TOPOISOMERASES, TYPE I. See also: Topotecan Hydrochloride (active moiety of). L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01C - Plant alkaloids and other natural products > L01CE - Topoisomerase 1 (top1) inhibitors C274 - Antineoplastic Agent > C2189 - Signal Transduction Inhibitor > C129824 - Antineoplastic Protein Inhibitor D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059004 - Topoisomerase I Inhibitors C471 - Enzyme Inhibitor > C129825 - Antineoplastic Enzyme Inhibitor > C1748 - Topoisomerase Inhibitor COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D004791 - Enzyme Inhibitors Same as: D08618 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Vestitol

(3S)-3,4-Dihydro-3-(2-hydroxy-4-methoxyphenyl)-2H-1-benzopyran-7-ol

C16H16O4 (272.1049)


   

Scutellarein

6-hydroxyapigenin

C15H10O6 (286.0477)


Scutellarein is a natural flavonoid compound with anti-inflammatory effects. Scutellarein is a natural flavonoid compound with anti-inflammatory effects.

   

alpha-Cadinol

(1R,4S,4aR,8aR)-1,6-dimethyl-4-(propan-2-yl)-1,2,3,4,4a,7,8,8a-octahydronaphthalen-1-ol

C15H26O (222.1984)


alpha-Cadinol is found in cloves. alpha-Cadinol is a constituent of Juniperus communis (juniper)

   

Tomatine

2-[(2-{[4,5-dihydroxy-2-(hydroxymethyl)-6-{5,7,9,13-tetramethyl-5-oxaspiro[pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane-6,2-piperidine]oxy}oxan-3-yl]oxy}-5-hydroxy-6-(hydroxymethyl)-4-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-3-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol

C50H83NO21 (1033.5457)


Tomatine is a mildly toxic glycoalkaloid or glycospirosolane (steroidal alkaloids whose structure contains a spirosolane skeleton) found in the stems and leaves of tomato plants as well as in the fruit of unripened (green) tomatoes (up to 500 mg/kg). Red, ripe tomatoes have somewhat reduced amounts of tomatine. A toxic dose of tomatine for an adult human would appear to require the consumption of at least 500 g of tomato leaves in one sitting (“Toxic Plants of North America” (Iowa State University Press, 2001)). Tomatine is known to have fungicidal and antimicrobial properties and is likely produced by tomato plants as a defense against bacteria, fungi, viruses, and insects (PMID: 19514731). Some microbes produce an enzyme called tomatinase which can degrade tomatine, rendering it ineffective as an antimicrobial (PMID: 18835993).Tomatine has historically been used as a reagent in analytical chemistry for precipitating cholesterol from solution (PMID: 4362143). When lab animals ingest tomatine, essentially all of it passes through the animal unabsorbed. Tomatine apparently binds to cholesterol in the digestive tract, and the largely insoluble combination is excreted — ridding the body of both the alkaloid and cholesterol. Experiments with hamsters have shown that both tomatine-rich green tomatoes and purified tomatine can substantially lower the levels of undesirable LDL cholesterol while maintaining normal levels of HDL (PMID: 10942315). Experiments with high-tomatine green tomato extracts were recently shown to strongly inhibit the growth of a number of human cancer cell lines including breast (MCF-7), colon (HT-29), gastric (AGS), and hepatoma (liver) (HepG2), as well as normal human liver cells (PMID: 19514731). Other studies have found that purified tomatine is an outstanding immunoadjuvant capable of stimulating potent antigen-specific humoral and cellular immune responses that contribute to protection against malaria, Francisella tularensis and regression of experimental tumors (PMID: 15193398). Tomatine is a mildly toxic glycoalkaloid or glycospirosolane (steroidal alkaloids whose structure contains a spirosolane skeleton) found in the stems and leaves of tomato plants as well as in the fruit of unripened (green) tomatoes (up to 500 mg/kg). Red, ripe tomatoes have somewhat reduced amounts of tomatine. A toxic dose of tomatine for an adult human would appear to require the consumption of at least 500 g of tomato leaves in one sitting (“Toxic Plants of North America” (Iowa State University Press, 2001)). Tomatine is known to have fungicidal and antimicrobial properties and is likely produced by tomato plants as a defense against bacteria, fungi, viruses, and insects (PMID: 19514731). Some microbes produce an enzyme called tomatinase which can degrade tomatine, rendering it ineffective as an antimicrobial (PMID: 18835993).Tomatine has historically been used as a reagent in analytical chemistry for precipitating cholesterol from solution (PMID: 4362143). When lab animals ingest tomatine, essentially all of it passes through the animal unabsorbed. Tomatine apparently binds to cholesterol in the digestive tract, and the largely insoluble combination is excreted — ridding the body of both the alkaloid and cholesterol. Experiments with hamsters have shown that both tomatine-rich green tomatoes and purified tomatine can substantially lower the levels of undesirable LDL cholesterol while maintaining norma D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents D000890 - Anti-Infective Agents > D000935 - Antifungal Agents Tomatine is a glycoalkaloid, found in the tomato plant (Lycopersicon esculentum Mill.). Tomatine elicits neurotoxicity in RIP1 kinase and caspase-independent manner. Tomatine promotes the upregulation of nuclear apoptosis inducing factor (AIF) in neuroblastoma cells. Tomatine also inhibits 20S proteasome activity[1]. Tomatine is a glycoalkaloid, found in the tomato plant (Lycopersicon esculentum Mill.). Tomatine elicits neurotoxicity in RIP1 kinase and caspase-independent manner. Tomatine promotes the upregulation of nuclear apoptosis inducing factor (AIF) in neuroblastoma cells. Tomatine also inhibits 20S proteasome activity[1].

   

3b,5a,6b-Cholestanetriol

(1S,2R,5S,7R,8R,10S,11S,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadecane-5,7,8-triol

C27H48O3 (420.3603)


3b,5a,6b-Cholestanetriol is a product of cholesterol oxidation found in human plasma. D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites

   

Chelirubine

Chelirubine

C21H16NO5+ (362.1028)


A benzophenanthridine alkaloid that is sanguinarine bearing a methoxy substituent at position 10.

   

Chlorambucil

N,N-Di-2-chloroethyl-gamma-p-aminophenylbutyric acid

C14H19Cl2NO2 (303.0793)


A nitrogen mustard alkylating agent used as antineoplastic agent for the treatment of various malignant and nonmalignant diseases. Although it is less toxic than most other nitrogen mustards, it has been listed as a known carcinogen in the Fourth Annual Report on Carcinogens (NTP 85-002, 1985). (Merck Index, 11th ed) L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01A - Alkylating agents > L01AA - Nitrogen mustard analogues D000970 - Antineoplastic Agents > D018906 - Antineoplastic Agents, Alkylating > D009588 - Nitrogen Mustard Compounds C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D009676 - Noxae > D000477 - Alkylating Agents

   

Ardisianone

Ardisianone

C24H38O5 (406.2719)


   

Embelin

2,5-dihydroxy-3-undecylcyclohexa-2,5-diene-1,4-dione

C17H26O4 (294.1831)


Embelin (Embelic acid), a potent, nonpeptidic XIAP inhibitor (IC50=4.1 μM), inhibits cell growth, induces apoptosis, and activates caspase-9 in prostate cancer cells with high levels of XIAP. Embelin blocks NF-kappaB signaling pathway leading to suppression of NF-kappaB-regulated antiapoptotic and metastatic gene products. Embelin also induces autophagic and apoptotic cell death in human oral squamous cell carcinoma cells[1][2][3]. Embelin (Embelic acid), a potent, nonpeptidic XIAP inhibitor (IC50=4.1 μM), inhibits cell growth, induces apoptosis, and activates caspase-9 in prostate cancer cells with high levels of XIAP. Embelin blocks NF-kappaB signaling pathway leading to suppression of NF-kappaB-regulated antiapoptotic and metastatic gene products. Embelin also induces autophagic and apoptotic cell death in human oral squamous cell carcinoma cells[1][2][3].

   
   
   
   

alpha-Bisabolol

(+)-Epi-alpha-bisabolol

C15H26O (222.1984)


alpha-Bisabolol is a nontoxic sesquiterpene alcohol present in natural essential oil, with anticancer activity. alpha-Bisabolol exerts selective anticancer effect on A549 NSCLC cells (IC50=15 μM) via induction of cell cycle arrest, mitochondrial apoptosis and inhibition of PI3K/Akt signalling pathways. alpha-Bisabolol also strongly induces apoptosis in glioma cells[1][2]. alpha-Bisabolol is a nontoxic sesquiterpene alcohol present in natural essential oil, with anticancer activity. alpha-Bisabolol exerts selective anticancer effect on A549 NSCLC cells (IC50=15 μM) via induction of cell cycle arrest, mitochondrial apoptosis and inhibition of PI3K/Akt signalling pathways. alpha-Bisabolol also strongly induces apoptosis in glioma cells[1][2].

   

Tauroursodeoxycholic acid

2-[(4R)-4-[(1S,2S,5R,9S,10R,11S,14R,15R)-5,9-dihydroxy-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-14-yl]pentanamido]ethane-1-sulfonic acid

C26H45NO6S (499.2967)


Tauroursodeoxycholic acid is a bile acid also known as TUDCA formed in the liver by conjugation of deoxycholate with taurine, usually as the sodium salt. TUDCA is able to prevent apoptosis and protect mitochondria from cellular elements that would otherwise interfere with energy production. One of these elements is a protein called Bax. TUDCA plays an important role in preventing Bax from being transported to the mitochondria. Bile acids are steroid acids found predominantly in bile of mammals. The distinction between different bile acids is minute, depends only on presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g., membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues. (PMID: 11316487, 16037564, 12576301, 11907135) [HMDB] Tauroursodeoxycholic acid is a bile acid also known as TUDCA formed in the liver by conjugation of deoxycholate with taurine, usually as the sodium salt. TUDCA is able to prevent apoptosis and protect mitochondria from cellular elements that would otherwise interfere with energy production. One of these elements is a protein called Bax. TUDCA plays an important role in preventing Bax from being transported to the mitochondria. Bile acids are steroid acids found predominantly in the bile of mammals. The distinction between different bile acids is minute, depending only on the presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g. membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues (PMID: 11316487, 16037564, 12576301, 11907135). D005765 - Gastrointestinal Agents > D002756 - Cholagogues and Choleretics D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids D013501 - Surface-Active Agents > D003902 - Detergents Taurochenodeoxycholic acid (12-Deoxycholyltaurine) is one of the main bioactive substances of animals' bile acid. Taurochenodeoxycholic acid induces apoptosis and shows obvious anti-inflammatory and immune regulation properties[1][2]. Tauroursodeoxycholate (Tauroursodeoxycholic acid) is an endoplasmic reticulum (ER) stress inhibitor. Tauroursodeoxycholate significantly reduces expression of apoptosis molecules, such as caspase-3 and caspase-12. Tauroursodeoxycholate also inhibits ERK. Tauroursodeoxycholate (Tauroursodeoxycholic acid) is an endoplasmic reticulum (ER) stress inhibitor. Tauroursodeoxycholate significantly reduces expression of apoptosis molecules, such as caspase-3 and caspase-12. Tauroursodeoxycholate also inhibits ERK.

   

alpha-Bisabolol

6-methyl-2-(4-methylcyclohex-3-en-1-yl)hept-5-en-2-ol

C15H26O (222.1984)


alpha-Bisabolol is a nontoxic sesquiterpene alcohol present in natural essential oil, with anticancer activity. alpha-Bisabolol exerts selective anticancer effect on A549 NSCLC cells (IC50=15 μM) via induction of cell cycle arrest, mitochondrial apoptosis and inhibition of PI3K/Akt signalling pathways. alpha-Bisabolol also strongly induces apoptosis in glioma cells[1][2]. alpha-Bisabolol is a nontoxic sesquiterpene alcohol present in natural essential oil, with anticancer activity. alpha-Bisabolol exerts selective anticancer effect on A549 NSCLC cells (IC50=15 μM) via induction of cell cycle arrest, mitochondrial apoptosis and inhibition of PI3K/Akt signalling pathways. alpha-Bisabolol also strongly induces apoptosis in glioma cells[1][2].

   

Methysticin

6-[2-(2H-1,3-benzodioxol-5-yl)ethenyl]-4-methoxy-5,6-dihydro-2H-pyran-2-one

C15H14O5 (274.0841)


   

Scarlet red

1-(2-{2-methyl-4-[2-(2-methylphenyl)diazen-1-yl]phenyl}diazen-1-yl)naphthalen-2-ol

C24H20N4O (380.1637)


D004396 - Coloring Agents

   

Taurochenodeoxycholate

2-[(3a,7a-dihydroxy-24-oxo-5beta-cholan-24-yl)amino]ethanesulfonate

C26H45NO6S (499.2967)


D005765 - Gastrointestinal Agents > D002756 - Cholagogues and Choleretics D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids D013501 - Surface-Active Agents > D003902 - Detergents Taurochenodeoxycholic acid (12-Deoxycholyltaurine) is one of the main bioactive substances of animals' bile acid. Taurochenodeoxycholic acid induces apoptosis and shows obvious anti-inflammatory and immune regulation properties[1][2].

   

Glycochenodeoxycholate

Glycochenodeoxycholic acid

C26H43NO5 (449.3141)


D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids D013501 - Surface-Active Agents > D003902 - Detergents Glycochenodeoxycholic acid (Chenodeoxycholylglycine) is a bile acid formed in the liver from chenodeoxycholate and glycine. It acts as a detergent to solubilize fats for absorption and is itself absorbed. Glycochenodeoxycholic acid (Chenodeoxycholylglycine) induces hepatocyte apoptosis[1][2].

   

Scutellarein

(2S)-2,3-dihydro-5,6,7-trihydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one

C15H10O6 (286.0477)


Scutellarein is flavone substituted with hydroxy groups at C-4, -5, -6 and -7. It has a role as a metabolite. It is functionally related to an apigenin. It is a conjugate acid of a scutellarein(1-). Scutellarein is a natural product found in Scoparia dulcis, Artemisia douglasiana, and other organisms with data available. Flavone substituted with hydroxy groups at C-4, -5, -6 and -7. Scutellarein, also known as 6-hydroxyapigenin or 4,5,6,7-tetrahydroxyflavanone, is a member of the class of compounds known as flavones. Flavones are flavonoids with a structure based on the backbone of 2-phenylchromen-4-one (2-phenyl-1-benzopyran-4-one). Thus, scutellarein is considered to be a flavonoid lipid molecule. Scutellarein is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Scutellarein can be synthesized from apigenin. Scutellarein is also a parent compound for other transformation products, including but not limited to, scutellarin, 4,6-dihydroxy-5,7-dimethoxyflavone, and 6-hydroxy-4,5,7-trimethoxyflavone. Scutellarein is a bitter tasting compound found in mexican oregano and sweet orange, which makes scutellarein a potential biomarker for the consumption of these food products. Scutellarein is a flavone that can be found in Scutellaria lateriflora and other members of the genus Scutellaria, as well as the fern Asplenium belangeri . Scutellarein is a natural flavonoid compound with anti-inflammatory effects. Scutellarein is a natural flavonoid compound with anti-inflammatory effects.

   

Embelin

2,5-Cyclohexadiene-1,4-dione, 2,5-dihydroxy-3-undecyl- (9CI)

C17H26O4 (294.1831)


Embelin is a member of the class of dihydroxy-1,4-benzoquinones that is 2,5-dihydroxy-1,4-benzoquinone which is substituted by an undecyl group at position 3. Isolated from Lysimachia punctata and Embelia ribes, it exhibits antimicrobial, antineoplastic and inhibitory activity towards hepatitis C protease. It has a role as a hepatitis C protease inhibitor, an antimicrobial agent, an antineoplastic agent and a plant metabolite. Embelin is a natural product found in Ardisia paniculata, Embelia tsjeriam-cottam, and other organisms with data available. A member of the class of dihydroxy-1,4-benzoquinones that is 2,5-dihydroxy-1,4-benzoquinone which is substituted by an undecyl group at position 3. Isolated from Lysimachia punctata and Embelia ribes, it exhibits antimicrobial, antineoplastic and inhibitory activity towards hepatitis C protease. Embelin (Embelic acid), a potent, nonpeptidic XIAP inhibitor (IC50=4.1 μM), inhibits cell growth, induces apoptosis, and activates caspase-9 in prostate cancer cells with high levels of XIAP. Embelin blocks NF-kappaB signaling pathway leading to suppression of NF-kappaB-regulated antiapoptotic and metastatic gene products. Embelin also induces autophagic and apoptotic cell death in human oral squamous cell carcinoma cells[1][2][3]. Embelin (Embelic acid), a potent, nonpeptidic XIAP inhibitor (IC50=4.1 μM), inhibits cell growth, induces apoptosis, and activates caspase-9 in prostate cancer cells with high levels of XIAP. Embelin blocks NF-kappaB signaling pathway leading to suppression of NF-kappaB-regulated antiapoptotic and metastatic gene products. Embelin also induces autophagic and apoptotic cell death in human oral squamous cell carcinoma cells[1][2][3].

   

Tomatine

beta-D-Galactopyranoside, (3beta,5alpha,22beta,25S)-spirosolan-3-yl O-beta-D-glucopyranosyl-(1-->2)-O-[beta-D-xylopyranosyl-(1-->3)]-O-beta-D-glucopyranosyl-(1-->4)-

C50H83NO21 (1033.5457)


Tomatine is a steroid alkaloid that is tomatidine in which the hydroxy group at position 3 is linked to lycotetraose, a tetrasaccharide composed of two units of D-glucose, one unit of D-xylose, and one unit of D-galactose. It has a role as an immunological adjuvant, a phytotoxin and an antifungal agent. It is a steroid alkaloid, a tetrasaccharide derivative, an alkaloid antibiotic, a glycoside and a glycoalkaloid. It is functionally related to a tomatidine. Lycopersicin is a natural product found in Solanum acaule, Solanum lycopersicoides, and other organisms with data available. An alkaloid that occurs in the extract of leaves of wild tomato plants. It has been found to inhibit the growth of various fungi and bacteria. It is used as a precipitating agent for steroids. (From The Merck Index, 11th ed) A steroid alkaloid that is tomatidine in which the hydroxy group at position 3 is linked to lycotetraose, a tetrasaccharide composed of two units of D-glucose, one unit of D-xylose, and one unit of D-galactose. D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents D000890 - Anti-Infective Agents > D000935 - Antifungal Agents Tomatine is a glycoalkaloid, found in the tomato plant (Lycopersicon esculentum Mill.). Tomatine elicits neurotoxicity in RIP1 kinase and caspase-independent manner. Tomatine promotes the upregulation of nuclear apoptosis inducing factor (AIF) in neuroblastoma cells. Tomatine also inhibits 20S proteasome activity[1]. Tomatine is a glycoalkaloid, found in the tomato plant (Lycopersicon esculentum Mill.). Tomatine elicits neurotoxicity in RIP1 kinase and caspase-independent manner. Tomatine promotes the upregulation of nuclear apoptosis inducing factor (AIF) in neuroblastoma cells. Tomatine also inhibits 20S proteasome activity[1].

   

alpha-Cadinol

alpha-Cadinol

C15H26O (222.1984)


A cadinane sesquiterpenoid that is cadin-4-ene carrying a hydroxy substituent at position 10.

   

Vestitol

(3S)-3,4-Dihydro-3-(2-hydroxy-4-methoxyphenyl)-2H-1-benzopyran-7-ol

C16H16O4 (272.1049)


The S-enantiomer of vestitol. Vestitol is a member of the class of hydroxyisoflavans that is isoflavan substituted by hydroxy groups at positions 7 and 2 and a methoxy group at position 4. Isolated from Glycyrrhiza uralensis, it exhibits anti-inflammatory activity. It has a role as an anti-inflammatory agent, a plant metabolite and a phytoalexin. It is an aromatic ether, a member of hydroxyisoflavans and a methoxyisoflavan. Vestitol is a natural product found in Lotus japonicus, Medicago rugosa, and other organisms with data available. A member of the class of hydroxyisoflavans that is isoflavan substituted by hydroxy groups at positions 7 and 2 and a methoxy group at position 4. Isolated from Glycyrrhiza uralensis, it exhibits anti-inflammatory activity.

   

sanguinarine

sanguinarine

[C20H14NO4]+ (332.0923)


Origin: Plant; SubCategory_DNP: Isoquinoline alkaloids, Benzylisoquinoline alkaloids D020011 - Protective Agents > D002316 - Cardiotonic Agents D000890 - Anti-Infective Agents D002317 - Cardiovascular Agents Annotation level-1 IPB_RECORD: 1581; CONFIDENCE confident structure

   

Glycochenodeoxycholic acid

Chenodeoxycholic acid glycine conjugate

C26H43NO5 (449.3141)


A bile acid glycine conjugate having 3alpha,7alpha-dihydroxy-5beta-cholan-24-oyl as the bile acid component. Chenodeoxycholic acid glycine conjugate is an acyl glycine and a bile acid-glycine conugate. It is a secondary bile acid produced by the action of enzymes existing in the microbial flora of the colonic environment. In hepatocytes, both primary and secondary bile acids undergo amino acid conjugation at the C-24 carboxylic acid on the side chain, and almost all bile acids in the bile duct therefore exist in a glycine conjugated form (PMID:16949895). This compound usually exists as the sodium salt and acts as a detergent to solubilize fats for absorption and is itself absorbed. It is a cholagogue and choleretic. [HMDB] Glycochenodeoxycholic acid (Chenodeoxycholylglycine) is a bile acid formed in the liver from chenodeoxycholate and glycine. It acts as a detergent to solubilize fats for absorption and is itself absorbed. Glycochenodeoxycholic acid (Chenodeoxycholylglycine) induces hepatocyte apoptosis[1][2].

   

Topotecan

Topotecan hydrochloride hydrate

C23H23N3O5 (421.1638)


L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01C - Plant alkaloids and other natural products > L01CE - Topoisomerase 1 (top1) inhibitors C274 - Antineoplastic Agent > C2189 - Signal Transduction Inhibitor > C129824 - Antineoplastic Protein Inhibitor D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059004 - Topoisomerase I Inhibitors C471 - Enzyme Inhibitor > C129825 - Antineoplastic Enzyme Inhibitor > C1748 - Topoisomerase Inhibitor COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D004791 - Enzyme Inhibitors Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Methysticin

5-Hydroxy-3-methoxy-7-(3,4-(methylenedioxy)phenyl)-2,6-heptadienoic acid gamma-lactone

C15H14O5 (274.0841)


Methysticin is a member of 2-pyranones and an aromatic ether. Methysticin is a natural product found in Piper methysticum and Piper majusculum with data available. See also: Piper methysticum root (part of). Methylsticin is a kavalactone isolated from the Piper methysticum . Methylsticin exhibit osteoclast formation inhibitory activity[1]. Methylsticin is a kavalactone isolated from the Piper methysticum . Methylsticin exhibit osteoclast formation inhibitory activity[1].

   

4-Isopropyl-1,6-dimethyl-1,2,3,4,4a,7,8,8a-octahydro-1-naphthalenol

4-Isopropyl-1,6-dimethyl-1,2,3,4,4a,7,8,8a-octahydro-1-naphthalenol

C15H26O (222.1984)


   

Flavonoid

4H-1-Benzopyran-4-one, 5,6,7-trihydroxy-2-(4-hydroxyphenyl)-

C15H10O6 (286.0477)


Scutellarein is a natural flavonoid compound with anti-inflammatory effects. Scutellarein is a natural flavonoid compound with anti-inflammatory effects.

   

Pseudochelerythrine

24-methyl-5,7,18,20-tetraoxa-24-azahexacyclo[11.11.0.0²,¹⁰.0⁴,⁸.0¹⁴,²².0¹⁷,²¹]tetracosa-1(24),2,4(8),9,11,13,15,17(21),22-nonaen-24-ium

C20H14NO4+ (332.0923)


Sanguinarine is a benzophenanthridine alkaloid, an alkaloid antibiotic and a botanical anti-fungal agent. Sanguinarine is a natural product found in Fumaria capreolata, Fumaria kralikii, and other organisms with data available. Sanguinarine is found in opium poppy. Consumption of Sanguinarine, present in poppy seeds and in the oil of Argemone mexicana which has been used as an adulterant for mustard oil in India, has been linked to development of glaucoma. Sanguinarine is banned by FDA. Sanguinarine is a quaternary ammonium salt from the group of benzylisoquinoline alkaloids. It is extracted from some plants, including bloodroot (Sanguinaria canadensis), Mexican prickly poppy Argemone mexicana, Chelidonium majus and Macleaya cordata. It is also found in the root, stem and leaves of the opium poppy but not in the capsule. Sanguinarine is a toxin that kills animal cells through its action on the Na+-K+-ATPase transmembrane protein. Epidemic dropsy is a disease that results from ingesting sanguinarine. Sanguinarine has been shown to exhibit antibiotic, anti-apoptotic, anti-fungal, anti-inflammatory and anti-angiogenic functions Sanguinarine belongs to the family of Benzoquinolines. These are organic compounds containing a benzene fused to a quinoline ring system. (A3208, A3209, A3208, A3208, A3208). See also: Sanguinaria canadensis root (part of); Chelidonium majus flowering top (part of). Sanguinarine is found in opium poppy. Consumption of Sanguinarine, present in poppy seeds and in the oil of Argemone mexicana which has been used as an adulterant for mustard oil in India, has been linked to development of glaucoma. Sanguinarine is banned by FDA. Sanguinarine is a quaternary ammonium salt from the group of benzylisoquinoline alkaloids. It is extracted from some plants, including bloodroot (Sanguinaria canadensis), Mexican prickly poppy Argemone mexicana, Chelidonium majus and Macleaya cordata. It is also found in the root, stem and leaves of the opium poppy but not in the capsule.[citation needed]; Sanguinarine is a toxin that kills animal cells through its action on the Na+-K+-ATPase transmembrane protein. Epidemic dropsy is a disease that results from ingesting sanguinarine Sanguinarine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=2447-54-3 (retrieved 2024-06-29) (CAS RN: 2447-54-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

chlorambucil

chlorambucil

C14H19Cl2NO2 (303.0793)


L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01A - Alkylating agents > L01AA - Nitrogen mustard analogues D000970 - Antineoplastic Agents > D018906 - Antineoplastic Agents, Alkylating > D009588 - Nitrogen Mustard Compounds C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D009676 - Noxae > D000477 - Alkylating Agents

   

3β,5α,6β-Trihydroxycholestane

3beta,5alpha,6beta-Trihydroxycholestane

C27H48O3 (420.3603)


D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites

   

2-Epi Docetaxel

2-Epi Docetaxel

C43H53NO14 (807.3466)


D050258 - Mitosis Modulators > D050256 - Antimitotic Agents > D050257 - Tubulin Modulators D000970 - Antineoplastic Agents > D050256 - Antimitotic Agents

   

(R)-Methysticin

(R)-Methysticin

C15H14O5 (274.0841)