Exact Mass: 244.0867
Exact Mass Matches: 244.0867
Found 500 metabolites which its exact mass value is equals to given mass value 244.0867
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
Uridine
Uridine, also known as beta-uridine or 1-beta-D-ribofuranosylpyrimidine-2,4(1H,3H)-dione, is a member of the class of compounds known as pyrimidine nucleosides. Pyrimidine nucleosides are compounds comprising a pyrimidine base attached to a ribosyl or deoxyribosyl moiety. More specifically, uridine is a nucleoside consisting of uracil and D-ribose and a component of RNA. Uridine is soluble (in water) and a very weakly acidic compound (based on its pKa). Uridine can be synthesized from uracil. It is one of the five standard nucleosides which make up nucleic acids, the others being adenosine, thymidine, cytidine and guanosine. The five nucleosides are commonly abbreviated to their one-letter codes U, A, T, C and G respectively. Uridine is also a parent compound for other transformation products, including but not limited to, nikkomycin Z, 3-(enolpyruvyl)uridine 5-monophosphate, and 5-aminomethyl-2-thiouridine. Uridine can be found in most biofluids, including urine, breast milk, cerebrospinal fluid (CSF), and blood. Within the cell, uridine is primarily located in the mitochondria, in the nucleus and the lysosome. It can also be found in the extracellular space. As an essential nucleoside, uridine exists in all living species, ranging from bacteria to humans. In humans, uridine is involved in several metabolic disorders, some of which include dhydropyrimidinase deficiency, MNGIE (mitochondrial neurogastrointestinal encephalopathy), and beta-ureidopropionase deficiency. Moreover, uridine is found to be associated with Lesch-Nyhan syndrome, which is an inborn error of metabolism. Uridine is a nucleoside consisting of uracil and D-ribose and a component of RNA. Uridine plays a role in the glycolysis pathway of galactose. In humans there is no catabolic process to metabolize galactose. Therefore, galactose is converted to glucose and metabolized via the normal glucose metabolism pathways. More specifically, consumed galactose is converted into galactose 1-phosphate (Gal-1-P). This molecule is a substrate for the enzyme galactose-1-phosphate uridyl transferase which transfers a UDP molecule to the galactose molecule. The end result is UDP-galactose and glucose-1-phosphate. This process is continued to allow the proper glycolysis of galactose. Uridine is found in many foods (anything containing RNA) but is destroyed in the liver and gastrointestinal tract, and so no food, when consumed, has ever been reliably shown to elevate blood uridine levels. On the other hand, consumption of RNA-rich foods may lead to high levels of purines (adenine and guanosine) in blood. High levels of purines are known to increase uric acid production and may aggravate or lead to conditions such as gout. Uridine is a ribonucleoside composed of a molecule of uracil attached to a ribofuranose moiety via a beta-N(1)-glycosidic bond. It has a role as a human metabolite, a fundamental metabolite and a drug metabolite. It is functionally related to a uracil. Uridine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Uridine is a Pyrimidine Analog. The chemical classification of uridine is Pyrimidines, and Analogs/Derivatives. Uridine is a natural product found in Ulva australis, Synechocystis, and other organisms with data available. Uridine is a nucleoside consisting of uracil and D-ribose and a component of RNA. Uridine has been studied as a rescue agent to reduce the toxicities associated with 5-fluorouracil (5-FU), thereby allowing the administration of higher doses of 5-FU in chemotherapy regimens. (NCI04) Uridine is a metabolite found in or produced by Saccharomyces cerevisiae. A ribonucleoside in which RIBOSE is linked to URACIL. Uridine is a molecule (known as a nucleoside) that is formed when uracil is attached to a ribose ring (also known as a ribofuranose) via a b-N1-glycosidic bond. ; Uridine is a molecule (known as a nucleoside) that is formed when uracil is attached to a ribose ring (also known as a ribofuranose) via a ?-N1-glycosidic bond. Uridine is found in many foods, some of which are celery leaves, canola, common hazelnut, and hickory nut. A ribonucleoside composed of a molecule of uracil attached to a ribofuranose moiety via a beta-N(1)-glycosidic bond. [Spectral] Uridine (exact mass = 244.06954) and Adenosine (exact mass = 267.09675) and Glutathione (exact mass = 307.08381) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] Uridine (exact mass = 244.06954) and Glutathione (exact mass = 307.08381) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Uridine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=58-96-8 (retrieved 2024-06-29) (CAS RN: 58-96-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Uridine (β-Uridine) is a glycosylated pyrimidine-analog containing uracil attached to a ribose ring (or more specifically, aribofuranose) via a β-N1-glycosidic bond. Uridine (β-Uridine) is a glycosylated pyrimidine-analog containing uracil attached to a ribose ring (or more specifically, aribofuranose) via a β-N1-glycosidic bond. Uridine (β-Uridine) is a glycosylated pyrimidine-analog containing uracil attached to a ribose ring (or more specifically, aribofuranose) via a β-N1-glycosidic bond.
3,3',4'5-Tetrahydroxystilbene
Piceatannol is a stilbenol that is trans-stilbene in which one of the phenyl groups is substituted by hydroxy groups at positions 3 and 4, while the other phenyl group is substituted by hydroxy groups at positions 3 and 5. It has a role as a protein kinase inhibitor, a tyrosine kinase inhibitor, an antineoplastic agent, a plant metabolite, a hypoglycemic agent, an apoptosis inducer and a geroprotector. It is a stilbenol, a member of resorcinols, a member of catechols and a polyphenol. It derives from a hydride of a trans-stilbene. Piceatannol is a natural product found in Vitis amurensis, Smilax bracteata, and other organisms with data available. Piceatannol is a polyhydroxylated stilbene extract from the seeds of Euphorbia lagascae, which inhibits protein tyrosine kinase Syk and induces apoptosis. (NCI) Piceatannol is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Wine grape (part of); Robinia pseudoacacia whole (part of); Tsuga canadensis bark (part of). 3,3,45-Tetrahydroxystilbene (or Piceatannol) is a phenolic stilbenoid. It is a metabolite of resveratrol found in red wine. A viral protein-tyrosine kinase (LMP2A) implicated in leukemia, non-Hodgkins lymphoma and other diseases associated with Epstein-Barr virus, was recently found to be blocked by picetannol in vitro (PMID 2590224). Therefore there is research interest in piceatannol as an anti-cancer and anti-EBV drug. Piceatannol can also act as an agonist for estrogen receptor alpha in human breast cancer cells (PMID: 16216908). [HMDB] 3,3,45-Tetrahydroxystilbene (or Piceatannol) is a phenolic stilbenoid. It is a metabolite of resveratrol found in red wine. A viral protein-tyrosine kinase (LMP2A) implicated in leukemia, non-Hodgkins lymphoma and other diseases associated with Epstein-Barr virus, was recently found to be blocked by picetannol in vitro (PMID 2590224). Therefore there is research interest in piceatannol as an anti-cancer and anti-EBV drug. Piceatannol can also act as an agonist for estrogen receptor alpha in human breast cancer cells (PMID: 16216908). A stilbenol that is trans-stilbene in which one of the phenyl groups is substituted by hydroxy groups at positions 3 and 4, while the other phenyl group is substituted by hydroxy groups at positions 3 and 5. C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor > C1967 - Tyrosine Kinase Inhibitor Piceatannol is a well-known Syk inhibitor and reduces the expression of iNOS induced by TNF. Piceatannol is an effective agent for research of acute lung injury (ALI)[1]. Piceatannol is a naturally occurring polyphenolic stilbene found in various fruits and vegetables and exhibits anticancer and anti-inflammatory properties[2]. Piceatannol induces apoptosis in DLBCL cell lines[3]. Piceatannol induces autophagy and apoptosis in MOLT-4 human leukemia cells[4]. Piceatannol is a well-known Syk inhibitor and reduces the expression of iNOS induced by TNF. Piceatannol is an effective agent for research of acute lung injury (ALI)[1]. Piceatannol is a naturally occurring polyphenolic stilbene found in various fruits and vegetables and exhibits anticancer and anti-inflammatory properties[2]. Piceatannol induces apoptosis in DLBCL cell lines[3]. Piceatannol induces autophagy and apoptosis in MOLT-4 human leukemia cells[4].
Gnetol
Gnetol is a natural product found in Gnetum edule, Gnetum hainanense, and other organisms with data available. Gnetol is a phenolic compound isolated from the root of Gnetum montanum . Gnetol potently inhibits COX-1 (IC50 of 0.78 μM) and HDAC. Gnetol is a potent tyrosinase inhibitor with an IC50 of 4.5 μM for murine tyrosinase and suppresses melanin biosynthesis. Gnetol has antioxidant, antiproliferative, anticancer and hepatoprotective activity. Gnetol also possesses concentration-dependent α-Amylase, α-glucosidase, and adipogenesis activities[1][2][3]. Gnetol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=86361-55-9 (retrieved 2024-12-11) (CAS RN: 86361-55-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Biotin
Biotin (also known as vitamin B7 or vitamin H) is one of the B vitamins.[1][2][3] It is involved in a wide range of metabolic processes, both in humans and in other organisms, primarily related to the utilization of fats, carbohydrates, and amino acids.[4] The name biotin, borrowed from the German Biotin, derives from the Ancient Greek word βίοτος (bíotos; 'life') and the suffix "-in" (a suffix used in chemistry usually to indicate 'forming').[5] Biotin appears as a white, needle-like crystalline solid.[6] Biotin is an organic heterobicyclic compound that consists of 2-oxohexahydro-1H-thieno[3,4-d]imidazole having a valeric acid substituent attached to the tetrahydrothiophene ring. The parent of the class of biotins. It has a role as a prosthetic group, a coenzyme, a nutraceutical, a human metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite, a mouse metabolite, a cofactor and a fundamental metabolite. It is a member of biotins and a vitamin B7. It is a conjugate acid of a biotinate. A water-soluble, enzyme co-factor present in minute amounts in every living cell. It occurs mainly bound to proteins or polypeptides and is abundant in liver, kidney, pancreas, yeast, and milk. Biotin is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Biotin is a natural product found in Lysinibacillus sphaericus, Aspergillus nidulans, and other organisms with data available. Biotin is hexahydro-2-oxo-1H-thieno(3,4-d)imidazole-4-pentanoic acid. Growth factor present in minute amounts in every living cell. It occurs mainly bound to proteins or polypeptides and is abundant in liver, kidney, pancreas, yeast, and milk. The biotin content of cancerous tissue is higher than that of normal tissue. Biotin is an enzyme co-factor present in minute amounts in every living cell. Biotin is also known as vitamin H or B7 or coenzyme R. It occurs mainly bound to proteins or polypeptides and is abundant in liver, kidney, pancreas, yeast, and milk. Biotin has been recognized as an essential nutrient. Our biotin requirement is fulfilled in part through diet, through endogenous reutilization of biotin and perhaps through capture of biotin generated in the intestinal flora. The utilization of biotin for covalent attachment to carboxylases and its reutilization through the release of carboxylase biotin after proteolytic degradation constitutes the biotin cycle. Biotin deficiency is associated with neurological manifestations, skin rash, hair loss and metabolic disturbances that are thought to relate to the various carboxylase deficiencies (metabolic ketoacidosis with lactic acidosis). It has also been suggested that biotin deficiency is associated with protein malnutrition, and that marginal biotin deficiency in pregnant women may be teratogenic. Biotin acts as a carboxyl carrier in carboxylation reactions. There are four biotin-dependent carboxylases in mammals: those of propionyl-CoA (PCC), 3-methylcrotonyl-CoA (MCC), pyruvate (PC) and acetyl-CoA carboxylases (isoforms ACC-1 and ACC-2). All but ACC-2 are mitochondrial enzymes. The biotin moiety is covalently bound to the epsilon amino group of a Lysine residue in each of these carboxylases in a domain 60-80 amino acids long. The domain is structurally similar among carboxylases from bacteria to mammals. There are four biotin-dependent carboxylases in mammals: those of propionyl-CoA (PCC), 3-methylcrotonyl-CoA (MCC), pyruvate (PC) and acetyl-CoA carboxylases (isoforms ACC-1 and ACC-2). All but ACC-2 are mitochondrial enzymes. The biotin moiety is covalently bound to the epsilon amino group of a Lys residue in each of these carboxylases in a domain 60-80 amino acids long. The domain is structurally similar among carboxylases from bacteria to mammals. Evidence is emerging that biotin participates in processes other than classical carboxylation reactions. Specifically, novel roles for biotin in cell signaling, gene expression, and chromatin structure have been identified in recent years. Human cells accumulate biotin by using both the sodium-dependent multivitamin transporter and monocarboxylate transporter 1. These transporters and other biotin-binding proteins partition biotin to compartments involved in biotin signaling: cytoplasm, mitochondria, and nuclei. The activity of cell signals such as biotinyl-AMP, Sp1 and Sp3, nuclear factor (NF)-kappaB, and receptor tyrosine kinases depends on biotin supply. Consistent with a role for biotin and its catabolites in ... Biotin is an enzyme co-factor present in minute amounts in every living cell. Biotin is also known as coenzyme R and vitamin H or B7. It occurs mainly bound to proteins or polypeptides and is abundant in liver, kidney, pancreas, yeast, and milk. Biotin has been recognized as an essential nutrient. Humans fulfill their biotin requirement through their diet through endogenous reutilization of biotin and perhaps through the capture of biotin generated in the intestinal flora. The utilization of biotin for covalent attachment to carboxylases and its reutilization through the release of carboxylase biotin after proteolytic degradation constitutes the biotin cycle. Biotin deficiency is associated with neurological manifestations, skin rash, hair loss, and metabolic disturbances that are thought to relate to the various carboxylase deficiencies (metabolic ketoacidosis with lactic acidosis). It has also been suggested that biotin deficiency is associated with protein malnutrition, and that marginal biotin deficiency in pregnant women may be teratogenic. Biotin acts as a carboxyl carrier in carboxylation reactions. There are four biotin-dependent carboxylases in mammals: those of propionyl-CoA (PCC), 3-methylcrotonyl-CoA (MCC), pyruvate (PC), and acetyl-CoA carboxylases (isoforms ACC-1 and ACC-2). All but ACC-2 are mitochondrial enzymes. The biotin moiety is covalently bound to the epsilon amino group of a lysine residue in each of these carboxylases in a domain 60-80 amino acids long. The domain is structurally similar among carboxylases from bacteria to mammals. Evidence is emerging that biotin participates in processes other than classical carboxylation reactions. Specifically, novel roles for biotin in cell signalling, gene expression, and chromatin structure have been identified in recent years. Human cells accumulate biotin by using both the sodium-dependent multivitamin transporter and monocarboxylate transporter 1. These transporters and other biotin-binding proteins partition biotin to compartments involved in biotin signalling: cytoplasm, mitochondria, and nuclei. The activity of cell signals such as biotinyl-AMP, Sp1 and Sp3, nuclear factor (NF)-kappaB, and receptor tyrosine kinases depends on biotin supply. Consistent with a role for biotin and its catabolites in modulating these cell signals, greater than 2000 biotin-dependent genes have been identified in various human tissues. Many biotin-dependent gene products play roles in signal transduction and localize to the cell nucleus, consistent with a role for biotin in cell signalling. Posttranscriptional events related to ribosomal activity and protein folding may further contribute to the effects of biotin on gene expression. Finally, research has shown that biotinidase and holocarboxylase synthetase mediate covalent binding of biotin to histones (DNA-binding proteins), affecting chromatin structure; at least seven biotinylation sites have been identified in human histones. Biotinylation of histones appears to play a role in cell proliferation, gene silencing, and the cellular response to DNA repair. Roles for biotin in cell signalling and chromatin structure are consistent with the notion that biotin has a unique significance in cell biology (PMID: 15992684, 16011464). Present in many foods; particularly rich sources include yeast, eggs, liver, certain fish (e.g. mackerel, salmon, sardines), soybeans, cauliflower and cow peas. Dietary supplement. Isolated from various higher plant sources, e.g. sweet corn seedlings and radish leaves An organic heterobicyclic compound that consists of 2-oxohexahydro-1H-thieno[3,4-d]imidazole having a valeric acid substituent attached to the tetrahydrothiophene ring. The parent of the class of biotins. [Raw Data] CB004_Biotin_pos_50eV_CB000006.txt [Raw Data] CB004_Biotin_pos_30eV_CB000006.txt [Raw Data] CB004_Biotin_pos_40eV_CB000006.txt [Raw Data] CB004_Biotin_pos_20eV_CB000006.txt [Raw Data] CB004_Biotin_pos_10eV_CB000006.txt [Raw Data] CB004_Biotin_neg_10eV_000006.txt [Raw Data] CB004_Biotin_neg_20eV_000006.txt Biosynthesis Biotin, synthesized in plants, is essential to plant growth and development.[22] Bacteria also synthesize biotin,[23] and it is thought that bacteria resident in the large intestine may synthesize biotin that is absorbed and utilized by the host organism.[18] Biosynthesis starts from two precursors, alanine and pimeloyl-CoA. These form 7-keto-8-aminopelargonic acid (KAPA). KAPA is transported from plant peroxisomes to mitochondria where it is converted to 7,8-diaminopelargonic acid (DAPA) with the help of the enzyme, BioA. The enzyme dethiobiotin synthetase catalyzes the formation of the ureido ring via a DAPA carbamate activated with ATP, creating dethiobiotin with the help of the enzyme, BioD, which is then converted into biotin which is catalyzed by BioB.[24] The last step is catalyzed by biotin synthase, a radical SAM enzyme. The sulfur is donated by an unusual [2Fe-2S] ferredoxin.[25] Depending on the species of bacteria, Biotin can be synthesized via multiple pathways.[24] Biotin (Vitamin B7) is a water-soluble B vitamin and serves as a coenzyme for five carboxylases in humans, involved in the synthesis of fatty acids, isoleucine, and valine, and in gluconeogenesis. Biotin is necessary for cell growth, the production of fatty acids, and the metabolism of fats and amino acids[1][2][3]. Biotin, vitamin B7 and serves as a coenzyme for five carboxylases in humans, involved in the synthesis of fatty acids, isoleucine, and valine, and in gluconeogenesis. Biotin is necessary for cell growth, the production of fatty acids, and the metabolism of fats and amino acids[1][2][3]. Biotin (Vitamin B7) is a water-soluble B vitamin and serves as a coenzyme for five carboxylases in humans, involved in the synthesis of fatty acids, isoleucine, and valine, and in gluconeogenesis. Biotin is necessary for cell growth, the production of fatty acids, and the metabolism of fats and amino acids[1][2][3].
Pseudouridine
Beta-pseudouridine, also known as p or 5-(b-D-ribofuranosyl)uracil, is a member of the class of compounds known as nucleoside and nucleotide analogues. Nucleoside and nucleotide analogues are analogues of nucleosides and nucleotides. These include phosphonated nucleosides, C-glycosylated nucleoside bases, analogues where the sugar unit is a pyranose, and carbocyclic nucleosides, among others. Beta-pseudouridine is soluble (in water) and a very weakly acidic compound (based on its pKa). Beta-pseudouridine can be found in a number of food items such as eggplant, wax gourd, asparagus, and garden cress, which makes beta-pseudouridine a potential biomarker for the consumption of these food products. Beta-pseudouridine can be found primarily in amniotic fluid, blood, feces, and urine. Beta-pseudouridine exists in all living species, ranging from bacteria to humans. Moreover, beta-pseudouridine is found to be associated with canavan disease. Pseudouridine, also known as psi-uridine or 5-ribosyluracil, belongs to the class of organic compounds known as nucleoside and nucleotide analogues. These are analogues of nucleosides and nucleotides, such as phosphonated nucleosides, C-glycosylated nucleoside bases, analogues where the sugar unit is a pyranose, and carbocyclic nucleosides. Pseudouridine specifically has its uracil attached via a carbon-carbon instead of a nitrogen-carbon glycosidic bond to the ribofuranose. It is the most prevalent of the over one hundred different modified nucleosides found in RNA (PMID: 17113994). Pseudouridine is a solid that is soluble in water. Pseudouridine exists in all living species, ranging from bacteria to humans, and is in all classes of RNA except mRNA. It is formed by enzymes called pseudouridine synthases, which post-transcriptionally isomerize specific uridine residues in RNA. Pseudouridine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=1445-07-4 (retrieved 2024-07-01) (CAS RN: 1445-07-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Pseudouridine is an isomer of the nucleoside uridine, and the most abundant modified nucleoside in non-coding RNAs. Pseudouridine in rRNA and tRNA can fine-tune and stabilize the regional structure and help maintain their functions in mRNA decoding, ribosome assembly, processing and translation[1][2][3][4]. Pseudouridine is an isomer of the nucleoside uridine, and the most abundant modified nucleoside in non-coding RNAs. Pseudouridine in rRNA and tRNA can fine-tune and stabilize the regional structure and help maintain their functions in mRNA decoding, ribosome assembly, processing and translation[1][2][3][4].
Azacitidine
Azacitidine is only found in individuals that have used or taken this drug. It is a pyrimidine nucleoside analogue that inhibits DNA methyltransferase, impairing DNA methylation. It is also an antimetabolite of cytidine, incorporated primarily into RNA. Azacytidine has been used as an antineoplastic agent. [PubChem]Azacitidine (5-azacytidine) is a chemical analogue of the cytosine nucleoside used in DNA and RNA. Azacitidine is thought to induce antineoplastic activity via two mechanisms; inhibition of DNA methyltransferase at low doses, causing hypomethylation of DNA, and direct cytotoxicity in abnormal hematopoietic cells in the bone marrow through its incorporation into DNA and RNA at high doses, resulting in cell death. As azacitidine is a ribonucleoside, it incoporates into RNA to a larger extent than into DNA. The incorporation into RNA leads to the dissembly of polyribosomes, defective methylation and acceptor function of transfer RNA, and inhibition of the production of protein. Its incorporation into DNA leads to a covalent binding with DNA methyltransferases, which prevents DNA synthesis and subsequent cytotoxicity. L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01B - Antimetabolites > L01BC - Pyrimidine analogues C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite C471 - Enzyme Inhibitor > C2083 - DNA Methyltransferase Inhibitor C274 - Antineoplastic Agent > C132686 - Demethylating Agent D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents D004791 - Enzyme Inhibitors 5-Azacytidine (Azacitidine; 5-AzaC; Ladakamycin) is a nucleoside analogue of cytidine that specifically inhibits DNA methylation. 5-Azacytidine is incorporated into DNA to covalently trap DNA methyltransferases and contributes to reverse epigenetic changes[1][2]. 5-Azacytidine induces cell autophagy[4].
Flurbiprofen
Flurbiprofen, a propionic acid derivative, is a nonsteroidal anti-inflammatory agent (NSAIA) with antipyretic and analgesic activity. Oral formulations of flurbiprofen may be used for the symptomatic treatment of rheumatoid arthritis, osteoarthritis and anklylosing spondylitis. Flurbiprofen may also be used topically prior to ocular surgery to prevent or reduce intraoperative miosis. Flurbiprofen is structurally and pharmacologically related to fenoprofen, ibuprofen, and ketoprofen. M - Musculo-skeletal system > M02 - Topical products for joint and muscular pain > M02A - Topical products for joint and muscular pain > M02AA - Antiinflammatory preparations, non-steroids for topical use M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AE - Propionic acid derivatives S - Sensory organs > S01 - Ophthalmologicals > S01B - Antiinflammatory agents > S01BC - Antiinflammatory agents, non-steroids D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic R - Respiratory system > R02 - Throat preparations > R02A - Throat preparations D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C471 - Enzyme Inhibitor > C29577 - Carbonic Anhydrase Inhibitor D002491 - Central Nervous System Agents > D000700 - Analgesics C471 - Enzyme Inhibitor > C1323 - Cyclooxygenase Inhibitor D000893 - Anti-Inflammatory Agents D004791 - Enzyme Inhibitors
Dioxybenzone
C1892 - Chemopreventive Agent > C851 - Sunscreen Same as: D03853
Metiamide
Metiamide belongs to the class of organic compounds known as imidazoles. These are compounds containing an imidazole ring, which is an aromatic five-member ring with two nitrogen atoms at positions 1 and 3, and three carbon atoms. C78276 - Agent Affecting Digestive System or Metabolism > C29701 - Anti-ulcer Agent > C29702 - Histamine-2 Receptor Antagonist D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents Metiamide (SK&F 92058) is a histamine H2-receptor antagonist developed from another H2 antagonist, burimamide.
(2E,11Z)-Wyerone acid
(2E,11Z)-Wyerone acid is found in pulses. (2E,11Z)-Wyerone acid is isolated from broad bean leaves (Vicia faba) infected with Botrytis specie Isolated from broad bean leaves (Vicia faba) infected with Botrytis subspecies (2E,11Z)-Wyerone acid is found in pulses.
Eriobofuran
Phytoalexin from the leaves of Eriobotrya japonica (loquat). Eriobofuran is found in loquat and fruits. Eriobofuran is found in fruits. Phytoalexin from the leaves of Eriobotrya japonica (loquat).
Oxyresveratrol
Oxyresveratrol (trans-Oxyresveratrol) is a potent naturally occurring antioxidant and free radical scavenger (IC50 of 28.9 μM against DPPH free radicals). Oxyresveratrol is potent and noncompetitive tyrosinase inhibitor with an IC50 value of 1.2 μM for mushroom tyrosinase. Oxyresveratrol is effective against HSV-1, HSV-2 and varicella-zoster virus, and has neuroprotective effects[1][2][3][4]. Oxyresveratrol (trans-Oxyresveratrol) is a potent naturally occurring antioxidant and free radical scavenger (IC50 of 28.9 μM against DPPH free radicals). Oxyresveratrol is potent and noncompetitive tyrosinase inhibitor with an IC50 value of 1.2 μM for mushroom tyrosinase. Oxyresveratrol is effective against HSV-1, HSV-2 and varicella-zoster virus, and has neuroprotective effects[1][2][3][4].
Ribavirin
J - Antiinfectives for systemic use > J05 - Antivirals for systemic use > J05A - Direct acting antivirals > J05AP - Antivirals for treatment of hcv infections COVID info from Guide to PHARMACOLOGY, clinicaltrial, clinicaltrials, clinical trial, clinical trials, COVID-19 Disease Map D000890 - Anti-Infective Agents > D000998 - Antiviral Agents C254 - Anti-Infective Agent > C281 - Antiviral Agent D009676 - Noxae > D000963 - Antimetabolites Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; EAWAG_UCHEM_ID 2860 Ribavirin (ICN-1229) is an antiviral agent against a broad spectrum of viruses including HCV, HIVl, and RSV. Ribavirin also has anti-orthopoxvirus and anti-variola activities.
Ribavirin
Ribavirin is only found in individuals that have used or taken this drug. It is a nucleoside antimetabolite antiviral agent that blocks nucleic acid synthesis and is used against both RNA and DNA viruses. [PubChem]Ribavirin is readily phosphorylated intracellularly by adenosine kinase to ribavirin mono-, di-, and triphosphate metabolites. Ribavirin triphosphate (RTP) is a potent competitive inhibitor of inosine monophosphate (IMP) dehydrogenase, viral RNA polymerase and messenger RNA (mRNA) guanylyltransferase (viral) and can be incorporated into RNA in RNA viral species. Guanylyltranserase inhibition stops the capping of mRNA. These diverse effects result in a marked reduction of intracellular guanosine triphosphate (GTP) pools and inhibition of viral RNA and protein synthesis. Ribavirin is also incorporated into the viral genome causing lethal mutagenesis and a subsequent decrease in specific viral infectivity. J - Antiinfectives for systemic use > J05 - Antivirals for systemic use > J05A - Direct acting antivirals > J05AP - Antivirals for treatment of hcv infections COVID info from Guide to PHARMACOLOGY, clinicaltrial, clinicaltrials, clinical trial, clinical trials, COVID-19 Disease Map D000890 - Anti-Infective Agents > D000998 - Antiviral Agents C254 - Anti-Infective Agent > C281 - Antiviral Agent D009676 - Noxae > D000963 - Antimetabolites Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Ribavirin (ICN-1229) is an antiviral agent against a broad spectrum of viruses including HCV, HIVl, and RSV. Ribavirin also has anti-orthopoxvirus and anti-variola activities.
Graveolone
Constituent of Anethum graveolens (dill). Graveolone is found in dill, herbs and spices, and parsley. Graveolone is found in herbs and spices. Graveolone is a constituent of Anethum graveolens (dill).
(R)-Apiumetin
(R)-Apiumetin is found in green vegetables. (R)-Apiumetin is a constituent of the seeds of Apium graveolens. Constituent of the seeds of Apium graveolens. (R)-Apiumetin is found in green vegetables.
threo-Syringoylglycerol
erythro-Syringoylglycerol is found in alcoholic beverages. erythro-Syringoylglycerol is a constituent of the roots of Coix lachryma-jobi (Jobs tears)
Haematopodin
Haematopodin is found in root vegetables. Haematopodin is a pigment from fruiting bodies of the toadstool Mycena haematopus (blood mycena). Pigment from fruiting bodies of the toadstool Mycena haematopus (blood mycena). Haematopodin is found in root vegetables.
Suberenone
Suberenone is found in herbs and spices. Suberenone is a constituent of Ruta graveolens (rue)
9,10-Dihydro-2,3,5,7-Phenanthrenetetrol
9,10-Dihydro-2,3,5,7-Phenanthrenetetrol is found in root vegetables. 9,10-Dihydro-2,3,5,7-Phenanthrenetetrol is isolated from Dioscorea bulbifera (air potato). Isolated from Dioscorea bulbifera (air potato). 9,10-Dihydro-2,3,5,7-Phenanthrenetetrol is found in root vegetables.
Indolylacryloylglycine
Indolylacryloylglycine (IAG) is a compound that is derived, in the same way as many other indole compounds, from tryptophan or indole compounds in the diet. It is likely a product of gut metabolism although the exact source is still unclear. IAG is elevated in the urine of autistic children with gastrointestinal disturbances. Indolylacryloylglycine (IAG) is a compound that is derived, in the same way as many other indole compounds, from tryptophan or indole compounds in the diet as it is impossible for the body to make these basics. IAG is found in the urine but the source within the body is unclear. [HMDB]
1-[3,4-Dihydroxy-5-(hydroxymethyl)-2-oxolanyl]-1,2,4-triazole-3-carboxamide
D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D009676 - Noxae > D000963 - Antimetabolites
3'-DEOXY-3'-FLUOROTHYMIDINE
D009676 - Noxae > D000963 - Antimetabolites > D015224 - Dideoxynucleosides D000890 - Anti-Infective Agents > D000998 - Antiviral Agents
1-[(2R,3S,5R)-3,4-Dihydroxy-5-(hydroxymethyl)oxolan-2-yl]pyrimidine-2,4-dione
1-beta-D-Arabinofuranosyluracil (Uracil 1-β-D-arabinofuranoside) isolated from the Caribbean sponge Tectitethya crypta, is a methoxyadenosine derivative. 1-beta-D-Arabinofuranosyluracil has demonstrated a diverse bioactivity profile including anti-inflammatory activity, analgesic and vasodilation properties[1]. 1-beta-D-Arabinofuranosyluracil reduces a proliferation of mouse lymphoma cells[2]. 1-beta-D-Arabinofuranosyluracil (Uracil 1-β-D-arabinofuranoside) isolated from the Caribbean sponge Tectitethya crypta, is a methoxyadenosine derivative. 1-beta-D-Arabinofuranosyluracil has demonstrated a diverse bioactivity profile including anti-inflammatory activity, analgesic and vasodilation properties[1]. 1-beta-D-Arabinofuranosyluracil reduces a proliferation of mouse lymphoma cells[2]. 1-beta-D-Arabinofuranosyluracil (Uracil 1-β-D-arabinofuranoside) isolated from the Caribbean sponge Tectitethya crypta, is a methoxyadenosine derivative. 1-beta-D-Arabinofuranosyluracil has demonstrated a diverse bioactivity profile including anti-inflammatory activity, analgesic and vasodilation properties[1]. 1-beta-D-Arabinofuranosyluracil reduces a proliferation of mouse lymphoma cells[2].
Amidephrine
C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists
arabinofuranosyl-5-azacytosine
4-Amino-1-(6-aminopurin-9-yl)pyrimidin-2-one
1-[(2R,3R,4S,5R)-3,4-Dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxypyrimidin-2-one
Piceatannol
Piceatannol, also known as (Z)-3,5,3,4-tetrahydroxystilbene, is a member of the class of compounds known as stilbenes. Stilbenes are organic compounds containing a 1,2-diphenylethylene moiety. Stilbenes (C6-C2-C6 ) are derived from the common phenylpropene (C6-C3) skeleton building block. The introduction of one or more hydroxyl groups to a phenyl ring lead to stilbenoids. Piceatannol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Piceatannol can be synthesized from cis-stilbene. Piceatannol can also be synthesized into cis-astringin. Piceatannol can be found in common grape and grape wine, which makes piceatannol a potential biomarker for the consumption of these food products. Piceatannol is a stilbenoid, a type of phenolic compound .
Uridine
C26170 - Protective Agent > C2459 - Chemoprotective Agent > C2080 - Cytoprotective Agent COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Uridine (β-Uridine) is a glycosylated pyrimidine-analog containing uracil attached to a ribose ring (or more specifically, aribofuranose) via a β-N1-glycosidic bond. Uridine (β-Uridine) is a glycosylated pyrimidine-analog containing uracil attached to a ribose ring (or more specifically, aribofuranose) via a β-N1-glycosidic bond. Uridine (β-Uridine) is a glycosylated pyrimidine-analog containing uracil attached to a ribose ring (or more specifically, aribofuranose) via a β-N1-glycosidic bond.
Pseudouridine
Pseudouridine is an isomer of the nucleoside uridine, and the most abundant modified nucleoside in non-coding RNAs. Pseudouridine in rRNA and tRNA can fine-tune and stabilize the regional structure and help maintain their functions in mRNA decoding, ribosome assembly, processing and translation[1][2][3][4]. Pseudouridine is an isomer of the nucleoside uridine, and the most abundant modified nucleoside in non-coding RNAs. Pseudouridine in rRNA and tRNA can fine-tune and stabilize the regional structure and help maintain their functions in mRNA decoding, ribosome assembly, processing and translation[1][2][3][4].
4-Hydroxydehydrokawain
6-[(e)-2-(4-Hydroxyphenyl)ethenyl]-4-methoxypyran-2-one is a natural product found in Alpinia blepharocalyx, Anaphalis sinica, and Alpinia roxburghii with data available.
Oxyresveratrol
Oxyresveratrol is a stilbenoid. Oxyresveratrol is a natural product found in Spirotropis longifolia, Melaleuca leucadendra, and other organisms with data available. Oxyresveratrol (trans-Oxyresveratrol) is a potent naturally occurring antioxidant and free radical scavenger (IC50 of 28.9 μM against DPPH free radicals). Oxyresveratrol is potent and noncompetitive tyrosinase inhibitor with an IC50 value of 1.2 μM for mushroom tyrosinase. Oxyresveratrol is effective against HSV-1, HSV-2 and varicella-zoster virus, and has neuroprotective effects[1][2][3][4]. Oxyresveratrol (trans-Oxyresveratrol) is a potent naturally occurring antioxidant and free radical scavenger (IC50 of 28.9 μM against DPPH free radicals). Oxyresveratrol is potent and noncompetitive tyrosinase inhibitor with an IC50 value of 1.2 μM for mushroom tyrosinase. Oxyresveratrol is effective against HSV-1, HSV-2 and varicella-zoster virus, and has neuroprotective effects[1][2][3][4].
Tensyuic acid F
A tensyuic acid that is itaconic acid which has been substituted at position 3 by a 3-(ethoxycarbonyl)propyl group. The (-)-isomer, isolated from Aspergillus niger FKI-2342.
2-[(E)-2-(3,5-dihydroxyphenyl)ethenyl]benzene-1,3-diol
5-Hydroxyseselin
5-Hydroxyseselin is a natural product found in Metrodorea flavida, Citrus sulcata, and Citrus tamurana with data available.
Tensyuic acid A
A tensyuic acid that is itaconic acid which has been substituted at position 3 by a 3-(methoxycarbonyl)propyl group and in which the non-conjugated carboxy group has been converted to the corresponding methyl ester. The (+)-isomer, isolated from Aspergillus niger FKI-2342.
1-(beta-D-ribofuranosyl)imidazolin-2-one-4-carboxaldehyde|ribofuranosyl-4-formyl-4-imidazolin-2-one|RT 2.0
Benzyl 2,5-dihydroxybenzoate
A benzoate ester resulting from the formal condensation of the carboxy group of 2,5-dihydroxybenzoic acid with the hydroxy group of phenylmethanol.
BENZO(1,2-b:5,4-b)DIFURAN-4,8-DIONE, 2,3-DIHYDRO-2-ISOPROPENYL-5-METHYL-, (-)-
5-Hydroxy-8,8-dimethyl-4H,8H-benzo[1,2-b:3,4-b]dipyran-4-one
(9R)-4-methoxy-9H-fluoren-2,5,9-triol|denchrysan B
(2-hydroxy-4-methoxyphenyl)(4-hydroxyphenyl)methanone
(Z)-form-9-Tetradecene-2,4,6-triynedioic acid,|cis-Tetradec-9-en-2,4,6-triindisaeure
1-(2,4-dihydroxyphenyl)-2-(4-hydroxyphenyl)ethanone
3-Hydroxyxanthyletin
3-Hydroxyxanthyletin is a natural product found in Boronia algida with data available.
4-[2-(3,4-dihydroxyphenyl)ethenyl]benzene-1,2-diol
(E)-3-(3,5-dihydroxystyryl)benzene-1,2-diol|smiglastilbene
Me ether-6-Acetyl-5-hydroxy-7-methyl-1,4-naphthoquinone
6-hydroxy-8-(prop-1-en-2-yl)-8,9-dihydro-2h-furo-[2,3-h]chromen-2-one
4beta-carbomethoxy-6beta,8beta-dihydroxy-8alpha-methyliridolactone|shanzhilactone
3-Pyrimidin-2-yl-2-pyrimidin-2-ylmethyl-propionic acid
Epicar
Pilocarpine hydrochloride is the hydrochloride salt of (+)-pilocarpine, a medication used to treat increased pressure inside the eye and dry mouth. It contains a (+)-pilocarpine. Pilocarpine Hydrochloride is the hydrochloride salt of a natural alkaloid extracted from plants of the genus Pilocarpus with cholinergic agonist activity. As a cholinergic parasympathomimetic agent, pilocarpine predominantly binds to muscarinic receptors, thereby inducing exocrine gland secretion and stimulating smooth muscle in the bronchi, urinary tract, biliary tract, and intestinal tract. When applied topically to the eye, this agent stimulates the sphincter pupillae to contract, resulting in miosis; stimulates the ciliary muscle to contract, resulting in spasm of accomodation; and may cause a transitory rise in intraocular pressure followed by a more persistent fall due to opening of the trabecular meshwork and an increase in the outflow of aqueous humor. A slowly hydrolyzed muscarinic agonist with no nicotinic effects. Pilocarpine is used as a miotic and in the treatment of glaucoma. See also: Pilocarpine (has active moiety); Betaxolol hydrochloride; pilocarpine hydrochloride (component of). D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018679 - Cholinergic Agonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D008916 - Miotics C78272 - Agent Affecting Nervous System > C47796 - Cholinergic Agonist
Eleutherol
Eleutherol is a naphthofuran. Eleutherol is a natural product found in Sisyrinchium palmifolium and Eleutherine bulbosa with data available. [Raw Data] CBA05_Eleutherol_neg_50eV000002.txt [Raw Data] CBA05_Eleutherol_neg_40eV000002.txt [Raw Data] CBA05_Eleutherol_neg_30eV000002.txt [Raw Data] CBA05_Eleutherol_neg_20eV000002.txt [Raw Data] CBA05_Eleutherol_neg_10eV000002.txt [Raw Data] CBA05_Eleutherol_pos_50eV_000002.txt [Raw Data] CBA05_Eleutherol_pos_40eV_000002.txt [Raw Data] CBA05_Eleutherol_pos_30eV_000002.txt [Raw Data] CBA05_Eleutherol_pos_20eV_000002.txt [Raw Data] CBA05_Eleutherol_pos_10eV_000002.txt
L-Uridine
L-Uridine, isolated from the Polyporaceae fungus Poria cocos (Schw.), is an enantiomer of the normal RNA constituent D-uridine. L-uridine acts as a phosphate acceptor for nucleoside phosphotransferases[1]. L-Uridine, isolated from the Polyporaceae fungus Poria cocos (Schw.), is an enantiomer of the normal RNA constituent D-uridine. L-uridine acts as a phosphate acceptor for nucleoside phosphotransferases[1]. L-Uridine, isolated from the Polyporaceae fungus Poria cocos (Schw.), is an enantiomer of the normal RNA constituent D-uridine. L-uridine acts as a phosphate acceptor for nucleoside phosphotransferases[1].
Biotin
A - Alimentary tract and metabolism > A11 - Vitamins D018977 - Micronutrients > D014815 - Vitamins CONFIDENCE standard compound; INTERNAL_ID 1328; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2876; ORIGINAL_PRECURSOR_SCAN_NO 2873 CONFIDENCE standard compound; INTERNAL_ID 1328; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2877; ORIGINAL_PRECURSOR_SCAN_NO 2875 CONFIDENCE standard compound; INTERNAL_ID 1328; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2896; ORIGINAL_PRECURSOR_SCAN_NO 2894 CONFIDENCE standard compound; INTERNAL_ID 1328; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2875; ORIGINAL_PRECURSOR_SCAN_NO 2872 CONFIDENCE standard compound; INTERNAL_ID 1328; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2894; ORIGINAL_PRECURSOR_SCAN_NO 2891 CONFIDENCE standard compound; INTERNAL_ID 1328; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2908; ORIGINAL_PRECURSOR_SCAN_NO 2906 CONFIDENCE standard compound; INTERNAL_ID 1328; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6231; ORIGINAL_PRECURSOR_SCAN_NO 6229 CONFIDENCE standard compound; INTERNAL_ID 1328; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6248; ORIGINAL_PRECURSOR_SCAN_NO 6246 CONFIDENCE standard compound; INTERNAL_ID 1328; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6251; ORIGINAL_PRECURSOR_SCAN_NO 6246 CONFIDENCE standard compound; INTERNAL_ID 1328; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6253; ORIGINAL_PRECURSOR_SCAN_NO 6251 CONFIDENCE standard compound; INTERNAL_ID 1328; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6265; ORIGINAL_PRECURSOR_SCAN_NO 6263 CONFIDENCE standard compound; INTERNAL_ID 1328; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6256; ORIGINAL_PRECURSOR_SCAN_NO 6253 CONFIDENCE standard compound; INTERNAL_ID 219 INTERNAL_ID 219; CONFIDENCE standard compound relative retention time with respect to 9-anthracene Carboxylic Acid is 0.474 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.471 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.469 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.470 Biotin (Vitamin B7) is a water-soluble B vitamin and serves as a coenzyme for five carboxylases in humans, involved in the synthesis of fatty acids, isoleucine, and valine, and in gluconeogenesis. Biotin is necessary for cell growth, the production of fatty acids, and the metabolism of fats and amino acids[1][2][3]. Biotin, vitamin B7 and serves as a coenzyme for five carboxylases in humans, involved in the synthesis of fatty acids, isoleucine, and valine, and in gluconeogenesis. Biotin is necessary for cell growth, the production of fatty acids, and the metabolism of fats and amino acids[1][2][3]. Biotin (Vitamin B7) is a water-soluble B vitamin and serves as a coenzyme for five carboxylases in humans, involved in the synthesis of fatty acids, isoleucine, and valine, and in gluconeogenesis. Biotin is necessary for cell growth, the production of fatty acids, and the metabolism of fats and amino acids[1][2][3].
Uridine
C26170 - Protective Agent > C2459 - Chemoprotective Agent > C2080 - Cytoprotective Agent COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; DRTQHJPVMGBUCF_STSL_0179_Uridine_8000fmol_180506_S2_LC02_MS02_83; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.088 Uridine (β-Uridine) is a glycosylated pyrimidine-analog containing uracil attached to a ribose ring (or more specifically, aribofuranose) via a β-N1-glycosidic bond. Uridine (β-Uridine) is a glycosylated pyrimidine-analog containing uracil attached to a ribose ring (or more specifically, aribofuranose) via a β-N1-glycosidic bond. Uridine (β-Uridine) is a glycosylated pyrimidine-analog containing uracil attached to a ribose ring (or more specifically, aribofuranose) via a β-N1-glycosidic bond.
flurbiprofen
M - Musculo-skeletal system > M02 - Topical products for joint and muscular pain > M02A - Topical products for joint and muscular pain > M02AA - Antiinflammatory preparations, non-steroids for topical use M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AE - Propionic acid derivatives S - Sensory organs > S01 - Ophthalmologicals > S01B - Antiinflammatory agents > S01BC - Antiinflammatory agents, non-steroids D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic R - Respiratory system > R02 - Throat preparations > R02A - Throat preparations D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C471 - Enzyme Inhibitor > C29577 - Carbonic Anhydrase Inhibitor D002491 - Central Nervous System Agents > D000700 - Analgesics C471 - Enzyme Inhibitor > C1323 - Cyclooxygenase Inhibitor D000893 - Anti-Inflammatory Agents D004791 - Enzyme Inhibitors
8,8-Dimethyl-10H-pyrano[2,3-f]chromen-2,9-dione
8-(2-hydroxypropan-2-yl)furo[2,3-h]chromen-2-one
4-[(E)-2-(3,5-dihydroxyphenyl)ethenyl]benzene-1,3-diol
Piceatannol
C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor > C1967 - Tyrosine Kinase Inhibitor Piceatannol is a well-known Syk inhibitor and reduces the expression of iNOS induced by TNF. Piceatannol is an effective agent for research of acute lung injury (ALI)[1]. Piceatannol is a naturally occurring polyphenolic stilbene found in various fruits and vegetables and exhibits anticancer and anti-inflammatory properties[2]. Piceatannol induces apoptosis in DLBCL cell lines[3]. Piceatannol induces autophagy and apoptosis in MOLT-4 human leukemia cells[4]. Piceatannol is a well-known Syk inhibitor and reduces the expression of iNOS induced by TNF. Piceatannol is an effective agent for research of acute lung injury (ALI)[1]. Piceatannol is a naturally occurring polyphenolic stilbene found in various fruits and vegetables and exhibits anticancer and anti-inflammatory properties[2]. Piceatannol induces apoptosis in DLBCL cell lines[3]. Piceatannol induces autophagy and apoptosis in MOLT-4 human leukemia cells[4].
Pseudouridine
A C-glycosyl pyrimidine that consists of uracil having a beta-D-ribofuranosyl residue attached at position 5. The C-glycosyl isomer of the nucleoside uridine. Pseudouridine is an isomer of the nucleoside uridine, and the most abundant modified nucleoside in non-coding RNAs. Pseudouridine in rRNA and tRNA can fine-tune and stabilize the regional structure and help maintain their functions in mRNA decoding, ribosome assembly, processing and translation[1][2][3][4]. Pseudouridine is an isomer of the nucleoside uridine, and the most abundant modified nucleoside in non-coding RNAs. Pseudouridine in rRNA and tRNA can fine-tune and stabilize the regional structure and help maintain their functions in mRNA decoding, ribosome assembly, processing and translation[1][2][3][4].
Arabinofuranosyluracil
1-beta-D-Arabinofuranosyluracil (Uracil 1-β-D-arabinofuranoside) isolated from the Caribbean sponge Tectitethya crypta, is a methoxyadenosine derivative. 1-beta-D-Arabinofuranosyluracil has demonstrated a diverse bioactivity profile including anti-inflammatory activity, analgesic and vasodilation properties[1]. 1-beta-D-Arabinofuranosyluracil reduces a proliferation of mouse lymphoma cells[2]. 1-beta-D-Arabinofuranosyluracil (Uracil 1-β-D-arabinofuranoside) isolated from the Caribbean sponge Tectitethya crypta, is a methoxyadenosine derivative. 1-beta-D-Arabinofuranosyluracil has demonstrated a diverse bioactivity profile including anti-inflammatory activity, analgesic and vasodilation properties[1]. 1-beta-D-Arabinofuranosyluracil reduces a proliferation of mouse lymphoma cells[2]. 1-beta-D-Arabinofuranosyluracil (Uracil 1-β-D-arabinofuranoside) isolated from the Caribbean sponge Tectitethya crypta, is a methoxyadenosine derivative. 1-beta-D-Arabinofuranosyluracil has demonstrated a diverse bioactivity profile including anti-inflammatory activity, analgesic and vasodilation properties[1]. 1-beta-D-Arabinofuranosyluracil reduces a proliferation of mouse lymphoma cells[2].
Esflurbiprofen
M - Musculo-skeletal system > M02 - Topical products for joint and muscular pain > M02A - Topical products for joint and muscular pain > M02AA - Antiinflammatory preparations, non-steroids for topical use C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic
Tarenflurbil
C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D004791 - Enzyme Inhibitors > D000091062 - Gamma Secretase Inhibitors and Modulators C274 - Antineoplastic Agent > C2189 - Signal Transduction Inhibitor
Haematopodin
2-(diethylamino)-6-methylpyridine-4-carboxylic acid,hydrochloride
6-methyl-4-oxo-3-phenylmethoxypyran-2-carbaldehyde
3-FLUOROMETHOXY-4,5-DIMETHOXY-BENZOIC ACID METHYL ESTER
4-((1H-PYRAZOLO[3,4-B]PYRIDIN-4-YL)OXY)-3-FLUOROANILINE
5-THIOPHEN-2-YL-1,2,3,4,5,6-HEXAHYDRO-[2,4]BIPYRIDINYL
5-HYDROXY-3-METHOXY-[1,1-BIPHENYL]-3-CARBOXYLIC ACID
METHYL 6-FLUORO-4-METHYL-[1,1-BIPHENYL]-3-CARBOXYLATE
3-((3-CYCLOPROPYL-1,2,4-OXADIAZOL-5-YL)METHOXY)BENZALDEHYDE
2-FLUORO-3,4,5-TRIMETHOXY-BENZOIC ACID METHYL ESTER
4-AMINO-2-(3-PYRIDINYL)-5-PYRIMIDINECARBOXYLIC ACID ETHYL ESTER
Fazarabine
C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite D000970 - Antineoplastic Agents
Pyrrolo[2,1-b]quinazoline-6-carboxylic acid, 1,2,3,9-tetrahydro-9-oxo-, hydrazide (9CI)
1-Methoxy-3,4-dihydro-1H-benzo[g]isochromene-5,10-dione
Hexanediimidic acid,1,6-dimethyl ester, hydrochloride (1:2)
N1-Benzyloxycarbonyl-1,3-diaminopropane hydrochloride
4-CHLORO-1-METHYL-3-(2-METHYLPROPYL)-1H-PYRAZOLE-5-CARBOXYLIC ACID ETHYL ESTER
(4-AMINO-PHENYL)-(3-METHYL-PIPERIDIN-1-YL)-METHANONE
2-(6-(Trifluoromethoxy)-1H-indol-3-yl)ethanamine hydrochloride
6-methyl-2-[2-[(E)-(6-oxo-1-cyclohexa-2,4-dienylidene)methyl]hydrazinyl]-1H-pyrimidin-4-one
4-FLUOROMETHOXY-3,5-DIMETHOXY-BENZOIC ACID METHYL ESTER
7-Ethoxy-6-methoxy-4-oxo-1,4-dihydro-3-quinolinecarbonitrile
2-HYDROXY-5-METHOXY-[1,1-BIPHENYL]-3-CARBOXYLIC ACID
4-HYDROXY-3-METHOXY-[1,1-BIPHENYL]-3-CARBOXYLIC ACID
Alovudine
C471 - Enzyme Inhibitor > C1589 - Reverse Transcriptase Inhibitor > C97452 - Nucleoside Reverse Transcriptase Inhibitor D009676 - Noxae > D000963 - Antimetabolites > D015224 - Dideoxynucleosides D000890 - Anti-Infective Agents > D000998 - Antiviral Agents C254 - Anti-Infective Agent > C281 - Antiviral Agent Alovudine (3'-Fluoro-3'-deoxythymidine) is a marker of DNA synthesis that is less susceptible to inflammatory changes than 18F-Fluorodeoxyglucose (FDG) and thus is a better biomarker in pancreatic cancer. Alovudine shows anti-orthopoxvirus activity[1][2].
2-(3-Hydroxy-n-propyl)-5-(trifluoromethyl)-benzimidazole
1-(3-FLUORO-4-METHYLPHENYL)-5-OXOPYRROLIDINE-3-CARBOXYLICACID
6-Ethoxy-7-methoxy-4-oxo-1,4-dihydro-3-quinolinecarbonitrile
7-(2-Methoxyethoxy)-4-oxo-1,4-dihydro-3-quinolinecarbonitrile
chrysen-6-ol
A hydroxychrysene that is chrysene in which the hydrogen at position 6 has been replaced by a hydroxy group. It is a metabolite of the polycyclic aromatic hydrocarbon chrysene.
(1,3-Bis(methoxymethyl)-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)boronic acid
2-PROPEN-1-ONE, 1-(2,5-DIFLUOROPHENYL)-3-PHENYL-, (2E)-
4-PHENYL-3,4,5,6,7,8-HEXAHYDROQUINAZOLINE-2(1H)-THIONE
3-(furan-2-ylmethyl)-7,8-dihydro-6H-chromene-2,5-dione
2-(BENZO[D][1,3]DIOXOLE-5-CARBONYL)-3-(DIMETHYLAMINO)ACRYLONITRILE
5-beta-D-Ribofuranosyl-1H-1,2,3-triazole-4-carboxamide
Methyl 4-(5-Cyclopropyl-1,2,4-oxadiazol-3-yl)benzoate
Benzyl [(2R)-2-aminopropyl]carbamate hydrochloride (1:1)
2-[[(1-ETH-1-YNYLBUT-2-ENYL)OXY]CARBONYL]BENZOIC ACID
1-(3-(Trifluoromethyl)pyridin-2-yl)piperidin-4-one
5-ACETYL-2-AMINO-4-(2-FURANYL)-6-METHYL-4H-PYRAN-3-CARBONITRILE
5-AMINO-N-(2-HYDROXYETHYL)-2,3-DIMETHYLBENZENESULFONAMIDE
2-methyl-N-[(2-methyl-1-oxopyridin-1-ium-4-ylidene)amino]-1-oxidopyridin-4-imine
3-Deoxy-3-(18F)fluorothymidine
D009676 - Noxae > D000963 - Antimetabolites > D015224 - Dideoxynucleosides C1446 - Radiopharmaceutical Compound > C2124 - Radioconjugate D000890 - Anti-Infective Agents > D000998 - Antiviral Agents
5-[(3AS,4R,6AR)-2-Oxohexahydro-1H-thieno[3,4-D]imidazol-4-YL]pentanoic acid
3-(1,3-Dihydro-1-oxo-2h-isoindol-2-yl)-2,6-piperidinedione
3,3-Difluorobenzaldazine
3,3'-Difluorobenzaldazine (DFB) is a selective positive allosteric modulator of mGluR5. 3,3'-Difluorobenzaldazine potentiates 3- to 6-fold action for mGlu5 agonists (Glutamate, Quisqualate, and 3,5-Dihydroxyphenylglycine), with EC50s in the 2 to 5 μM range[1].
7-methoxy-4,5-dihydro-2H-benzo[g]indazole-3-carboxylic acid
Safrazine hydrochloride
C471 - Enzyme Inhibitor > C667 - Monoamine Oxidase Inhibitor
Benzo[c]phenanthren-3-ol
A hydroxybenzo[c]phenanthrene that is benzo[c]phenanthrene in which the hydrogen at position 3 has been replaced by a hydroxy group.
Benzo[c]phenanthren-1-ol
A hydroxybenzo[c]phenanthrene that is benzo[c]phenanthrene in which the hydrogen at position 1 has been replaced by a hydroxy group. A metabolite of benzo[c]phenanthrene.
Benzo[c]phenanthren-2-ol
A hydroxybenzo[c]phenanthrene that is benzo[c]phenanthrene in which the hydrogen at position 2 has been replaced by a hydroxy group. A metabolite of benzo[c]phenanthrene and a weak xenoestrogen.
6-(Tert-butyl)-2-hydroxy-4-(trifluoromethyl)nicotinonitrile
5-(2-Oxo-1,3,3a,4,6,6a-hexahydrothieno(3,4-d)imidazol-4-yl)pentanoic acid
3-(5-Amino-3-imino-3H-pyrazol-4-ylazo)-benzoic acid
Azacitidine
L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01B - Antimetabolites > L01BC - Pyrimidine analogues C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite C471 - Enzyme Inhibitor > C2083 - DNA Methyltransferase Inhibitor C274 - Antineoplastic Agent > C132686 - Demethylating Agent D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents D004791 - Enzyme Inhibitors 5-Azacytidine (Azacitidine; 5-AzaC; Ladakamycin) is a nucleoside analogue of cytidine that specifically inhibits DNA methylation. 5-Azacytidine is incorporated into DNA to covalently trap DNA methyltransferases and contributes to reverse epigenetic changes[1][2]. 5-Azacytidine induces cell autophagy[4].
dioxybenzone
C1892 - Chemopreventive Agent > C851 - Sunscreen Same as: D03853
Pilocarpine
D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018679 - Cholinergic Agonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D008916 - Miotics C78272 - Agent Affecting Nervous System > C47796 - Cholinergic Agonist
Cudranin
Oxyresveratrol (trans-Oxyresveratrol) is a potent naturally occurring antioxidant and free radical scavenger (IC50 of 28.9 μM against DPPH free radicals). Oxyresveratrol is potent and noncompetitive tyrosinase inhibitor with an IC50 value of 1.2 μM for mushroom tyrosinase. Oxyresveratrol is effective against HSV-1, HSV-2 and varicella-zoster virus, and has neuroprotective effects[1][2][3][4]. Oxyresveratrol (trans-Oxyresveratrol) is a potent naturally occurring antioxidant and free radical scavenger (IC50 of 28.9 μM against DPPH free radicals). Oxyresveratrol is potent and noncompetitive tyrosinase inhibitor with an IC50 value of 1.2 μM for mushroom tyrosinase. Oxyresveratrol is effective against HSV-1, HSV-2 and varicella-zoster virus, and has neuroprotective effects[1][2][3][4].
2-Prop-1-en-2-yl-2,3-dihydropyrano[2,3-g][1,4]benzodioxin-7-one
2-[[(5S)-5-hydroxy-5-(hydroxymethyl)-2-methoxy-3-oxocyclohexen-1-yl]amino]acetate
[(2R,3S,4R,5R)-5-(2,4-dioxopyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methylazanium
4-Hydroxy-3-methyl-5-[methyl(methylcarbamoyl)amino]-2-oxoimidazole-4-carboxylic acid
4-amino-1-[3,4-dihydroxy-5-(hydroxyamino)oxolan-2-yl]pyrimidin-2-one
3-Carbomethoxy-6-benzyl-4-pyrone
A natural product found in Aspeciesrgillus species.
Kavapyrone
A pyranone that is 2H-pyran-2-one substituted by a methoxy group at position 4 and a 3-phenyloxiran-2-yl group at position 6 (the 2R,3S stereoisomer). Isolated from Didymocarpus aurantiacus and Piper rusbyi, it exhibits antileishmanial activity.
4-Sulfanylidene-1,6,7,8,9,10-hexahydropyrimido[3,4]pyrrolo[3,5-a]azepine-11-carbonitrile
1-[(2R,4R,5R)-3,4-dihydroxy-5-(hydroxymethyl)-2-oxolanyl]-1,2,4-triazole-3-carboxamide
(3,3-Diethoxy-2-hydroxypropyl) dihydrogen phosphate
(2E)-2-(aminothioxomethyl)-3-(2,3,5,6-tetramethylphenyl)prop-2-enenitrile
3-Amino-8-methoxy-2-methyl-3,5-dihydro-pyrimido[5,4-b]indol-4-one
1-Naphthalenecarboxylic acid, trimethylsilyl ester
METIAMIDE
C78276 - Agent Affecting Digestive System or Metabolism > C29701 - Anti-ulcer Agent > C29702 - Histamine-2 Receptor Antagonist D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents Metiamide (SK&F 92058) is a histamine H2-receptor antagonist developed from another H2 antagonist, burimamide.
1-[3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-1H-1,2,4-triazole-3-carboxamide
D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D009676 - Noxae > D000963 - Antimetabolites
Amidephrine
C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists
chrysen-3-ol
A hydroxychrysene that is chrysene in which the hydrogen at position 3 has been replaced by a hydroxy group. It is a metabolite of the polycyclic aromatic hydrocarbon chrysene.
chrysen-2-ol
A hydroxychrysene that is chrysene in which the hydrogen at position 2 has been replaced by a hydroxy group. It is a metabolite of the polycyclic aromatic hydrocarbon chrysene.
tetraphen-1-ol
A member of the class of tetraphenes that is tetraphene in which the hydrogen at position 1 has been replaced by a hydroxy group. It is a urinary hydroxylated metabolite of tetraphene (benzo[a]anthracene).
5-((E)-hept-4-en-2-yne-1-one-1-yl)-2-furanacrylic acid
chrysen-1-ol
A hydroxychrysene that is chrysene in which the hydrogen at position 1 has been replaced by a hydroxy group. It is a metabolite of the polycyclic aromatic hydrocarbon chrysene.
chrysen-4-ol
A hydroxychrysene that is chrysene in which the hydrogen at position 4 has been replaced by a hydroxy group. It is a metabolite of the polycyclic aromatic hydrocarbon chrysene.
3-[(2-aminoethyl)sulfanyl]-6-methyl-7-oxo-1-azabicyclo[3.2.0]heptane-2-carboxylic acid
A beta-lactam that is 7-oxo-1-azabicyclo[3.2.0]heptane-2-carboxylic acid carrying additional (2-aminoethyl)sulfanyl and methyl substituents at positions 3 and 6 respectively. An intermediate in the biosynthesis of carbapenem.
2-(3,5-dihydroxyphenyl)-1-(4-hydroxyphenyl)ethanone
5-[2-(2,6-dihydroxyphenyl)ethenyl]benzene-1,3-diol
4-hydroxy-1-[(3,4,5-trihydroxyoxolan-2-yl)methyl]pyrimidin-2-one
methyl (1r,4as,5r,7s,7as)-1,5,7-trihydroxy-7-methyl-1h,4ah,5h,6h,7ah-cyclopenta[c]pyran-4-carboxylate
3-hydroxy-3-(4-methoxy-6-oxo-2,3-dihydropyran-2-yl)propyl acetate
(3s)-4-hydroxy-5-methoxy-3-methyl-3h-naphtho[2,3-c]furan-1-one
(2s)-2-(prop-1-en-2-yl)-2h,3h-[1,4]dioxino[2,3-g]chromen-7-one
6-[(s)-hydroxy(phenyl)methyl]-4-oxo-1h-pyridine-3-carboximidic acid
(2s)-2-(4-ethoxy-4-oxobutyl)-3-methylidenebutanedioic acid
(1s,2s)-1-(4-hydroxy-3,5-dimethoxyphenyl)propane-1,2,3-triol
7-methoxy-8-[(1z)-3-oxobut-1-en-1-yl]chromen-2-one
(3s)-7-methoxy-3-(methoxycarbonyl)-2-methylidene-7-oxoheptanoic acid
2,4-dihydroxy-5-methoxybenzophenone
{"Ingredient_id": "HBIN004321","Ingredient_name": "2,4-dihydroxy-5-methoxybenzophenone","Alias": "2,4-dihydroxy-5-methoxy-benzo-phenone","Ingredient_formula": "C14H12O4","Ingredient_Smile": "COC1=C(C=C(C(=C1)C(=O)C2=CC=CC=C2)O)O","Ingredient_weight": "244.24 g/mol","OB_score": "67.20784963","CAS_id": "NA","SymMap_id": "SMIT05097","TCMID_id": "42071","TCMSP_id": "MOL002948","TCM_ID_id": "NA","PubChem_id": "85777815","DrugBank_id": "NA"}
4′-hydroxy-5,6-dehydrokawain
{"Ingredient_id": "HBIN010495","Ingredient_name": "4\u2032-hydroxy-5,6-dehydrokawain","Alias": "NA","Ingredient_formula": "C14H12O4","Ingredient_Smile": "COC1=CC(=O)OC(=C1)C=CC2=CC=C(C=C2)O","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "9973","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}