Exact Mass: 150.0328

Exact Mass Matches: 150.0328

Found 500 metabolites which its exact mass value is equals to given mass value 150.0328, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

D-Tartaric acid

L-(+)-Tartaric acid

C4H6O6 (150.0164)


DL-Tartaric acid is a non-racemic mixture of L- and D-tartaric acids with antioxidant activities[1][2].

   

Phenylglyoxylic acid

Phenylglyoxylic acid, potassium salt

C8H6O3 (150.0317)


Phenylglyoxylic acid is one of the major urinary metabolites of toluene, o-, m- and p-xylenes, styrene and ethylbenzene. (PMID 3782394). For the biological monitoring of workers exposure to solvent used in industry, its concentration is measured in human urine samples. (PMID 2739101). Phenylglyoxylic acid is one of the major urinary metabolites of toluene, o-, m- and p-xylenes, styrene and ethylbenzene. (PMID 3782394) D000890 - Anti-Infective Agents > D000892 - Anti-Infective Agents, Urinary > D008333 - Mandelic Acids KEIO_ID B041 Phenylglyoxylic acid (Benzoylformic acid) is a metabolite of ethylbenzene and styrene (EB/S) and can be used as a biomarker of exposure to EB/S in human[1]. Phenylglyoxylic acid (Benzoylformic acid) is a metabolite of ethylbenzene and styrene (EB/S) and can be used as a biomarker of exposure to EB/S in human[1].

   

D-Xylose

(3R,4S,5R)-Tetrahydro-2H-pyran-2,3,4,5-tetrol

C5H10O5 (150.0528)


Xylose or wood sugar is an aldopentose - a monosaccharide containing five carbon atoms and an aldehyde functional group. It has chemical formula C5H10O5 and is 40\\\\% as sweet as sucrose. Xylose is found in the embryos of most edible plants. The polysaccharide xylan, which is closely associated with cellulose, consists practically entirely of d-xylose. Corncobs, cottonseed hulls, pecan shells, and straw contain considerable amounts of this sugar. Xylose is also found in mucopolysaccharides of connective tissue and sometimes in the urine. Xylose is the first sugar added to serine or threonine residues during proteoglycan type O-glycosylation. Therefore xylose is involved in the biosythetic pathways of most anionic polysaccharides such as heparan sulphate and chondroitin sulphate. In medicine, xylose is used to test for malabsorption by administering a xylose solution to the patient after fasting. If xylose is detected in the blood and/or urine within the next few hours, it has been absorbed by the intestines. Xylose is said to be one of eight sugars which are essential for human nutrition, the others being galactose, glucose, mannose, N-acetylglucosamine, N-acetylgalactosamine, fucose, and sialic acid. (Wikipedia). Xylose in the urine is a biomarker for the consumption of apples and other fruits. Xylose is a sugar first isolated from wood, and named for it. Xylose is classified as a monosaccharide of the aldopentose type, which means that it contains five carbon atoms and includes an aldehyde functional group. It is the precursor to hemicellulose, one of the main constituents of biomass. D-Xylopyranose is found in flaxseed. D-(+)-xylose (Xylose) is a natural compound that is catalyzed by xylose isomerase to form xylulose, which is a key step in the anaerobic ethanol fermentation of xylose. D-(+)-xylose (Xylose) is a natural compound that is catalyzed by xylose isomerase to form xylulose, which is a key step in the anaerobic ethanol fermentation of xylose.

   

D-Arabinose

WURCS=2.0/1,1,0/[a122h-1b_1-5]/1/

C5H10O5 (150.0528)


D-Arabinose (CAS: 10323-20-3) belongs to the class of organic compounds known as pentoses. These are monosaccharides in which the carbohydrate moiety contains five carbon atoms. Outside of the human body, D-arabinose has been detected, but not quantified in, sweet basils and tamarinds. This could make D-arabinose a potential biomarker for the consumption of these foods. Arabinose is an aldopentose – a monosaccharide containing five carbon atoms, and including an aldehyde (CHO) functional group. D-Arabinose is found in sweet basil and tamarind. D000074385 - Food Ingredients > D005503 - Food Additives > D010368 - Pectins Arabinose is an endogenous metabolite. Arabinose is an endogenous metabolite. DL-Xylose is an intermediate of organic synthesis. DL-Xylose is an intermediate of organic synthesis. L-(+)-Arabinose selectively inhibits intestinal sucrase activity in a noncompetitive manner and suppresses the plasma glucose increase due to sucrose ingestion. L-(+)-Arabinose selectively inhibits intestinal sucrase activity in a noncompetitive manner and suppresses the plasma glucose increase due to sucrose ingestion. D-(+)-xylose (Xylose) is a natural compound that is catalyzed by xylose isomerase to form xylulose, which is a key step in the anaerobic ethanol fermentation of xylose. D-(+)-xylose (Xylose) is a natural compound that is catalyzed by xylose isomerase to form xylulose, which is a key step in the anaerobic ethanol fermentation of xylose.

   

Phthalaldehydic acid

2-Carboxybenzaldehyde

C8H6O3 (150.0317)


KEIO_ID C038 2-Carboxybenzaldehyde is the major metabolite found in phenanthrene metabolism. Phenanthrene can be degrade by Pseudomonas sp. Lphe-2 strain[1].

   

D-Ribose

(3R,4S,5R)-5-(Hydroxymethyl)tetrahydrofuran-2,3,4-triol

C5H10O5 (150.0528)


D-Ribose, commonly referred to as simply ribose, is a five-carbon sugar found in all living cells. Ribose is not an essential nutrient because it can be synthesized by almost every tissue in the body from other substances, such as glucose. It is vital for life as a component of DNA, RNA, ATP, ADP, and AMP. In nature, small amounts of ribose can be found in ripe fruits and vegetables. Brewers yeast, which has a high concentration of RNA, is another rich source of ribose. D-ribose is also a component of many so-called energy drinks and anti-ageing products available on the market today. Ribose is a structural component of ATP, which is the primary energy source for exercising muscle. The adenosine component is an adenine base attached to the five-carbon sugar ribose. ATP provides energy to working muscles by releasing a phosphate group, hence becoming ADP, which in turn may release a phosphate group, then becoming AMP. During intense muscular activity, the total amount of ATP available is quickly depleted. In an effort to correct this imbalance, AMP is broken down in the muscle and secreted from the cell. Once the breakdown products of AMP are released from the cell, the energy potential (TAN pool) of the muscle is reduced and ATP must then be reformed using ribose. Ribose helps restore the level of adenine nucleotides by bypassing the rate-limiting step in the de novo (oxidative pentose phosphate) pathway, which regenerates phosphoribosyl pyrophosphate (PRPP), the essential precursor for ATP. If ribose is not readily available to a cell, glucose may be converted to ribose. Ribose supplementation has been shown to increase the rate of ATP resynthesis following intense exercise. The use of ribose in men with severe coronary artery disease resulted in improved exercise tolerance. Hence, there is interest in the potential of ribose supplements to boost muscular performance in athletic activities (PMID: 17618002, Curr Sports Med Rep. 2007 Jul;6(4):254-7.). Ribose, also known as D-ribose or alpha-delta-ribose-5, is a member of the class of compounds known as pentoses. Pentoses are monosaccharides in which the carbohydrate moiety contains five carbon atoms. Ribose is very soluble (in water) and a very weakly acidic compound (based on its pKa). Ribose can be found in a number of food items such as lemon verbena, devilfish, watercress, and chicory roots, which makes ribose a potential biomarker for the consumption of these food products. Ribose can be found primarily in most biofluids, including urine, cerebrospinal fluid (CSF), saliva, and feces, as well as throughout most human tissues. Ribose exists in all living species, ranging from bacteria to humans. In humans, ribose is involved in the pentose phosphate pathway. Ribose is also involved in few metabolic disorders, which include glucose-6-phosphate dehydrogenase deficiency, ribose-5-phosphate isomerase deficiency, and transaldolase deficiency. Moreover, ribose is found to be associated with ribose-5-phosphate isomerase deficiency. The ribose β-D-ribofuranose forms part of the backbone of RNA. It is related to deoxyribose, which is found in DNA. Phosphorylated derivatives of ribose such as ATP and NADH play central roles in metabolism. cAMP and cGMP, formed from ATP and GTP, serve as secondary messengers in some signalling pathways . D-Ribose(mixture of isomers) is an energy enhancer, and acts as a sugar moiety of ATP, and widely used as a metabolic therapy supplement for chronic fatigue syndrome or cardiac energy metabolism. D-Ribose(mixture of isomers) is active in protein glycation, induces NF-κB inflammation in a RAGE-dependent manner[1]. D-Ribose(mixture of isomers) is an energy enhancer, and acts as a sugar moiety of ATP, and widely used as a metabolic therapy supplement for chronic fatigue syndrome or cardiac energy metabolism. D-Ribose(mixture of isomers) is active in protein glycation, induces NF-κB inflammation in a RAGE-dependent manner[1]. D-Ribose(mixture of isomers) is an energy enhancer, and acts as a sugar moiety of ATP, and widely used as a metabolic therapy supplement for chronic fatigue syndrome or cardiac energy metabolism. D-Ribose(mixture of isomers) is active in protein glycation, induces NF-κB inflammation in a RAGE-dependent manner[1].

   

D-Ribulose

(2R,3R,4R)-2-(hydroxymethyl)oxolane-2,3,4-triol

C5H10O5 (150.0528)


D-Ribulose (CAS: 488-84-6) is a ketopentose - a monosaccharide containing five carbon atoms, including a ketone functional group. D-Ribulose is an intermediate in the fungal pathway for D-arabitol production. As the 1,5-bisphosphate, it combines with CO2 at the start of the photosynthetic process in green plants (carbon dioxide trap). D-Ribulose is the epimer of D-xylulose (Wikipedia). Ribulose is also a microbial metabolite found in Acetobacter and Gluconobacter (PMID: 16232643, 11272814). Ribulose is a ketopentose - a monosaccharide containing five carbon atoms, and including a ketone functional group. D-ribulose is an intermediate in the fungal pathway for D-arabitol production. As the 1,5-bisphosphate, it combines with CO2 at the start of the photosynthetic process in green plants (carbon dioxide trap); d-ribulose is the epimer of d-xylulose. D-Ribulose is found in red beetroot.

   

D-Apiose

2,3,4-trihydroxy-3-(hydroxymethyl)butanal

C5H10O5 (150.0528)


Beta-d-apiofuranose is a member of the class of compounds known as pentoses. Pentoses are monosaccharides in which the carbohydrate moiety contains five carbon atoms. Beta-d-apiofuranose is very soluble (in water) and a very weakly acidic compound (based on its pKa). Beta-d-apiofuranose can be found in parsley, which makes beta-d-apiofuranose a potential biomarker for the consumption of this food product. D-Apiose is found in green vegetables. D-Apiose is first found in parsley as the glycoside Apiin CNR75-N, also present in celer

   

D-Ribulose

D-(−)-Ribulose

C5H10O5 (150.0528)


   

D-Apiose

beta-D-Apiose

C5H10O5 (150.0528)


   

Dipropyl disulfide

1-(propyldisulfanyl)propane

C6H14S2 (150.0537)


Dipropyl disulfide, also known as 1,1-dithiodipropane or 4,5-dithiaoctane, belongs to the class of organic compounds known as dialkyldisulfides. These are organic compounds containing a disulfide group R-SS-R where R and R are both alkyl groups. Dipropyl disulfide is possibly neutral. Dipropyl disulfide is a burnt, earthy, and green tasting compound. Dipropyl disulfide has been detected, but not quantified, in several different foods, such as chives, cabbages, garden onions, nuts, and brassicas. Constituent of garlic, onion and other Allium subspecies Also present in raw cabbage, roast beef and roasted peanuts. Flavouring agent. Dipropyl disulfide is found in many foods, some of which are garden onion, onion-family vegetables, brassicas, and allium (onion).

   

3,4-Methylenedioxybenzaldehyde

3,4-Dihydroxybenzaldehyde methylene ketal

C8H6O3 (150.0317)


3,4-Methylenedioxybenzaldehyde is found in highbush blueberry. 3,4-Methylenedioxybenzaldehyde is a flavouring agent used in cherry and vanilla flavour Flavouring agent used in cherry and vanilla flavours. 3,4-Methylenedioxybenzaldehyde is found in pepper (spice), highbush blueberry, and vanilla.

   

alpha-Fluoro-beta-ureidopropionic acid

2-Fluoro-3-[(C-hydroxycarbonimidoyl)amino]propanoate

C4H7FN2O3 (150.0441)


alpha-Fluoro-beta-ureidopropionic acid is a metabolite of fluorouracil. Fluorouracil (5-FU or f5U) (sold under the brand names Adrucil, Carac, Efudix, Efudex and Fluoroplex) is a drug that is a pyrimidine analog which is used in the treatment of cancer. It is a suicide inhibitor and works through irreversible inhibition of thymidylate synthase. It belongs to the family of drugs called antimetabolites. It is typically administered with leucovorin. (Wikipedia)

   

2-methyl-2,3,3,4-tetrahydroxytetrahydrofuran

(2R,4S)-2-Methyl-2,3,3,4-tetrahydroxytetrahydrofuran

C5H10O5 (150.0528)


   

L-Arabinose

(2S,3R,4S,5S)-oxane-2,3,4,5-tetrol

C5H10O5 (150.0528)


L-Arabinose (CAS: 5328-37-0) belongs to the class of compounds known as aldopentoses. An aldopentose is a monosaccharide containing five carbon atoms, including an aldehyde (CHO) functional group. Arabinose gets its name from gum arabic, from which it was first isolate. Most saccharides found in nature are in the "D"-form, however, L-arabinose is in fact more common than D-arabinose. L-arabinose is found in nature as a component of biopolymers such as hemicellulose and pectin. L-arabinose is found in all organisms from bacteria to plants to animals. Arabinose is the second most abundant pentose in lignocellulosic biomass after xylose. There are two different arabinose utilization pathways in nature: bacterial and fungal. The bacterial pathway converts arabinose into xylulose-5-P via ribulose-5-P using three enzymes (L-arabinose isomerase, L-ribulokinase, and L-ribulose-5-P 4-epimerase) after which it enters the pentose phosphate pathway for ethanol production. The fungal pathway converts arabinose into L-arabinitol by aldose reductase (AR) or XR, L-xylulose by L-arabinitol 4-dehydrogenase (LAD), xylitol by L-xylulose reductase (LXR), D-xylulose by xylulose dehydrogenase (XDH), and D-xylulose-5-P by xylulose kinase (XK), and lastly enters the nonoxidative pentose phosphate pathway for further metabolism. Arabinose has a sweet taste and is one of the most abundant components released by complete hydrolysis of non-starch polysaccharides (NSP) of vegetable origin. Although widely present in nature, L-arabinose is rarely used in food production or food flavoring, and its physiological effects in vivo have received little attention. L-arabinose is known to selectively inhibit intestinal sucrase activity in a non-competitive manner. Sucrase is the enzyme that breaks down sucrose into glucose and fructose in the small intestine. As a result, L-arabinose suppresses plasma glucose increase due to sucrose ingestion. The presence of arabinose in urine may indicate overgrowth of intestinal yeast such as Candida albicans or other yeast/fungus species. L-arabinose is also a microbial metabolite found in, and produced by, Mycobacterium (PMID: 16232643). In a rare case of two autistic brothers that were not associated with any known metabolic disease, it was found the median value for L-arabinose in their urine samples was 179 umol/mmol creatinine, nearly six times greater than normal children (PMID: 11238761, 8931641, 1390604, 7628083). COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Flavouring agent Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

L-Xylulose

(2S,3R,4S)-2-(hydroxymethyl)oxolane-2,3,4-triol

C5H10O5 (150.0528)


L-Xylulose (CAS: 527-50-4), also known as L-threo-2-pentulose, is a ketopentose - a monosaccharide containing five carbon atoms, including a ketone functional group. It has the chemical formula C5H10O5. L-Xylulose accumulates in the urine of pentosuria patients. Since L-xylulose is a reducing sugar like D-glucose, pentosuria patients have been wrongly diagnosed in the past to be diabetic.

   

Tartaric acid

(2R,3R)-2,3-dihydroxybutanedioic acid

C4H6O6 (150.0164)


Tartaric acid is a white crystalline organic acid. It occurs naturally in many plants, particularly grapes and tamarinds, and is one of the main acids found in wine. It is added to other foods to give a sour taste, and is used as an antioxidant. Salts of tartaric acid are known as tartrates. It is a dihydroxy derivative of dicarboxylic acid. Tartaric acid is a muscle toxin, which works by inhibiting the production of malic acid, and in high doses causes paralysis and death. The minimum recorded fatal dose for a human is about 12 grams. In spite of that, it is included in many foods, especially sour-tasting sweets. As a food additive, tartaric acid is used as an antioxidant with E number E334, tartrates are other additives serving as antioxidants or emulsifiers. Naturally-occurring tartaric acid is chiral, meaning that it has molecules that are non-superimposable on their mirror-images. It is a useful raw material in organic chemistry for the synthesis of other chiral molecules. The naturally occurring form of the acid is L-(+)-tartaric acid or dextrotartaric acid. The mirror-image (enantiomeric) form, levotartaric acid or D-(-)-tartaric acid, and the achiral form, mesotartaric acid, can be made artificially. Tartarate is believed to play a role in inhibiting kidney stone formation. Most tartarate that is consumed by humans is metabolized by bacteria in the gastrointestinal tract -- primarily in the large instestine. Only about 15-20\\\\\\% of consumed tartaric acid is secreted in the urine unchanged. Tartaric acid is a biomarker for the consumption of wine and grapes (PMID:24507823). Tartaric acid is also a fungal metabolite, elevated levels in the urine (especially in children) may be due to the presence of yeast (in the gut or bladder). It can be produced by Agrobacterium, Nocardia, Rhizobium, Saccharomyces as well (PMID:7628083) (https://link.springer.com/article/10.1023/A:1005592104426). High levels of tartaric acid have been found in autistic children. In adults, tartaric acid may be due to the consumption of wine (https://www.greatplainslaboratory.com/articles-1/2015/11/13/candida-and-overgrowth-the-problem-bacteria-by-products) (PMID:15738524; PMID:24507823; PMID:7628083). Present in many fruits, wines and coffee. Acidulant for beverages, foods and pharmaceuticals,used to enhance natural and synthetic fruit flavours, especies in grape- and lime-flavoured drinks and candies. Firming agent, humectant. It is used in leavening systems including baking powders. Stabiliising agent for ground spices and cheeses to prevent discoloration. Chelating agent in fatty foods. Synergist with antioxidants, pH control agent in milk, jams and jellies, moisture-control agent. *Metatartaric* acid (a mixture of polyesters obtained by the controlled dehydration of (+)-tartaric acid, together with unchanged (+)-tartaric acid) is permitted in wine in UK (+)-Tartaric acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=87-69-4 (retrieved 2024-07-01) (CAS RN: 87-69-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). DL-Tartaric acid is a non-racemic mixture of L- and D-tartaric acids with antioxidant activities[1][2]. L-Tartaric acid (L-(+)-Tartaric acid) is an endogenous metabolite. L-Tartaric acid is the primary nonfermentable soluble acid in grapes and the principal acid in wine. L-Tartaric acid can be used as a flavorant and antioxidant for a range of foods and beverages[1]. L-Tartaric acid (L-(+)-Tartaric acid) is an endogenous metabolite. L-Tartaric acid is the primary nonfermentable soluble acid in grapes and the principal acid in wine. L-Tartaric acid can be used as a flavorant and antioxidant for a range of foods and beverages[1].

   

D-Xylulose

(2R,3S,4R)-2-(hydroxymethyl)oxolane-2,3,4-triol

C5H10O5 (150.0528)


D-xylulose is a monosaccharide containing five carbon atoms. D-xylulose is converted from xylitol by the enzyme NAD+-linked xylitol dehydrogenase (EC 1.1.1.9) in the glucuronate pathway, the most important xylitol-handling metabolic pathway in mammals. This activity has been described in human erythrocytes. Most likely, D-xylulose (as well as D-arabinose or D-ribulose) is a precursor of the pentiol D-arabitol, since pentitols are derived from their corresponding pentose phosphate precursors via pentoses. This pathway can play a role in inherited metabolic disorders underlying the accumulation of pentitols e.g., ribose 5-phosphate isomerase deficiency and transaldolase deficiency. Although pentitols are present in all living organisms, knowledge concerning their metabolism is limited. (PMID: 15234337, Mol Genet Metabolite 2004 Jul;82(3):231-7.) [HMDB]. D-Xylulose is found in many foods, some of which are garden onion, american cranberry, cucumber, and radish. D-Xylulose (CAS: 551-84-8) is a monosaccharide containing five carbon atoms. D-Xylulose is converted from xylitol by the enzyme NAD+-linked xylitol dehydrogenase (EC 1.1.1.9) in the glucuronate pathway, the most important xylitol-handling metabolic pathway in mammals. This activity has been described in human erythrocytes. Most likely, D-xylulose (as well as D-arabinose or D-ribulose) is a precursor of the pentiol D-arabitol, since pentitols are derived from their corresponding pentose phosphate precursors via pentoses. This pathway can play a role in inherited metabolic disorders underlying the accumulation of pentitols (e.g. ribose 5-phosphate isomerase deficiency and transaldolase deficiency). Although pentitols are present in all living organisms, knowledge concerning their metabolism is limited (PMID:15234337, Mol Genet Metab. 2004 Jul;82(3):231-7.).

   

L-Ribulose

(2S,3S,4S)-2-(hydroxymethyl)oxolane-2,3,4-triol

C5H10O5 (150.0528)


Ribulose is a ketopentose- a monosaccharide containing five carbon atoms, and including a ketone functional group. It has chemical formula C5H10O5. Two diastereomers are possible, D-ribulose (D-erythro-pentulose) and L-ribulose (L-erythro-pentulose). D-ribulose is an intermediate in the fungal pathway for D-arabitol production. [HMDB] L-Ribulose (CAS: 2042-27-5) is a ketopentose - a monosaccharide containing five carbon atoms, including a ketone functional group. It has the chemical formula C5H10O5.

   

Arabinofuranose

(3R,4R,5S)-5-(hydroxymethyl)oxolane-2,3,4-triol

C5H10O5 (150.0528)


Arabinofuranose refers to the furanose form of arabinose, which is an optical isomer of arabinose. For biosynthetic reasons, most saccharides are almost always more abundant in nature as the "D" form, or structurally analogous to D-(+)-glyceraldehyde. However, L-arabinose is in fact more common than D-arabinose in nature and is found in nature as a component of biopolymers such as hemicellulose and pectin. [HMDB] Arabinofuranose refers to the furanose form of arabinose, which is an optical isomer of arabinose. For biosynthetic reasons, most saccharides are almost always more abundant in nature as the "D" form, or structurally analogous to D-(+)-glyceraldehyde. However, L-arabinose is in fact more common than D-arabinose in nature and is found in nature as a component of biopolymers such as hemicellulose and pectin.

   

D-Tartaric acid

(R*,r*)-(+-)-2,3-dihydroxybutanedioic acid, monoammonium monosodium salt

C4H6O6 (150.0164)


D-Tartaric acid is found in loquat. D-Tartaric acid is found combined as Chicoric acid and it is an unnatural tartaric acid isomer. (Wikipedia Acquisition and generation of the data is financially supported in part by CREST/JST. Found combined as Chicoric acid DL-Tartaric acid is a non-racemic mixture of L- and D-tartaric acids with antioxidant activities[1][2].

   

L-Arabinose

(3R,4S,5S)-oxane-2,3,4,5-tetrol

C5H10O5 (150.0528)


COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials A L-arabinopyranose with a beta-configuration at the anomeric position. Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Arabinose is an endogenous metabolite. Arabinose is an endogenous metabolite. L-(+)-Arabinose selectively inhibits intestinal sucrase activity in a noncompetitive manner and suppresses the plasma glucose increase due to sucrose ingestion. L-(+)-Arabinose selectively inhibits intestinal sucrase activity in a noncompetitive manner and suppresses the plasma glucose increase due to sucrose ingestion.

   

D-Ribose

D-ribo-2,3,4,5-tetrahydroxyvaleraldehyde

C5H10O5 (150.0528)


CONFIDENCE standard compound; INTERNAL_ID 227 D-Ribose(mixture of isomers) is an energy enhancer, and acts as a sugar moiety of ATP, and widely used as a metabolic therapy supplement for chronic fatigue syndrome or cardiac energy metabolism. D-Ribose(mixture of isomers) is active in protein glycation, induces NF-κB inflammation in a RAGE-dependent manner[1]. D-Ribose(mixture of isomers) is an energy enhancer, and acts as a sugar moiety of ATP, and widely used as a metabolic therapy supplement for chronic fatigue syndrome or cardiac energy metabolism. D-Ribose(mixture of isomers) is active in protein glycation, induces NF-κB inflammation in a RAGE-dependent manner[1]. D-Ribose(mixture of isomers) is an energy enhancer, and acts as a sugar moiety of ATP, and widely used as a metabolic therapy supplement for chronic fatigue syndrome or cardiac energy metabolism. D-Ribose(mixture of isomers) is active in protein glycation, induces NF-κB inflammation in a RAGE-dependent manner[1].

   

D-(+)-Xylose

Alpha-d-xylopyranose

C5H10O5 (150.0528)


DL-Xylose is an intermediate of organic synthesis. DL-Xylose is an intermediate of organic synthesis.

   

D-Arabinose

(2S,3R,4R)-2,3,4,5-tetrahydroxypentanal

C5H10O5 (150.0528)


CONFIDENCE standard compound; INTERNAL_ID 233 Arabinose is an endogenous metabolite. Arabinose is an endogenous metabolite. D-Arabinose, a monosaccharide, shows strong growth inhibition against the Caenorhabditis elegans with an IC50 of 7.5 mM[1]. D-Arabinose, a monosaccharide, shows strong growth inhibition against the Caenorhabditis elegans with an IC50 of 7.5 mM[1]. D-arabinose is an endogenous metabolite. D-arabinose is an endogenous metabolite.

   

D-Lyxose

α-D-Lyxopyranose

C5H10O5 (150.0528)


D-Lyxose is an endogenous metabolite.

   

beta-D-Ribopyranose

beta-D-Ribopyranose

C5H10O5 (150.0528)


A D-ribopyranose with a beta-configuration at the anomeric position.

   

alpha-L-arabinopyranose

alpha-L-arabinopyranose

C5H10O5 (150.0528)


A L-arabinopyranose with an alpha-configuration at the anomeric position.

   

Beta-D-Xylopyranose

Beta-D-Xylopyranose

C5H10O5 (150.0528)


   

alpha-D-lyxopyranose

alpha-D-lyxopyranose

C5H10O5 (150.0528)


   
   

beta-L-arabinofuranose

beta-L-arabinofuranose

C5H10O5 (150.0528)


   

L-Lyxose

(2R,3R,4S)-2,3,4,5-tetrahydroxypentanal

C5H10O5 (150.0528)


Aldehydo-L-lyxose is an L-lyxose in open-chain aldehyde form. It is an enantiomer of an aldehydo-D-lyxose. L-Lyxose is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). L-Lyxose is a rare pentose sugar, which means it is a five-carbon sugar. It is classified as an aldopentose due to the presence of an aldehyde group on its first carbon. The “L” in L-Lyxose indicates its stereochemistry, specifically referring to the orientation of hydroxyl groups around the third and fourth carbons in the sugar ring. In L-Lyxose, the hydroxyl group on the third carbon is on the left side, and the one on the fourth carbon is on the right side, when the molecule is drawn in a standard Fischer projection. L-Lyxose is not commonly found in nature and does not play a significant role in biological systems like more common sugars such as glucose or fructose. However, it is of interest in the field of carbohydrate chemistry and biochemistry for its unique properties and potential applications in research and industry. It can be synthesized in the laboratory and is sometimes used in the study of carbohydrate metabolism and in the development of new biotechnological processes. L-Lyxose. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=1949-78-6 (retrieved 2024-10-08) (CAS RN: 1949-78-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

D-arabinofuranose

D-arabinofuranose

C5H10O5 (150.0528)


The furanose form of D-arabinose.

   

L-Xylofuranose

L-Xylofuranose

C5H10O5 (150.0528)


The furanose form of L-xylose. L-Xylose (L-(-)-Xylose) is the levo-isomer of Xylose. Xylose is classified as a?monosaccharide?of the?aldopentose?type[1].

   

alpha-D-Ribulose

alpha-D-Ribulose

C5H10O5 (150.0528)


A D-ribulose with an alpha-configuration at the anomeric position.

   

DL-Xylose

D-(+)-Xylose

C5H10O5 (150.0528)


DL-Xylose is an intermediate of organic synthesis. DL-Xylose is an intermediate of organic synthesis. D-(+)-xylose (Xylose) is a natural compound that is catalyzed by xylose isomerase to form xylulose, which is a key step in the anaerobic ethanol fermentation of xylose. D-(+)-xylose (Xylose) is a natural compound that is catalyzed by xylose isomerase to form xylulose, which is a key step in the anaerobic ethanol fermentation of xylose.

   

2-hydroxy-4-(methylthio)butanoic acid

alpha-Hydroxy-gamma-methylmercaptobutyric acid, monosodium salt (S)-isomer

C5H10O3S (150.0351)


Animal and poultry feed additive. Animal and poultry feed additive

   

4-Hydroxyphthalide

4-hydroxy-1,3-dihydro-2-benzofuran-1-one

C8H6O3 (150.0317)


4-Hydroxyphthalide is found in cereals and cereal products. 4-Hydroxyphthalide is a constituent of oats (Avena sativa) Constituent of oats (Avena sativa). 4-Hydroxyphthalide is found in oat and cereals and cereal products.

   

(E)-8-Hydroxy-2-octene-4,6-diynoic acid

(2Z)-8-hydroxyoct-2-en-4,6-diynoic acid

C8H6O3 (150.0317)


(E)-8-Hydroxy-2-octene-4,6-diynoic acid is found in mushrooms. (E)-8-Hydroxy-2-octene-4,6-diynoic acid is a metabolite of Camarophyllus virgineus (snowy wax cap

   

Diisopropyl disulfide

Disulfide, bis(1-methylethyl) (9ci)

C6H14S2 (150.0537)


Diisopropyl disulfide is found in fruits. Diisopropyl disulfide is a flavour ingredient. Diisopropyl disulfide is a constituent of fruit and seeds of Nigella sativa (black cumin). Poss. isolated from Brassica oleracea var. capitata, durian Durio zibethinus, guava and fried food Flavour ingredient. Constituent of fruit and seeds of Nigella sativa (black cumin). Poss. isolated from Brassica oleracea variety capitata, durian Durio zibethinus, guava and fried foods. Diisopropyl disulfide is found in herbs and spices, fruits, and guava.

   

Methyl pentyl disulfide

1-(Methyldisulphanyl)pentane

C6H14S2 (150.0537)


Constituent of chives (Allium schoenoprasum). Methyl pentyl disulfide is found in chives and onion-family vegetables. Methyl pentyl disulfide is found in chives. Methyl pentyl disulfide is a constituent of chives (Allium schoenoprasum)

   

2-Deoxyribonic acid

(3S,4R)-3,4,5-trihydroxypentanoic acid

C5H10O5 (150.0528)


2-Deoxyribonic acid is the acid form of deoxyribonate (interconvertible with 2-Deoxyribonolactone), produced as part of bistranded lesions by DNA damaging agents, including the antitumor agents bleomycin and the neocarzinostatin chromophore (PMID 2523732). This lesion is also produced by ionizing radiation, organometallic oxidants, and is a metastable intermediate in DNA damage mediated by copper phenanthroline nucleases, and is also formed under anaerobic conditions in the presence of the radiosensitizing agent tirapazamine. (PMID 12600212), and it has been found in normal human biofluids (PMID 2925825, 3829393, 6725493, 7228943). [HMDB] 2-Deoxyribonic acid is the acid form of deoxyribonate (interconvertible with 2-Deoxyribonolactone), produced as part of bistranded lesions by DNA damaging agents, including the antitumor agents bleomycin and the neocarzinostatin chromophore (PMID 2523732). This lesion is also produced by ionizing radiation, organometallic oxidants, and is a metastable intermediate in DNA damage mediated by copper phenanthroline nucleases, and is also formed under anaerobic conditions in the presence of the radiosensitizing agent tirapazamine. (PMID 12600212), and it has been found in normal human biofluids (PMID 2925825, 3829393, 6725493, 7228943).

   

7-Methylhypoxanthine

1, 7-Dihydro-7-methyl-6H-purin-6-one

C6H6N4O (150.0542)


7-Methylhypoxanthine is a methyl derivative of xanthine, found occasionally in human urine. Methylated purines originate from the metabolism of methylxanthines (caffeine, theophylline and theobromine. Purine derivatives in urinary calculi could be considered markers of abnormal purine metabolism. The content of a purine derivative in stone depends on its average urinary excretion in the general population, similarity to the chemical structure of uric acid, and content of the latter in stone. This suggests that purines in stones represent a solid solution with uric acid as solvent. It is also plausible that methylxanthines, ubiquitous components of the diet and drugs, are involved in the pathogenesis of urolithiasis. Caffeine is metabolized via successive pathways mainly catalyzed by CYP1A2, xanthine oxidase or N-acetyltransferase-2 to give 14 different metabolites. CYP1A2 activity shows an inter-individual variability among the population. CYP1A2, an isoform of the CYP1A cytochrome P450 super-family, is involved in the metabolism of many drugs and plays a potentially important role in the induction of chemical carcinogenesis. (PMID: 11712316, 15833286, 3506820, 15013152) [HMDB] 7-Methylhypoxanthine is a methyl derivative of xanthine, found occasionally in human urine.

   

1-Methylhypoxanthine

1-Methyl-1,9-dihydro-6H-purin-6-one (acd/name 4.0)

C6H6N4O (150.0542)


1-Methylhypoxanthine is a methylated hypoxanthine. Hypoxanthine is a naturally occurring purine derivative and a reaction intermediate in the metabolism of adenosine and in the formation of nucleic acids by the salvage pathway. [HMDB] 1-Methylhypoxanthine is a methylated hypoxanthine. Hypoxanthine is a naturally occurring purine derivative and a reaction intermediate in the metabolism of adenosine and in the formation of nucleic acids by the salvage pathway.

   

2-(2-Thienyl)furan

2-(thiophen-2-yl)furan

C8H6OS (150.0139)


2-(2-Thienyl)furan is a component of yeast extract volatiles and cooked meat flavour model system

   

1,6-Hexanedithiol

Hexamethylene dimercaptan

C6H14S2 (150.0537)


1,6-Hexanedithiol is found in animal foods. 1,6-Hexanedithiol is present in boiled and cooked beef. 1,6-Hexanedithiol is a flavouring ingredien Present in boiled and cooked beef. Flavouring ingredient. 1,6-Hexanedithiol is found in animal foods.

   

Butyl ethyl disulfide

1-(Ethyldisulphanyl)butane

C6H14S2 (150.0537)


Butyl ethyl disulfide is used as a food additive [EAFUS] ("EAFUS: Everything Added to Food in the United States. [http://www.eafus.com/]")

   

Methyl isopentyl disulfide

3-Methyl-1-(methyldisulphanyl)butane

C6H14S2 (150.0537)


Methyl isopentyl disulfide is used as a food additive [EAFUS] ("EAFUS: Everything Added to Food in the United States. [http://www.eafus.com/]")

   

2-Methyl-2-(methyldithio)propanal

2-Methyl-2-(methyldithio)propionaldehyde

C5H10OS2 (150.0173)


Meat-like flavouring for seasonings etc.

   

xi-1-(Propylthio)-1-propanethiol

1-(Propylsulphanyl)propane-1-thiol

C6H14S2 (150.0537)


xi-1-(Propylthio)-1-propanethiol is found in onion-family vegetables. xi-1-(Propylthio)-1-propanethiol is a constituent of onion volatiles. xi-1-(Propylthio)-1-propanethiol is formed by reaction of propanol, H2S and 1-propanethiol. Constituent of onion volatiles. Formed by reaction of propanol, H2S and 1-propanethiol. xi-1-(Propylthio)-1-propanethiol is found in onion-family vegetables.

   

1,4-Benzodioxin-2(3H)-one

2,3-dihydro-1,4-benzodioxin-2-one

C8H6O3 (150.0317)


Patented as food aroma and flavour enhancer. Patented as food aroma and flavour enhancer

   

2-Deoxypentonic acid

3,4,5-trihydroxypentanoic acid

C5H10O5 (150.0528)


2-Deoxypentonic acid belongs to the family of Hydroxy Fatty Acids. These are fatty acids in which the chain bears an hydroxyl group.

   

3-carboxy-2,3-dihydroxypropanoate

(R*,r*)-(+-)-2,3-dihydroxybutanedioic acid, monoammonium monosodium salt

C4H6O6 (150.0164)


3-carboxy-2,3-dihydroxypropanoate is classified as a sugar acid or a Sugar acid derivative. Sugar acids are compounds containing a saccharide unit which bears a carboxylic acid group. 3-carboxy-2,3-dihydroxypropanoate is considered to be soluble (in water) and acidic L-Tartaric acid (L-(+)-Tartaric acid) is an endogenous metabolite. L-Tartaric acid is the primary nonfermentable soluble acid in grapes and the principal acid in wine. L-Tartaric acid can be used as a flavorant and antioxidant for a range of foods and beverages[1]. L-Tartaric acid (L-(+)-Tartaric acid) is an endogenous metabolite. L-Tartaric acid is the primary nonfermentable soluble acid in grapes and the principal acid in wine. L-Tartaric acid can be used as a flavorant and antioxidant for a range of foods and beverages[1].

   

(2R,3R,4R)-2,3,4,5-Tetrahydroxypentanal

(2R,3R,4R)-2,3,4,5-Tetrahydroxypentanal

C5H10O5 (150.0528)


A pentose is a monosaccharide with five carbon atoms. Pentoses are organized into two groups. Aldopentoses have an aldehyde functional group at position 1. Ketopentoses have a ketone functional group in position 2 or 3. Pentoses is found in flaxseed and cocoa bean.

   

2-Aminobenzothiazole

2,3-dihydro-1,3-benzothiazol-2-imine

C7H6N2S (150.0252)


   

2-Mercaptobenzimidazole

2-Mercaptobenzimidazole, zinc (2:1) salt

C7H6N2S (150.0252)


   

5-Hydroxybenzofuran-2(3H)-one

2,5-Dihydroxyphenylacetic acid gamma-lactone

C8H6O3 (150.0317)


   

Thiocyanic acid, p-aminophenyl ester

[(4-aminophenyl)sulfanyl]formonitrile

C7H6N2S (150.0252)


   

4-Formylbenzoic acid

Para-carboxybenzaldehyde

C8H6O3 (150.0317)


   

5-Propynyluracil

5-(prop-1-yn-1-yl)-1,2,3,4-tetrahydropyrimidine-2,4-dione

C7H6N2O2 (150.0429)


   

9-Deazaguanine

4H-Pyrrolo[3,2-d]pyrimidin-4-one,2-amino-3,5-dihydro-

C6H6N4O (150.0542)


   

alpha-D-Arabinofuranose

5-(hydroxymethyl)oxolane-2,3,4-triol

C5H10O5 (150.0528)


   

Benzothiadiazine

2H-1,2,3-benzothiadiazine

C7H6N2S (150.0252)


   

D-Arabinopyranose

oxane-2,3,4,5-tetrol

C5H10O5 (150.0528)


   

D-Threo-3-Pentulose

1,2,4,5-Tetrahydroxy-3-pentanone

C5H10O5 (150.0528)


   

3-Carboxyoxy-2-hydroxypropanoic acid

3-(carboxyoxy)-2-hydroxypropanoic acid

C4H6O6 (150.0164)


   

thienodiazepine

7H-thieno[3,2-c][1,2]diazepine

C7H6N2S (150.0252)


   

Isopropyl propyl disulfide

1-(Propan-2-yldisulphanyl)propane

C6H14S2 (150.0537)


Isopropyl propyl disulfide is a member of the class of compounds known as dialkyldisulfides. Dialkyldisulfides are organic compounds containing a disulfide group R-SS-R where R and R are both alkyl groups. Isopropyl propyl disulfide can be found in garden onion, which makes isopropyl propyl disulfide a potential biomarker for the consumption of this food product.

   

alpha-L-arabinofuranose

(2R,3R,4R,5S)-5-(hydroxymethyl)oxolane-2,3,4-triol

C5H10O5 (150.0528)


Alpha-l-arabinose is a member of the class of compounds known as pentoses. Pentoses are monosaccharides in which the carbohydrate moiety contains five carbon atoms. Alpha-l-arabinose is very soluble (in water) and a very weakly acidic compound (based on its pKa). Alpha-l-arabinose can be found in a number of food items such as cloudberry, amaranth, red beetroot, and white mustard, which makes alpha-l-arabinose a potential biomarker for the consumption of these food products.

   

7-Hydroxy-1(3H)-isobenzofuranone

7-Hydroxy-1(3H)-isobenzofuranone

C8H6O3 (150.0317)


   

4-FORMYLBENZOIC ACID

4-FORMYLBENZOIC ACID

C8H6O3 (150.0317)


A member of the class of benzoic acids that is benzoic acid substituted by a formyl group at position 4.

   

4-diazonio-3-methoxyphenolate

4-diazonio-3-methoxyphenolate

C7H6N2O2 (150.0429)


   

Malloapeltine

Malloapeltine

C7H6N2O2 (150.0429)


   

beta-L-Ribopyranose

beta-L-Ribopyranose

C5H10O5 (150.0528)


   

Ribofuranose

Ribofuranose

C5H10O5 (150.0528)


   

4-methoxysalicylaldehyde

4-methoxysalicylaldehyde

C8H6O3 (150.0317)


   

2-AMINOBENZOTHIAZOLE

Benzo[d]thiazol-2-amine

C7H6N2S (150.0252)


CONFIDENCE standard compound; INTERNAL_ID 4057 CONFIDENCE standard compound; EAWAG_UCHEM_ID 3374

   

2-Mercaptobenzimidazole

1H-BENZOIMIDAZOLE-2-THIOL

C7H6N2S (150.0252)


CONFIDENCE standard compound; INTERNAL_ID 721; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2943; ORIGINAL_PRECURSOR_SCAN_NO 2941 CONFIDENCE standard compound; INTERNAL_ID 721; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2960; ORIGINAL_PRECURSOR_SCAN_NO 2958 CONFIDENCE standard compound; INTERNAL_ID 721; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2922; ORIGINAL_PRECURSOR_SCAN_NO 2920 CONFIDENCE standard compound; INTERNAL_ID 721; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2940; ORIGINAL_PRECURSOR_SCAN_NO 2937 CONFIDENCE standard compound; INTERNAL_ID 721; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2943; ORIGINAL_PRECURSOR_SCAN_NO 2938 CONFIDENCE standard compound; INTERNAL_ID 721; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2936; ORIGINAL_PRECURSOR_SCAN_NO 2933 CONFIDENCE standard compound; INTERNAL_ID 721; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6221; ORIGINAL_PRECURSOR_SCAN_NO 6219 CONFIDENCE standard compound; INTERNAL_ID 721; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6223; ORIGINAL_PRECURSOR_SCAN_NO 6220 CONFIDENCE standard compound; INTERNAL_ID 721; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6251; ORIGINAL_PRECURSOR_SCAN_NO 6248 CONFIDENCE standard compound; INTERNAL_ID 721; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6263; ORIGINAL_PRECURSOR_SCAN_NO 6261 CONFIDENCE standard compound; INTERNAL_ID 721; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6275; ORIGINAL_PRECURSOR_SCAN_NO 6271 CONFIDENCE standard compound; INTERNAL_ID 721; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6280; ORIGINAL_PRECURSOR_SCAN_NO 6276 CONFIDENCE standard compound; INTERNAL_ID 8205

   

D-Erythro-2-pentulose

D-Erythro-2-pentulose

C5H10O5 (150.0528)


   

5-(1-Propynyl)-2-thiophenecarboxaldehyde|5--2-formyl-thiophen; Junipal|5-Prop-1-inyl-thiophen-2-carbaldehyd|5-prop-1-ynyl-thiophene-2-carbaldehyde|junipal

5-(1-Propynyl)-2-thiophenecarboxaldehyde|5--2-formyl-thiophen; Junipal|5-Prop-1-inyl-thiophen-2-carbaldehyd|5-prop-1-ynyl-thiophene-2-carbaldehyde|junipal

C8H6OS (150.0139)


   

3-Methyl-2h-Furo[2,3-C]pyran-2-One

3-Methyl-2h-Furo[2,3-C]pyran-2-One

C8H6O3 (150.0317)


   

SCHEMBL1869793

SCHEMBL1869793

C5H10O5 (150.0528)


   

SCHEMBL3849668

SCHEMBL3849668

C8H6O3 (150.0317)


   

4-HYDROXYPHENYL GLYOXAL

4-HYDROXYPHENYL GLYOXAL

C8H6O3 (150.0317)


   

3-HYDROXYPHTHALALDEHYDE

3-HYDROXYPHTHALALDEHYDE

C8H6O3 (150.0317)


   

2,3,4-trihydroxypentanoic acid

2,3,4-trihydroxypentanoic acid

C5H10O5 (150.0528)


   

7-hydroxyphthalide

7-hydroxyphthalide

C8H6O3 (150.0317)


   

(2R,3S,4R)-2-(hydroxymethyl)tetrahydrothiophene-3,4-diol

(2R,3S,4R)-2-(hydroxymethyl)tetrahydrothiophene-3,4-diol

C5H10O3S (150.0351)


   

5-HYDROXY-3(2H)-BENZOFURANONE

5-HYDROXY-3(2H)-BENZOFURANONE

C8H6O3 (150.0317)


   

3a,4-dihydro-2-benzofuran-1,3-dione

3a,4-dihydro-2-benzofuran-1,3-dione

C8H6O3 (150.0317)


   

4-Hydroxyisophthalaldehyde

4-Hydroxyisophthalaldehyde

C8H6O3 (150.0317)


   

Isopropyl propyl disulfide

Isopropyl propyl disulfide

C6H14S2 (150.0537)


   

SCHEMBL3854159

SCHEMBL3854159

C8H6O3 (150.0317)


   

Dodeca-1,11-dien-3,5,7,9-tetrain|dodeca-1,11-diene-3,5,7,9-tetrayne|Trideca-1,11-dien-3,5,7,9,-tetrain

Dodeca-1,11-dien-3,5,7,9-tetrain|dodeca-1,11-diene-3,5,7,9-tetrayne|Trideca-1,11-dien-3,5,7,9,-tetrain

C12H6 (150.0469)


   
   

2K-028

4-methoxy-2-oxo-1,2-dihydro-3-pyridinecarbonitrile, AldrichCPR

C7H6N2O2 (150.0429)


4-Methoxy-2-oxo-1,2-dihydropyridine-3-carbonitrile is a natural product found in Ricinus communis with data available. N-Demethylricinine is a ricinine, can be interconverted with ricinine in senescent and green castor plant leaves. Ricinine, is a α-pyridone alkaloid biosynthetically related to the pyridine nucleotide cycle. The alkaloid catabolism of ricinine is associated with aging process[1].

   

pectin

(+/-)-Arabinose; DL-Arabinose; dl-Arabinose

C5H10O5 (150.0528)


2,3,4,5-tetrahydroxypentanal is a pentose, a polyol and a hydroxyaldehyde. DL-Arabinose is a natural product found in Arabidopsis thaliana, Streptomyces hainanensis, and other organisms with data available. Citrus Pectin is dietary fiber source, extracted from rind of citrus fruits, and used as a gelling agent. High molecular weight polysaccharides present in the cell walls of all plants. Pectins cement cell walls together. They are used as emulsifiers and stabilizers in the food industry. They have been tried for a variety of therapeutic uses including as antidiarrheals, where they are now generally considered ineffective, and in the treatment of hypercholesterolemia. D000074385 - Food Ingredients > D005503 - Food Additives > D010368 - Pectins Arabinose is an endogenous metabolite. Arabinose is an endogenous metabolite. DL-Xylose is an intermediate of organic synthesis. DL-Xylose is an intermediate of organic synthesis. D-Lyxose is an endogenous metabolite. L-(+)-Arabinose selectively inhibits intestinal sucrase activity in a noncompetitive manner and suppresses the plasma glucose increase due to sucrose ingestion. L-(+)-Arabinose selectively inhibits intestinal sucrase activity in a noncompetitive manner and suppresses the plasma glucose increase due to sucrose ingestion. L-Xylose (L-(-)-Xylose) is the levo-isomer of Xylose. Xylose is classified as a?monosaccharide?of the?aldopentose?type[1]. D-(+)-xylose (Xylose) is a natural compound that is catalyzed by xylose isomerase to form xylulose, which is a key step in the anaerobic ethanol fermentation of xylose. D-(+)-xylose (Xylose) is a natural compound that is catalyzed by xylose isomerase to form xylulose, which is a key step in the anaerobic ethanol fermentation of xylose.

   

Xylose

(+/-)-Arabinose; DL-Arabinose; dl-Arabinose

C5H10O5 (150.0528)


2,3,4,5-tetrahydroxypentanal is a pentose, a polyol and a hydroxyaldehyde. DL-Arabinose is a natural product found in Arabidopsis thaliana, Streptomyces hainanensis, and other organisms with data available. Citrus Pectin is dietary fiber source, extracted from rind of citrus fruits, and used as a gelling agent. High molecular weight polysaccharides present in the cell walls of all plants. Pectins cement cell walls together. They are used as emulsifiers and stabilizers in the food industry. They have been tried for a variety of therapeutic uses including as antidiarrheals, where they are now generally considered ineffective, and in the treatment of hypercholesterolemia. D000074385 - Food Ingredients > D005503 - Food Additives > D010368 - Pectins Arabinose is an endogenous metabolite. Arabinose is an endogenous metabolite. DL-Xylose is an intermediate of organic synthesis. DL-Xylose is an intermediate of organic synthesis. D-Lyxose is an endogenous metabolite. L-(+)-Arabinose selectively inhibits intestinal sucrase activity in a noncompetitive manner and suppresses the plasma glucose increase due to sucrose ingestion. L-(+)-Arabinose selectively inhibits intestinal sucrase activity in a noncompetitive manner and suppresses the plasma glucose increase due to sucrose ingestion. L-Xylose (L-(-)-Xylose) is the levo-isomer of Xylose. Xylose is classified as a?monosaccharide?of the?aldopentose?type[1]. D-(+)-xylose (Xylose) is a natural compound that is catalyzed by xylose isomerase to form xylulose, which is a key step in the anaerobic ethanol fermentation of xylose. D-(+)-xylose (Xylose) is a natural compound that is catalyzed by xylose isomerase to form xylulose, which is a key step in the anaerobic ethanol fermentation of xylose.

   

Ryscinic Acid

4-Hydroxy-1-methyl-2-oxo-1,2-dihydropyridine-3-carbonitrile

C7H6N2O2 (150.0429)


relative retention time with respect to 9-anthracene Carboxylic Acid is 0.190 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.189 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.182 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.184

   

L(+)-Tartaric acid

"(R,R)-TARTARIC ACID"

C4H6O6 (150.0164)


L-Tartaric acid (L-(+)-Tartaric acid) is an endogenous metabolite. L-Tartaric acid is the primary nonfermentable soluble acid in grapes and the principal acid in wine. L-Tartaric acid can be used as a flavorant and antioxidant for a range of foods and beverages[1]. L-Tartaric acid (L-(+)-Tartaric acid) is an endogenous metabolite. L-Tartaric acid is the primary nonfermentable soluble acid in grapes and the principal acid in wine. L-Tartaric acid can be used as a flavorant and antioxidant for a range of foods and beverages[1].

   

D-Tartaric acid

"(S,S)-TARTARIC ACID"

C4H6O6 (150.0164)


The D-enantiomer of tartaric acid. DL-Tartaric acid is a non-racemic mixture of L- and D-tartaric acids with antioxidant activities[1][2].

   

D-Xylose

D-(+)-Xylose

C5H10O5 (150.0528)


D-Xylose is a flavouring ingredient; sweetener. It is found in straw, corncobs, pecan shells, carrot, dandelion, german camomile, and sweet orange. D-Xylose is a sugar first isolated from wood, and named for it. D-Xylose is classified as a monosaccharide of the aldopentose type, which means that it contains five carbon atoms and includes an aldehyde functional group. It is the precursor to hemicellulose, one of the main constituents of biomass (Wikipedia). Xylose in the urine is a biomarker for the consumption of fruits. D-(+)-xylose (Xylose) is a natural compound that is catalyzed by xylose isomerase to form xylulose, which is a key step in the anaerobic ethanol fermentation of xylose. D-(+)-xylose (Xylose) is a natural compound that is catalyzed by xylose isomerase to form xylulose, which is a key step in the anaerobic ethanol fermentation of xylose.

   

D-Ribulose

erythro-2-Pentulose (9CI)

C5H10O5 (150.0528)


The D-stereoisomer of ribulose.

   

Phenylglyoxylic acid

Phenylglyoxylic acid

C8H6O3 (150.0317)


A 2-oxo monocarboxylic acid that is glyoxylic acid in which the aldehyde hydrogen is substituted by a phenyl group. Phenylglyoxylic acid (Benzoylformic acid) is a metabolite of ethylbenzene and styrene (EB/S) and can be used as a biomarker of exposure to EB/S in human[1]. Phenylglyoxylic acid (Benzoylformic acid) is a metabolite of ethylbenzene and styrene (EB/S) and can be used as a biomarker of exposure to EB/S in human[1].

   

D-Xylulose

D-Xylulose

C5H10O5 (150.0528)


The D-enantiomer of xylulose.

   

Arabinose

L-(+)-Ribose

C5H10O5 (150.0528)


Arabinose is an aldopentose – a monosaccharide containing five carbon atoms, and including an aldehyde (CHO) functional group. Arabinose is found in many foods, some of which are arabica coffee, olive, soy bean, and apple. Arabinose is an endogenous metabolite. Arabinose is an endogenous metabolite. D-arabinose is an endogenous metabolite. D-arabinose is an endogenous metabolite.

   

Ribose

L-Ribose

C5H10O5 (150.0528)


D-Ribose(mixture of isomers) is an energy enhancer, and acts as a sugar moiety of ATP, and widely used as a metabolic therapy supplement for chronic fatigue syndrome or cardiac energy metabolism. D-Ribose(mixture of isomers) is active in protein glycation, induces NF-κB inflammation in a RAGE-dependent manner[1]. D-Ribose(mixture of isomers) is an energy enhancer, and acts as a sugar moiety of ATP, and widely used as a metabolic therapy supplement for chronic fatigue syndrome or cardiac energy metabolism. D-Ribose(mixture of isomers) is active in protein glycation, induces NF-κB inflammation in a RAGE-dependent manner[1]. D-Ribose(mixture of isomers) is an energy enhancer, and acts as a sugar moiety of ATP, and widely used as a metabolic therapy supplement for chronic fatigue syndrome or cardiac energy metabolism. D-Ribose(mixture of isomers) is active in protein glycation, induces NF-κB inflammation in a RAGE-dependent manner[1].

   

Tartaric acid

L(+)-Tartaric acid

C4H6O6 (150.0164)


Tartaric acid is a white crystalline diprotic organic acid. It occurs naturally in many plants, particularly grapes, bananas, and tamarinds, and is one of the main acids found in wine. It is added to other foods to give a sour taste, and is used as an antioxidant. Salts of tartaric acid are known as tartrates. It is a dihydroxyl derivative of succinic acid. DL-Tartaric acid is a non-racemic mixture of L- and D-tartaric acids with antioxidant activities[1][2]. L-Tartaric acid (L-(+)-Tartaric acid) is an endogenous metabolite. L-Tartaric acid is the primary nonfermentable soluble acid in grapes and the principal acid in wine. L-Tartaric acid can be used as a flavorant and antioxidant for a range of foods and beverages[1]. L-Tartaric acid (L-(+)-Tartaric acid) is an endogenous metabolite. L-Tartaric acid is the primary nonfermentable soluble acid in grapes and the principal acid in wine. L-Tartaric acid can be used as a flavorant and antioxidant for a range of foods and beverages[1].

   

2-Carboxybenzaldehyde

2-Carboxybenzaldehyde

C8H6O3 (150.0317)


   

Carboxybenzaldehyde

Carboxybenzaldehyde

C8H6O3 (150.0317)


   

Aldehydo-D-xylose

Aldehydo-D-xylose

C5H10O5 (150.0528)


   

aldehydo-D-ribose

aldehydo-D-ribose

C5H10O5 (150.0528)


   

D-Arabinopyranose

D-Arabinopyranose

C5H10O5 (150.0528)


D-Arabinose in its pyranose form. D-Arabinose, a monosaccharide, shows strong growth inhibition against the Caenorhabditis elegans with an IC50 of 7.5 mM[1]. D-Arabinose, a monosaccharide, shows strong growth inhibition against the Caenorhabditis elegans with an IC50 of 7.5 mM[1]. D-arabinose is an endogenous metabolite. D-arabinose is an endogenous metabolite.

   

Pectinose

Pectinose

C5H10O5 (150.0528)


   

(R,R)-Tartaric acid

(R,R)-Tartaric acid

C4H6O6 (150.0164)


   

(S,S)-Tartaric acid

(S,S)-Tartaric acid

C4H6O6 (150.0164)


   

Tartaric acid; LC-tDDA; CE10

Tartaric acid; LC-tDDA; CE10

C4H6O6 (150.0164)


   

Tartaric acid; LC-tDDA; CE20

Tartaric acid; LC-tDDA; CE20

C4H6O6 (150.0164)


   

2-Hydroxy-4-(methylthio)butanoate

2-Hydroxy-4-(methylthio)butanoate

C5H10O3S (150.0351)


   

Tartrate

L(+)-Tartaric acid

C4H6O6 (150.0164)


L-Tartaric acid (L-(+)-Tartaric acid) is an endogenous metabolite. L-Tartaric acid is the primary nonfermentable soluble acid in grapes and the principal acid in wine. L-Tartaric acid can be used as a flavorant and antioxidant for a range of foods and beverages[1]. L-Tartaric acid (L-(+)-Tartaric acid) is an endogenous metabolite. L-Tartaric acid is the primary nonfermentable soluble acid in grapes and the principal acid in wine. L-Tartaric acid can be used as a flavorant and antioxidant for a range of foods and beverages[1].

   
   

2-Hydroxy-4-(methylthio)butyric acid

2-Hydroxy-4-(methylthio)butyric acid

C5H10O3S (150.0351)


   

BENZOYLFORMIC ACID

Phenylglyoxylic acid

C8H6O3 (150.0317)


D000890 - Anti-Infective Agents > D000892 - Anti-Infective Agents, Urinary > D008333 - Mandelic Acids Phenylglyoxylic acid (Benzoylformic acid) is a metabolite of ethylbenzene and styrene (EB/S) and can be used as a biomarker of exposure to EB/S in human[1]. Phenylglyoxylic acid (Benzoylformic acid) is a metabolite of ethylbenzene and styrene (EB/S) and can be used as a biomarker of exposure to EB/S in human[1].

   

2-deoxy-ribonic acid

2,3,5-trihydroxy-pentanoic acid

C5H10O5 (150.0528)


   

FEMA 3827

Disulfide, bis(1-methylethyl) (9ci)

C6H14S2 (150.0537)


   

2-(2-THIENYL)FURAN

2-(thiophen-2-yl)furan

C8H6OS (150.0139)


   

D-Threaric acid

(2S,3S)-2,3-Dihydroxybutanedioic acid

C4H6O6 (150.0164)


DL-Tartaric acid is a non-racemic mixture of L- and D-tartaric acids with antioxidant activities[1][2].

   

Amyl methyl disulfide

Methyl pentyl disulfide, 9ci

C6H14S2 (150.0537)


   

(2Z)-8-hydroxyoct-2-en-4,6-diynoic acid

(2Z)-8-hydroxyoct-2-en-4,6-diynoic acid

C8H6O3 (150.0317)


   

Hexamethylendithiol

Hexamethylene dimercaptan

C6H14S2 (150.0537)


   

Butyl ethyl disulfide

1-(ethyldisulfanyl)butane

C6H14S2 (150.0537)


   

methylisopentyldisulfide

3-methyl-1-(methyldisulfanyl)butane

C6H14S2 (150.0537)


   

4-Hydroxyphthalide

4-hydroxy-1,3-dihydro-2-benzofuran-1-one

C8H6O3 (150.0317)


   

Alimet

(±)-2-Hydroxy-4-(methylthio)butanoic acid

C5H10O3S (150.0351)


   

cocoa propanal

2-Methyl-2-(methyldithio)propionaldehyde

C5H10OS2 (150.0173)


   

1-(propylsulfanyl)propane-1-thiol

1-(propylsulfanyl)propane-1-thiol

C6H14S2 (150.0537)


   

1,4-benzodioxin-3-one

2,3-dihydro-1,4-benzodioxin-2-one

C8H6O3 (150.0317)


   

FA 5:0;O3

(3S,4R)-3,4,5-trihydroxypentanoic acid

C5H10O5 (150.0528)


   

2-Hydroxy-4-(methylthio)butanoic acid

2-hydroxy-4-(methylsulfanyl)butanoic acid

C5H10O3S (150.0351)


   

BBTOH

(E)-4-(thiophen-2-yl)but-1-en-3-yn-1-ol

C8H6OS (150.0139)


   

Thiophene, 2-(1-pentynyl)- (9CI)

Thiophene, 2-(1-pentynyl)- (9CI)

C9H10S (150.0503)


   

1H-pyrido[2,3-b][1,4]oxazin-2-ol

1H-pyrido[2,3-b][1,4]oxazin-2-ol

C7H6N2O2 (150.0429)


   

3-(ethylsulfinyl)propanoic acid

3-(ethylsulfinyl)propanoic acid

C5H10O3S (150.0351)


   

2-(METHYLTHIO)NICOTINONITRILE

2-(METHYLTHIO)NICOTINONITRILE

C7H6N2S (150.0252)


   

4-PYRIDINECARBONITRILE, 3-(METHYLTHIO)-

4-PYRIDINECARBONITRILE, 3-(METHYLTHIO)-

C7H6N2S (150.0252)


   

2-Hydroxyisophthalaldehyde

2-Hydroxyisophthalaldehyde

C8H6O3 (150.0317)


   

3-(3-Fluorophenyl)-2-propyn-1-ol

3-(3-Fluorophenyl)-2-propyn-1-ol

C9H7FO (150.0481)


   

5-Amino-1,3-benzoxazol-2(3H)-one

5-Amino-1,3-benzoxazol-2(3H)-one

C7H6N2O2 (150.0429)


   

2-methyl-4-(trifluoromethyl)furan

2-methyl-4-(trifluoromethyl)furan

C6H5F3O (150.0292)


   

Amyl Chloroformate

Amyl Chloroformate

C6H11ClO2 (150.0448)


   

5-Methyloxazolo[4,5-b]pyridin-2(3H)-one

5-Methyloxazolo[4,5-b]pyridin-2(3H)-one

C7H6N2O2 (150.0429)


   

O,S-Diethyl dithiocarbonate

O,S-Diethyl dithiocarbonate

C5H10OS2 (150.0173)


   

Ethane,1,2-bis(ethylthio)-

Ethane,1,2-bis(ethylthio)-

C6H14S2 (150.0537)


   

tert-Butyl chloroacetate

tert-Butyl chloroacetate

C6H11ClO2 (150.0448)


   

1H-Pyrido[2,3-b][1,4]oxazin-2(3H)-one

1H-Pyrido[2,3-b][1,4]oxazin-2(3H)-one

C7H6N2O2 (150.0429)


   

Thieno[3,2-b]pyridin-5-amine (9CI)

Thieno[3,2-b]pyridin-5-amine (9CI)

C7H6N2S (150.0252)


   

Benzo[c][1,2]oxaborole-1,6(3H)-diol

Benzo[c][1,2]oxaborole-1,6(3H)-diol

C7H7BO3 (150.0488)


   

Benzoic acid,4-diazenyl-(9CI)

Benzoic acid,4-diazenyl-(9CI)

C7H6N2O2 (150.0429)


   

Thieno[2,3-b]pyridin-4-amine (9CI)

Thieno[2,3-b]pyridin-4-amine (9CI)

C7H6N2S (150.0252)


   

Butyl chloroacetate

Butyl 2-chloroacetate

C6H11ClO2 (150.0448)


   

4-Thiomorpholinamine 1,1-dioxide

4-Thiomorpholinamine 1,1-dioxide

C4H10N2O2S (150.0463)


   

5-methyl-3-(trifluoromethyl)pyrazole

5-methyl-3-(trifluoromethyl)-1H-pyrazole

C5H5F3N2 (150.0405)


   

(2S,3S)-2-Chloro-3-Methyl-n-Valeric Acid

(2S,3S)-2-Chloro-3-Methyl-n-Valeric Acid

C6H11ClO2 (150.0448)


   

5-FLUORO-3-METHYLBENZOFURAN

5-FLUORO-3-METHYLBENZOFURAN

C9H7FO (150.0481)


   

PIPERAZINE-2,6-DIONE HYDROCHLORIDE

PIPERAZINE-2,6-DIONE HYDROCHLORIDE

C4H7ClN2O2 (150.0196)


   

Pyrrolo[1,2-c]pyrimidine-1,4-dione, 2,3-dihydro- (9CI)

Pyrrolo[1,2-c]pyrimidine-1,4-dione, 2,3-dihydro- (9CI)

C7H6N2O2 (150.0429)


   

Benzo[b]thiophen-5-ol

Benzo[b]thiophen-5-ol

C8H6OS (150.0139)


   

N-Carbamoyl-3-chloropropanamide

N-Carbamoyl-3-chloropropanamide

C4H7ClN2O2 (150.0196)


   

6-Hydroxy-1-benzofuran-2(3H)-one

6-Hydroxy-1-benzofuran-2(3H)-one

C8H6O3 (150.0317)


   

3-fluoro-6,6a-dihydro-1aH-indeno[1,2-b]oxirene

3-fluoro-6,6a-dihydro-1aH-indeno[1,2-b]oxirene

C9H7FO (150.0481)


   

2-(PYRAZIN-2-YL)MALONALDEHYDE

2-(PYRAZIN-2-YL)MALONALDEHYDE

C7H6N2O2 (150.0429)


   

Thieno[3,2-c]pyridin-3-amine

Thieno[3,2-c]pyridin-3-amine

C7H6N2S (150.0252)


   

6-Methoxy-7H-purine

6-Methoxy-7H-purine

C6H6N4O (150.0542)


   

3-(5-methyl-1,2-oxazol-3-yl)-3-oxopropanenitrile

3-(5-methyl-1,2-oxazol-3-yl)-3-oxopropanenitrile

C7H6N2O2 (150.0429)


   

3-(2-Furyl)-1H-1,2,4-triazol-5-amine

3-(2-Furyl)-1H-1,2,4-triazol-5-amine

C6H6N4O (150.0542)


   

1-METHYL-1,5-DIHYDRO-4H-PYRAZOLO[3,4-D]PYRIMIDIN-4-ONE

1-METHYL-1,5-DIHYDRO-4H-PYRAZOLO[3,4-D]PYRIMIDIN-4-ONE

C6H6N4O (150.0542)


   

1H-Pyrrolo[3,2-c]pyridine-4,6(5H,7H)-dione

1H-Pyrrolo[3,2-c]pyridine-4,6(5H,7H)-dione

C7H6N2O2 (150.0429)


   

4-methyl-[1,3]thiazolo[4,5-c]pyridine

4-methyl-[1,3]thiazolo[4,5-c]pyridine

C7H6N2S (150.0252)


   

Thieno[2,3-c]pyridin-7-amine (9CI)

Thieno[2,3-c]pyridin-7-amine (9CI)

C7H6N2S (150.0252)


   

Thieno[3,2-c]pyridin-4-amine (9CI)

Thieno[3,2-c]pyridin-4-amine (9CI)

C7H6N2S (150.0252)


   

1-(4-fluorophenyl)prop-2-en-1-one

1-(4-fluorophenyl)prop-2-en-1-one

C9H7FO (150.0481)


   

Pyrrole-2-carboxylic acid, 3-cyano-1-methyl- (7CI,8CI)

Pyrrole-2-carboxylic acid, 3-cyano-1-methyl- (7CI,8CI)

C7H6N2O2 (150.0429)


   

1H-benzimidazole-5,6-diol

1H-benzimidazole-5,6-diol

C7H6N2O2 (150.0429)


   

4H-Pyrazolo[4,3-c]pyridin-4-one, 3-amino-1,5-dihydro-

4H-Pyrazolo[4,3-c]pyridin-4-one, 3-amino-1,5-dihydro-

C6H6N4O (150.0542)


   

1H-Benzimidazole-4,7-diol

1H-Benzimidazole-4,7-diol

C7H6N2O2 (150.0429)


   

2,3-DIHYDRO-1H-INDEN-5-YL HYDROSULFIDE

2,3-DIHYDRO-1H-INDEN-5-YL HYDROSULFIDE

C9H10S (150.0503)


   

5-Fluoro-1-indanone

5-Fluoro-1-indanone

C9H7FO (150.0481)


   

2-(PYRIMIDIN-4-YL)MALONALDEHYDE

2-(PYRIMIDIN-4-YL)MALONALDEHYDE

C7H6N2O2 (150.0429)


   

2,1,3-benzoxadiazol-5-ylmethanol

2,1,3-benzoxadiazol-5-ylmethanol

C7H6N2O2 (150.0429)


   

5-Benzothiazolamine

5-Benzothiazolamine

C7H6N2S (150.0252)


   

(2E)-3-(3-Fluorophenyl)acrylaldehyde

(2E)-3-(3-Fluorophenyl)acrylaldehyde

C9H7FO (150.0481)


   

(2E)-3-(2-Fluorophenyl)acrylaldehyde

(2E)-3-(2-Fluorophenyl)acrylaldehyde

C9H7FO (150.0481)


   

Butane,1,4-bis(methylthio)-

Butane,1,4-bis(methylthio)-

C6H14S2 (150.0537)


   

5-Methyl-2,1,3-benzothiadiazole

5-Methyl-2,1,3-benzothiadiazole

C7H6N2S (150.0252)


   

Benzo[d]thiazol-7-amine

Benzo[d]thiazol-7-amine

C7H6N2S (150.0252)


   

Thieno[3,2-b]pyridin-6-amine

Thieno[3,2-b]pyridin-6-amine

C7H6N2S (150.0252)


   

1,3-Benzothiazol-4-amine

1,3-Benzothiazol-4-amine

C7H6N2S (150.0252)


   

Urea oxalate

Urea oxalate

C3H6N2O5 (150.0277)


   

Propyl 3-chloropropanoate

Propyl 3-chloropropanoate

C6H11ClO2 (150.0448)


   

1-Methyl-1H-pyrazolo[4,3-d]pyrimidin-7-ol

1-Methyl-1H-pyrazolo[4,3-d]pyrimidin-7-ol

C6H6N4O (150.0542)


   

3-(2-Chloroethylidene)carbazic acid methyl ester

3-(2-Chloroethylidene)carbazic acid methyl ester

C4H7ClN2O2 (150.0196)


   

2,3-(methylenedioxy)benzaldehyde

2,3-(methylenedioxy)benzaldehyde

C8H6O3 (150.0317)


   

2-amino-1,3-benzoxazol-4-ol

2-amino-1,3-benzoxazol-4-ol

C7H6N2O2 (150.0429)


   
   

4,7-DIHYDRO-IMIDAZOLE[4,5-D]1,3-DIAZEPINE-8(1H)-ONE

4,7-DIHYDRO-IMIDAZOLE[4,5-D]1,3-DIAZEPINE-8(1H)-ONE

C6H6N4O (150.0542)


   

(3-Chloro-1-propyn-1-yl)benzene

(3-Chloro-1-propyn-1-yl)benzene

C9H7Cl (150.0236)


   

6-amino-1,3-benzoxazol-2(3H)-one

6-amino-1,3-benzoxazol-2(3H)-one

C7H6N2O2 (150.0429)


   

5-Hydroxy-1,2-dihydro-3H-indazol-3-one

5-Hydroxy-1,2-dihydro-3H-indazol-3-one

C7H6N2O2 (150.0429)


   

Isopropyl 3-chloropropionate

Isopropyl 3-chloropropionate

C6H11ClO2 (150.0448)


   

3-Methylisoxazolo[5,4-d]pyrimidin-4-amine

3-Methylisoxazolo[5,4-d]pyrimidin-4-amine

C6H6N4O (150.0542)


   

4-Formylphenylboronic acid

4-Formylphenylboronic acid

C7H7BO3 (150.0488)


   

(E)-3-(4-fluorophenyl)acrylaldehyde

(E)-3-(4-fluorophenyl)acrylaldehyde

C9H7FO (150.0481)


   

(R)-(+)-4-Chloromethyl-2,2-Dimethyl-1,3-Dioxolane

(R)-(+)-4-Chloromethyl-2,2-Dimethyl-1,3-Dioxolane

C6H11ClO2 (150.0448)


   

4-(METHYLTHIO)PICOLINONITRILE

4-(METHYLTHIO)PICOLINONITRILE

C7H6N2S (150.0252)


   

1-Benzothiophene 1-oxide

1-Benzothiophene 1-oxide

C8H6OS (150.0139)


   

1,3,5-Triethynylbenzene

1,3,5-Triethynylbenzene

C12H6 (150.0469)


   

3,3-Difluorocyclopentanecarboxylic acid

3,3-Difluorocyclopentanecarboxylic acid

C6H8F2O2 (150.0492)


   

(S)-2-Chloro-4-methylvaleric Acid

(S)-2-Chloro-4-methylvaleric Acid

C6H11ClO2 (150.0448)


   

5-Fluoro-2-indanone

5-Fluoro-2-indanone

C9H7FO (150.0481)


   

5-METHYL-2-THIOXO-1,2-DIHYDROPYRIDINE-3-CARBONITRILE

5-METHYL-2-THIOXO-1,2-DIHYDROPYRIDINE-3-CARBONITRILE

C7H6N2S (150.0252)


   

3-cyano-5-methyl-1H-pyrrole-2-carboxylic acid

3-cyano-5-methyl-1H-pyrrole-2-carboxylic acid

C7H6N2O2 (150.0429)


   

1H-benzimidazole-4,5-diol

1H-benzimidazole-4,5-diol

C7H6N2O2 (150.0429)


   

2-(3-Chloropropyl)-1,3-dioxolane

2-(3-Chloropropyl)-1,3-dioxolane

C6H11ClO2 (150.0448)


   

3-Formylphenylboronic acid

3-Formylphenylboronic acid

C7H7BO3 (150.0488)


   

SILANOL-TRIMETHYLSILYL MODIFIED Q RESIN

SILANOL-TRIMETHYLSILYL MODIFIED Q RESIN

C3H10O3Si2 (150.0168)


   

1,6-dihydro-4-hydroxy-2-methyl-6-oxonicotinonitrile

1,6-dihydro-4-hydroxy-2-methyl-6-oxonicotinonitrile

C7H6N2O2 (150.0429)


   

2-Formylphenylboronic acid

2-Formylphenylboronic acid

C7H7BO3 (150.0488)


   

HPG Protein Modifier

HPG Protein Modifier

C8H6O3 (150.0317)


   

4-Chlorobutyl acetate

4-Chlorobutyl acetate

C6H11ClO2 (150.0448)


   

5-AMINOBENZO[D]ISOXAZOL-3(2H)-ONE

5-AMINOBENZO[D]ISOXAZOL-3(2H)-ONE

C7H6N2O2 (150.0429)


   

methyl 3,3-difluorocyclobutane-1-carboxylate

methyl 3,3-difluorocyclobutane-1-carboxylate

C6H8F2O2 (150.0492)


   

2,1,3-Benzoxadiazole,5-methoxy-

2,1,3-Benzoxadiazole,5-methoxy-

C7H6N2O2 (150.0429)


   

3-nitrosobenzamide

3-nitrosobenzamide

C7H6N2O2 (150.0429)


   

2-methylthio-5-cyanopyridine

2-methylthio-5-cyanopyridine

C7H6N2S (150.0252)


   

Ethyl-3-chloro-n-butanoate

Ethyl-3-chloro-n-butanoate

C6H11ClO2 (150.0448)


   

2-methyl-7h-purin-6-ol

2-methyl-7h-purin-6-ol

C6H6N4O (150.0542)


   

Benzo[d]isothiazol-3-amine

Benzo[d]isothiazol-3-amine

C7H6N2S (150.0252)


   

6-Fluorindan-1-on

6-Fluorindan-1-on

C9H7FO (150.0481)


   

4H-pyrido[3,2-b][1,4]oxazin-3-one

4H-pyrido[3,2-b][1,4]oxazin-3-one

C7H6N2O2 (150.0429)


   

Ethyl-2-chloro-n-butanoate

Ethyl-2-chloro-n-butanoate

C6H11ClO2 (150.0448)


   

8-Methylhypoxanthine

8-Methylhypoxanthine

C6H6N4O (150.0542)


   

1-(5-ethynylthiophen-2-yl)ethanone

1-(5-ethynylthiophen-2-yl)ethanone

C8H6OS (150.0139)


   

5-aminomethyl-2,4-dihydro-[1,2,4]triazol-3-one hydrochloride

5-aminomethyl-2,4-dihydro-[1,2,4]triazol-3-one hydrochloride

C3H7ClN4O (150.0308)


   

1-Amino-2,5-pyrrolidinedione hydrochloride (1:1)

1-Amino-2,5-pyrrolidinedione hydrochloride (1:1)

C4H7ClN2O2 (150.0196)


   

1-Benzothiophene-4-ol

1-Benzothiophene-4-ol

C8H6OS (150.0139)


   

Thieno[2,3-d]pyrimidine, 2-methyl- (9CI)

Thieno[2,3-d]pyrimidine, 2-methyl- (9CI)

C7H6N2S (150.0252)


   

2-methyl-[1,3]thiazolo[5,4-c]pyridine

2-methyl-[1,3]thiazolo[5,4-c]pyridine

C7H6N2S (150.0252)


   

Cyanamide, (1,4-dihydro-6-methyl-4-oxo-2-pyrimidinyl)-(9CI)

Cyanamide, (1,4-dihydro-6-methyl-4-oxo-2-pyrimidinyl)-(9CI)

C6H6N4O (150.0542)


   

S-2-Chloro-3-methylvaleric acid

S-2-Chloro-3-methylvaleric acid

C6H11ClO2 (150.0448)


   

4-Methyl-2-(trifluoromethyl)-1H-imidazole

4-Methyl-2-(trifluoromethyl)-1H-imidazole

C5H5F3N2 (150.0405)


   

4-Amino-6-methoxypyrimidine-5-carbonitrile

4-Amino-6-methoxypyrimidine-5-carbonitrile

C6H6N4O (150.0542)


   

2-Methyl-1,2,6-thiadiazinane 1,1-dioxide

2-Methyl-1,2,6-thiadiazinane 1,1-dioxide

C4H10N2O2S (150.0463)


   

Cyclopropyl Phenyl Sulfide

Cyclopropyl Phenyl Sulfide

C9H10S (150.0503)


   

1(3H)-Isobenzofuranone,5-hydroxy-

1(3H)-Isobenzofuranone,5-hydroxy-

C8H6O3 (150.0317)


   

(2E)-3-(4-Fluorophenyl)acrylaldehyde

(2E)-3-(4-Fluorophenyl)acrylaldehyde

C9H7FO (150.0481)


   

Pyrrolo[1,2-b]pyridazin-2(1H)-one,4-hydroxy-

Pyrrolo[1,2-b]pyridazin-2(1H)-one,4-hydroxy-

C7H6N2O2 (150.0429)


   

3-(4-Fluorophenyl)-2-propyn-1-ol

3-(4-Fluorophenyl)-2-propyn-1-ol

C9H7FO (150.0481)


   

DITHIOCARBONIC ACID S,S-DIETHYL ESTER

DITHIOCARBONIC ACID S,S-DIETHYL ESTER

C5H10OS2 (150.0173)


   

1H-Indazole-5-thiol

1H-Indazole-5-thiol

C7H6N2S (150.0252)


   

fast orange gr salt

2-Nitrobenzenediazonium

C6H4N3O2+ (150.0304)


   

(E)-3-pyrimidin-2-ylprop-2-enoic acid

(E)-3-pyrimidin-2-ylprop-2-enoic acid

C7H6N2O2 (150.0429)


   

BENZO[C]ISOTHIAZOL-3-AMINE

BENZO[C]ISOTHIAZOL-3-AMINE

C7H6N2S (150.0252)


   

6-Methyl-[1,2,4]triazolo[4,3-b]pyridazin-3(2H)-one

6-Methyl-[1,2,4]triazolo[4,3-b]pyridazin-3(2H)-one

C6H6N4O (150.0542)


   

2-amino-1H-pyrrolo[2,1-f][1,2,4]triazin-4-one

2-amino-1H-pyrrolo[2,1-f][1,2,4]triazin-4-one

C6H6N4O (150.0542)


   

3-Pyridinecarbonitrile,1,6-dihydro-2-methoxy-6-oxo-(9CI)

3-Pyridinecarbonitrile,1,6-dihydro-2-methoxy-6-oxo-(9CI)

C7H6N2O2 (150.0429)


   

1,2-Benzothiazol-5-amine

1,2-Benzothiazol-5-amine

C7H6N2S (150.0252)


   

6-Aminopyrrolo[2,1-f][1,2,4]triazin-4(1H)-one

6-Aminopyrrolo[2,1-f][1,2,4]triazin-4(1H)-one

C6H6N4O (150.0542)


   

bis(2-chloroethyl)-d8 ether

bis(2-chloroethyl)-d8 ether

C4Cl2D8O (150.0454)


   

2-AMINO-6-METHYL-4-OXO-4H-PYRAN-3-CARBONITRILE

2-AMINO-6-METHYL-4-OXO-4H-PYRAN-3-CARBONITRILE

C7H6N2O2 (150.0429)


   

2-Chloro-N-(methylcarbamoyl)acetamide

2-Chloro-N-(methylcarbamoyl)acetamide

C4H7ClN2O2 (150.0196)


   

5-fluoro-6,6a-dihydro-1aH-indeno[1,2-b]oxirene

5-fluoro-6,6a-dihydro-1aH-indeno[1,2-b]oxirene

C9H7FO (150.0481)


   

7-Chloro-1H-indene

7-Chloro-1H-indene

C9H7Cl (150.0236)


   

Ethyl 4-chlorobutanoate

Ethyl 4-chlorobutanoate

C6H11ClO2 (150.0448)


   

3-Cyano-2,6-dihydroxy-4-methylpyridine

3-Cyano-2,6-dihydroxy-4-methylpyridine

C7H6N2O2 (150.0429)


   

5-(THIOPHEN-3-YL)-1H-PYRAZOLE

5-(THIOPHEN-3-YL)-1H-PYRAZOLE

C7H6N2S (150.0252)


   

7-Amino-1,3-benzoxazol-2(3H)-one

7-Amino-1,3-benzoxazol-2(3H)-one

C7H6N2O2 (150.0429)


   

2H-Pyran-2-carboxylicacid, 3,4-dihydro-, sodium salt (1:1)

2H-Pyran-2-carboxylicacid, 3,4-dihydro-, sodium salt (1:1)

C6H7NaO3 (150.0293)


   

Dezaguanine

3-Deazaguanine

C6H6N4O (150.0542)


C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents

   

Pyrimido[4,5-d]pyrimidin-4-ol, 3,4-dihydro- (9CI)

Pyrimido[4,5-d]pyrimidin-4-ol, 3,4-dihydro- (9CI)

C6H6N4O (150.0542)


   

Pyrimido[4,5-d]pyrimidin-2-ol, 5,6-dihydro- (6CI)

Pyrimido[4,5-d]pyrimidin-2-ol, 5,6-dihydro- (6CI)

C6H6N4O (150.0542)


   

Dimethyl allylphosphonate

Dimethyl allylphosphonate

C5H11O3P (150.0446)


   

6-Aminobenzothiazole

6-Aminobenzothiazole

C7H6N2S (150.0252)


   

N-ACETYL-2-CHLOROACETOHYDRAZIDE

N-ACETYL-2-CHLOROACETOHYDRAZIDE

C4H7ClN2O2 (150.0196)


   

1H-Imidazo[4,5-b]pyridin-7-ol,5-amino-(8CI,9CI)

1H-Imidazo[4,5-b]pyridin-7-ol,5-amino-(8CI,9CI)

C6H6N4O (150.0542)


   

3-AMINO-2-MERCAPTOBENZONITRILE

3-AMINO-2-MERCAPTOBENZONITRILE

C7H6N2S (150.0252)


   

Thieno[3,2-b]pyridin-7-amine (9CI)

Thieno[3,2-b]pyridin-7-amine (9CI)

C7H6N2S (150.0252)


   

1H-Benzimidazole-4,6-diol(9CI)

1H-Benzimidazole-4,6-diol(9CI)

C7H6N2O2 (150.0429)


   

2H-Purin-2-one, 1,3-dihydro-6-methyl- (9CI)

2H-Purin-2-one, 1,3-dihydro-6-methyl- (9CI)

C6H6N4O (150.0542)


   

2-Aminophenyl thiocyanate

2-Aminophenyl thiocyanate

C7H6N2S (150.0252)


   

Thieno[2,3-b]pyridin-3-ylamine

Thieno[2,3-b]pyridin-3-ylamine

C7H6N2S (150.0252)


   

thieno[2,3-c]pyridin-3-amine

thieno[2,3-c]pyridin-3-amine

C7H6N2S (150.0252)


   

Thieno[3,2-b]pyridin-3-amine

Thieno[3,2-b]pyridin-3-amine

C7H6N2S (150.0252)


   

5-chloro-1h-indene

5-chloro-1h-indene

C9H7Cl (150.0236)


   

Chloromethyl pivalate

Chloromethyl pivalate

C6H11ClO2 (150.0448)


   

(tetrahydro-3-thienyl)hydrazine S,S-dioxide

(tetrahydro-3-thienyl)hydrazine S,S-dioxide

C4H10N2O2S (150.0463)


   

2-AMINO-3-CYANO-5-METHYLPYRAZINE 1-OXIDE

2-AMINO-3-CYANO-5-METHYLPYRAZINE 1-OXIDE

C6H6N4O (150.0542)


   

Methyl 5-chloropentanoate

Methyl 5-chloropentanoate

C6H11ClO2 (150.0448)


   

2-Methyl-5-(trifluoromethyl)furan

2-Methyl-5-(trifluoromethyl)furan

C6H5F3O (150.0292)


   

4-CHLORO-2-METHYLBUTYRIC ACID METHYL ESTER

4-CHLORO-2-METHYLBUTYRIC ACID METHYL ESTER

C6H11ClO2 (150.0448)


   

5-NITRO-2-VINYLPYRIDINE

5-NITRO-2-VINYLPYRIDINE

C7H6N2O2 (150.0429)


   

3-NITRO-2-VINYLPYRIDINE

3-NITRO-2-VINYLPYRIDINE

C7H6N2O2 (150.0429)


   

3-(2-FURYL)ISOXAZOL-5-AMINE

3-(2-FURYL)ISOXAZOL-5-AMINE

C7H6N2O2 (150.0429)


   

2H-Pyrrolo[2,3-d]pyrimidin-2-one, 4-amino-1,7-dihydro- (9CI)

2H-Pyrrolo[2,3-d]pyrimidin-2-one, 4-amino-1,7-dihydro- (9CI)

C6H6N4O (150.0542)


   

Thiazole,2-(1H-pyrrol-3-yl)-

Thiazole,2-(1H-pyrrol-3-yl)-

C7H6N2S (150.0252)


   

6-Methylisoxazolo[5,4-d]pyrimidin-3-amine

6-Methylisoxazolo[5,4-d]pyrimidin-3-amine

C6H6N4O (150.0542)


   

4-AMINO-3-MERCAPTOBENZONITRILE

4-AMINO-3-MERCAPTOBENZONITRILE

C7H6N2S (150.0252)


   

1,3-Isobenzofurandione,4,7-dihydro-

1,3-Isobenzofurandione,4,7-dihydro-

C8H6O3 (150.0317)


   

2-HYDROXYETHYL 3-MERCAPTOPROPIONATE

2-HYDROXYETHYL 3-MERCAPTOPROPIONATE

C5H10O3S (150.0351)


   

1-(thiophen-2-yl)-1H-pyrazole

1-(thiophen-2-yl)-1H-pyrazole

C7H6N2S (150.0252)


   

2-AMINO-1,4A-DIHYDRO-4H-PYRROLO[2,3-D]PYRIMIDIN-4-ONE

2-AMINO-1,4A-DIHYDRO-4H-PYRROLO[2,3-D]PYRIMIDIN-4-ONE

C6H6N4O (150.0542)


   

3-(2-thienyl)pyrazole

3-(2-thienyl)pyrazole

C7H6N2S (150.0252)


   

4-Methyl-2,1,3-benzothiadiazole

4-Methyl-2,1,3-benzothiadiazole

C7H6N2S (150.0252)


   

1H-Pyrrole-2-carboxylicacid,5-cyano-,methylester(9CI)

1H-Pyrrole-2-carboxylicacid,5-cyano-,methylester(9CI)

C7H6N2O2 (150.0429)


   

2,1,3-Benzoxadiazole,5-methyl-, 1-oxide

2,1,3-Benzoxadiazole,5-methyl-, 1-oxide

C7H6N2O2 (150.0429)


   

1H-1,2,3-Triazolo[4,5-c]pyridine-4,6-diamine(9CI)

1H-1,2,3-Triazolo[4,5-c]pyridine-4,6-diamine(9CI)

C2H6N4O2S (150.0211)


   

5-Formylsalicylaldehyde

5-Formylsalicylaldehyde

C8H6O3 (150.0317)


   

THIENO[2,3-B]PYRIDIN-5-AMINE (9CI)

THIENO[2,3-B]PYRIDIN-5-AMINE (9CI)

C7H6N2S (150.0252)


   

2H-PYRIDO[4,3-B][1,4]OXAZIN-3(4H)-ONE

2H-PYRIDO[4,3-B][1,4]OXAZIN-3(4H)-ONE

C7H6N2O2 (150.0429)


   

Dimethyl fluoromalonate

Dimethyl fluoromalonate

C5H7FO4 (150.0328)


   

thieno[2,3-b]pyridin-6-amine

thieno[2,3-b]pyridin-6-amine

C7H6N2S (150.0252)


   

4-Hydroxy-1-benzofuran-3(2H)-one

4-Hydroxy-1-benzofuran-3(2H)-one

C8H6O3 (150.0317)


   

3(2H)-Benzofuranone,5-hydroxy-

3(2H)-Benzofuranone,5-hydroxy-

C8H6O3 (150.0317)


   

3(2H)-Benzofuranone,7-hydroxy-

3(2H)-Benzofuranone,7-hydroxy-

C8H6O3 (150.0317)


   

1-(Methylsulfonyl)azetidin-3-amine

1-(Methylsulfonyl)azetidin-3-amine

C4H10N2O2S (150.0463)


   

Allyl Phenyl Sulfide

Allyl Phenyl Sulfide

C9H10S (150.0503)


   

Thieno[3,2-c]pyridin-2-amine (9CI)

Thieno[3,2-c]pyridin-2-amine (9CI)

C7H6N2S (150.0252)


   

2,3-dihydro-1H-1,2,4-triazole-3-sulfonamide

2,3-dihydro-1H-1,2,4-triazole-3-sulfonamide

C2H6N4O2S (150.0211)


   

2-methyl-4-(trifluoromethyl)-1H-imidazole

2-methyl-4-(trifluoromethyl)-1H-imidazole

C5H5F3N2 (150.0405)


   

1-Methyl-3-(trifluoromethyl)-1H-pyrazole

1-Methyl-3-(trifluoromethyl)-1H-pyrazole

C5H5F3N2 (150.0405)


   

3-METHYL-ISOTHIAZOLO[5,4-B]PYRIDINE

3-METHYL-ISOTHIAZOLO[5,4-B]PYRIDINE

C7H6N2S (150.0252)


   

(S)-(-)-4-(Chloromethyl)-2,2-dimethyl-1,3-dioxolane

(S)-(-)-4-(Chloromethyl)-2,2-dimethyl-1,3-dioxolane

C6H11ClO2 (150.0448)


   

3,3-DIMETHYL-[1,2,5]THIADIAZOLIDINE 1,1-DIOXIDE

3,3-DIMETHYL-[1,2,5]THIADIAZOLIDINE 1,1-DIOXIDE

C4H10N2O2S (150.0463)


   

3-Formylbenzoic acid

3-Formylbenzoic acid

C8H6O3 (150.0317)


   

7-Methyl-1,2,4-triazolo[4,3-a]pyrimidin-5-ol

7-Methyl-1,2,4-triazolo[4,3-a]pyrimidin-5-ol

C6H6N4O (150.0542)


   

2-isothiocyanato-4-methylpyridine

2-isothiocyanato-4-methylpyridine

C7H6N2S (150.0252)


   

2,2-dimethylpropyl carbonochloridate

2,2-dimethylpropyl carbonochloridate

C6H11ClO2 (150.0448)


   

7-Fluorindan-1-on

7-Fluorindan-1-on

C9H7FO (150.0481)


   

7-Aminopyrazolo[1,5-a]pyrimidin-5-ol

7-Aminopyrazolo[1,5-a]pyrimidin-5-ol

C6H6N4O (150.0542)


   

N-3-AZETIDINYL-METHANESULFONAMIDE

N-3-AZETIDINYL-METHANESULFONAMIDE

C4H10N2O2S (150.0463)


   
   

3-Buten-2-one,4-ethoxy-1,1-difluoro-,(3E)-

3-Buten-2-one,4-ethoxy-1,1-difluoro-,(3E)-

C6H8F2O2 (150.0492)


   

Alpha-L-Xylopyranose

alpha-L-Xylopyranose (9CI)

C5H10O5 (150.0528)


An L-xylopyranose that has alpha- configuration at the anomeric centre.

   

L-Xylose

beta-l-Xylopyranose

C5H10O5 (150.0528)


A L-xylopyranose with a beta-configuration at the anomeric position. DL-Xylose is an intermediate of organic synthesis. DL-Xylose is an intermediate of organic synthesis. L-Xylose (L-(-)-Xylose) is the levo-isomer of Xylose. Xylose is classified as a?monosaccharide?of the?aldopentose?type[1].

   

Cimicifuga racemosa extract

Cimicifuga racemosa extract

C5H10O5 (150.0528)


   

benzo[b]thiophen-4-ol

benzo[b]thiophen-4-ol

C8H6OS (150.0139)


   

1H-Indol-3-yl amine

1H-Indol-3-yl amine

C7H6N2S (150.0252)


   

3-(isothiocyanatomethyl)pyridine

3-(isothiocyanatomethyl)pyridine

C7H6N2S (150.0252)


   

[1,2,5]Oxadiazolo[3,4-b]pyrazine,5,6-dimethyl-(9CI)

[1,2,5]Oxadiazolo[3,4-b]pyrazine,5,6-dimethyl-(9CI)

C6H6N4O (150.0542)


   

1H-Imidazo[1,2-b]pyrazole-7-carboxamide(9CI)

1H-Imidazo[1,2-b]pyrazole-7-carboxamide(9CI)

C6H6N4O (150.0542)


   

Pyrido[2,3-e]-1,2,4-triazin-3(2H)-one, 1,4-dihydro- (9CI)

Pyrido[2,3-e]-1,2,4-triazin-3(2H)-one, 1,4-dihydro- (9CI)

C6H6N4O (150.0542)


   

Benzo[b]thiophen-3(2H)-one

Benzo[b]thiophen-3(2H)-one

C8H6OS (150.0139)


   

propan-2-yl 2-chloropropanoate

propan-2-yl 2-chloropropanoate

C6H11ClO2 (150.0448)


   

potassium i-propyltrifluoroborate

potassium i-propyltrifluoroborate

C3H7BF3K (150.023)


   

4H-Pyrazolo[3,4-d]pyrimidin-4-one,1,5-dihydro-6-methyl-

4H-Pyrazolo[3,4-d]pyrimidin-4-one,1,5-dihydro-6-methyl-

C6H6N4O (150.0542)


   

4-Hydroxytetrahydro-2H-thiopyran 1,1-dioxide

4-Hydroxytetrahydro-2H-thiopyran 1,1-dioxide

C5H10O3S (150.0351)


   

UNII:0366925SM9

UNII:0366925SM9

C6H11ClO2 (150.0448)


   

1-Benzothiophene-3-ol

1-Benzothiophene-3-ol

C8H6OS (150.0139)


   

zinc,propane

zinc,propane

C6H14Zn (150.0387)


   

2,1,3-BENZOXADIAZOL-4-YLMETHANOL

2,1,3-BENZOXADIAZOL-4-YLMETHANOL

C7H6N2O2 (150.0429)


   

6-Hydroxybenzofuran-3-one

6-Hydroxybenzofuran-3-one

C8H6O3 (150.0317)


   

6-Chlorohexanoic acid

6-Chlorohexanoic acid

C6H11ClO2 (150.0448)


   

3-(2-Nitroethenyl)pyridine

3-(2-Nitroethenyl)pyridine

C7H6N2O2 (150.0429)


   

4H-Pyrazolo[3,4-d]pyrimidin-4-one, 1,5-dihydro-3-methyl- (9CI)

4H-Pyrazolo[3,4-d]pyrimidin-4-one, 1,5-dihydro-3-methyl- (9CI)

C6H6N4O (150.0542)


   

2,2-Dinitropropanol

2,2-Dinitropropanol

C3H6N2O5 (150.0277)


   

3-Methylhypoxanthine

6H-Purin-6-one,3,9-dihydro-3-methyl-

C6H6N4O (150.0542)


   

5-Fluoro-2,3-dihydro-1H-inden-1-one

5-Fluoro-2,3-dihydro-1H-inden-1-one

C9H7FO (150.0481)


   

1-Pyrrolidinesulfonamide

1-Pyrrolidinesulfonamide

C4H10N2O2S (150.0463)


   

(3R,4R,5R)-3-FLUORO-4-HYDROXY-5-(HYDROXYMETHYL)DIHYDROFURAN-2(3H)-ONE

(3R,4R,5R)-3-FLUORO-4-HYDROXY-5-(HYDROXYMETHYL)DIHYDROFURAN-2(3H)-ONE

C5H7FO4 (150.0328)


   

4-AMINOBENZO[D]OXAZOL-2(3H)-ONE

4-AMINOBENZO[D]OXAZOL-2(3H)-ONE

C7H6N2O2 (150.0429)


   

7-Methylthieno[3,2-d]pyrimidine

7-Methylthieno[3,2-d]pyrimidine

C7H6N2S (150.0252)


   

L-Xylopyranose

L-Xylopyranose

C5H10O5 (150.0528)


The pyranose form of L-xylose.

   

alpha-D-Arabinofuranose

alpha-D-Arabinofuranose

C5H10O5 (150.0528)


A D-arabinofuranose that has alpha-configuration at the anomeric carbon.

   

beta-D-Ribofuranose

beta-D-Ribofuranose

C5H10O5 (150.0528)


   

alpha-D-Ribofuranose

alpha-D-Ribofuranose

C5H10O5 (150.0528)


   

beta-D-lyxopyranose

beta-D-lyxopyranose

C5H10O5 (150.0528)


   

L-Arabinopyranose

beta-D-Arabinopyranose

C5H10O5 (150.0528)


The six-membered ring form of L-arabinose. A D-arabinopyranose with beta-configuration at the anomeric position.

   

alpha-D-arabinopyranose

alpha-D-arabinopyranose

C5H10O5 (150.0528)


A D-arabinopyranose with an alpha-configuration at the anomeric position.

   

(2S,3S,4R)-2,3,4,5-tetrahydroxypentanal

(2S,3S,4R)-2,3,4,5-tetrahydroxypentanal

C5H10O5 (150.0528)


   

beta-L-ribofuranose

beta-L-ribofuranose

C5H10O5 (150.0528)


   

alpha-D-ribopyranose

alpha-D-ribopyranose

C5H10O5 (150.0528)


A D-ribopyranose with an alpha-configuration at the anomeric position.

   

beta-L-lyxopyranose

beta-L-lyxopyranose

C5H10O5 (150.0528)


   

beta-D-arabinofuranose

beta-D-arabinofuranose

C5H10O5 (150.0528)


A D-arabinofuranose with a beta-configuration at the anomeric position.

   

2-Butanone, 1,3,4-trihydroxy-3-(hydroxymethyl)-

2-Butanone, 1,3,4-trihydroxy-3-(hydroxymethyl)-

C5H10O5 (150.0528)


   

(R)-2-Hydroxy-4-(methylthio)butyric acid

(R)-2-Hydroxy-4-(methylthio)butyric acid

C5H10O3S (150.0351)


   

3-hydroxyisobenzofuran-1(3H)-one

3-hydroxyisobenzofuran-1(3H)-one

C8H6O3 (150.0317)


   

4-Nitrobenzenediazonium

4-Nitrobenzenediazonium

C6H4N3O2+ (150.0304)


   

L-ribofuranose

L-ribofuranose

C5H10O5 (150.0528)


An ribofuranose having L-configuration.

   

Beta-D-Xylofuranose

Beta-D-Xylofuranose

C5H10O5 (150.0528)


A D-xylose that is the furanose form of xylose which has beta- configuration at the anomeric centre.

   

alpha-L-ribofuranose

alpha-L-ribofuranose

C5H10O5 (150.0528)


   

3-hydroxy-2,2-bis(hydroxymethyl)propanoic Acid

3-hydroxy-2,2-bis(hydroxymethyl)propanoic Acid

C5H10O5 (150.0528)


   

alpha-d-Xylofuranose

alpha-d-Xylofuranose

C5H10O5 (150.0528)


A D-xylofuranose that has alpha configuration at the anomeric centre.

   

alpha-D-Lyxofuranose

alpha-D-Lyxofuranose

C5H10O5 (150.0528)


   

L-ribopyranose

L-ribopyranose

C5H10O5 (150.0528)


   

alpha-D-Xylulofuranose

alpha-D-Xylulofuranose

C5H10O5 (150.0528)


   

Xylofuranose

Xylofuranose

C5H10O5 (150.0528)


   

beta-D-Lyxofuranose

beta-D-Lyxofuranose

C5H10O5 (150.0528)


   

D-Lyxofuranose

D-Lyxofuranose

C5H10O5 (150.0528)


   

L-Lyxofuranose

L-Lyxofuranose

C5H10O5 (150.0528)


   

alpha-L-ribopyranose

alpha-L-ribopyranose

C5H10O5 (150.0528)


   

3-Nitrobenzenediazonium

3-Nitrobenzenediazonium

C6H4N3O2+ (150.0304)


   

alpha-L-Xylofuranose

alpha-L-Xylofuranose

C5H10O5 (150.0528)


An L-xylofuranose that has alpha- configuration at the anomeric centre.

   

beta-L-Lyxofuranose

beta-L-Lyxofuranose

C5H10O5 (150.0528)


   

alpha-L-Lyxofuranose

alpha-L-Lyxofuranose

C5H10O5 (150.0528)


   

beta-L-Xylofuranose

beta-L-Xylofuranose

C5H10O5 (150.0528)


An L-xylofuranose that has beta configuration at the anomeric centre.

   

Pentamethyl-lambda(5)-arsane

Pentamethyl-lambda(5)-arsane

C5H15As (150.039)


   

Ethanethiol, 2-[(trimethylsilyl)oxy]-

Ethanethiol, 2-[(trimethylsilyl)oxy]-

C5H14OSSi (150.0535)


   

L-Ribulose

D-(−)-Ribulose

C5H10O5 (150.0528)


   

7-Carbaguanine

7-Carbaguanine

C6H6N4O (150.0542)


   

L-(+)-Ribose

(2R,3S,4S)-2,3,4,5-tetrahydroxypentanal

C5H10O5 (150.0528)


Arabinose is an endogenous metabolite. Arabinose is an endogenous metabolite. L-(+)-Arabinose selectively inhibits intestinal sucrase activity in a noncompetitive manner and suppresses the plasma glucose increase due to sucrose ingestion. L-(+)-Arabinose selectively inhibits intestinal sucrase activity in a noncompetitive manner and suppresses the plasma glucose increase due to sucrose ingestion.

   

AI3-18439

(2S,3R,4R)-2,3,4,5-tetrahydroxyvaleraldehyde

C5H10O5 (150.0528)


Arabinose is an endogenous metabolite. Arabinose is an endogenous metabolite. D-arabinose is an endogenous metabolite. D-arabinose is an endogenous metabolite.

   

Xylomed

(2S,3R,4S,5R)-tetrahydropyran-2,3,4,5-tetrol

C5H10O5 (150.0528)


DL-Xylose is an intermediate of organic synthesis. DL-Xylose is an intermediate of organic synthesis.

   

LS-631

InChI=1\C8H6O3\c9-4-6-1-2-7-8(3-6)11-5-10-7\h1-4H,5H

C8H6O3 (150.0317)


   

CHEBI:27672

(2R,3R,4R)-4-(hydroxymethyl)tetrahydrofuran-2,3,4-triol

C5H10O5 (150.0528)


   

147-71-7

(2S,3S)-2,3-Dihydroxybutanedioic acid

C4H6O6 (150.0164)


DL-Tartaric acid is a non-racemic mixture of L- and D-tartaric acids with antioxidant activities[1][2].

   

CHEBI:46996

(2R,3S,4R,5R)-tetrahydropyran-2,3,4,5-tetrol

C5H10O5 (150.0528)


   

CHEBI:46987

(2R,3R,4S,5S)-tetrahydropyran-2,3,4,5-tetrol

C5H10O5 (150.0528)


   

SSP-SSP

InChI=1\C6H14S2\c1-3-5-7-8-6-4-2\h3-6H2,1-2H

C6H14S2 (150.0537)


   

CHEBI:6182

(2R,3S,4S)-2,3,4,5-tetrahydroxyvaleraldehyde

C5H10O5 (150.0528)


Arabinose is an endogenous metabolite. Arabinose is an endogenous metabolite. L-(+)-Arabinose selectively inhibits intestinal sucrase activity in a noncompetitive manner and suppresses the plasma glucose increase due to sucrose ingestion. L-(+)-Arabinose selectively inhibits intestinal sucrase activity in a noncompetitive manner and suppresses the plasma glucose increase due to sucrose ingestion.

   

xi-1-(Propylthio)-1-propanethiol

1-(Propylsulphanyl)propane-1-thiol

C6H14S2 (150.0537)


xi-1-(Propylthio)-1-propanethiol is found in onion-family vegetables. xi-1-(Propylthio)-1-propanethiol is a constituent of onion volatiles. xi-1-(Propylthio)-1-propanethiol is formed by reaction of propanol, H2S and 1-propanethiol. Constituent of onion volatiles. Formed by reaction of propanol, H2S and 1-propanethiol. xi-1-(Propylthio)-1-propanethiol is found in onion-family vegetables.

   

L-Xylulose

L-(+)-Ribulose

C5H10O5 (150.0528)


   

7-Methylhypoxanthine

7-Methylhypoxanthine

C6H6N4O (150.0542)


   

6-Imino-5-oxocyclohexa-1,3-diene-1-carboxylate

6-Imino-5-oxocyclohexa-1,3-diene-1-carboxylate

C7H4NO3- (150.0191)


   

(2S,4S)-2-methyl-2,3,3,4-tetrahydroxytetrahydrofuran

(2S,4S)-2-methyl-2,3,3,4-tetrahydroxytetrahydrofuran

C5H10O5 (150.0528)


   

p-Nitrosobenzoate

p-Nitrosobenzoate

C7H4NO3- (150.0191)


   

An arabinofuranose

An arabinofuranose

C5H10O5 (150.0528)


   

(4R)-1,3,4,5-tetrahydroxypentan-2-one

(4R)-1,3,4,5-tetrahydroxypentan-2-one

C5H10O5 (150.0528)


   

4-(Dioxo-lambda(6)-sulfanyl)morpholine

4-(Dioxo-lambda(6)-sulfanyl)morpholine

C4H8NO3S- (150.0225)


   

Boron oxide hydroxide

Boron oxide hydroxide

B3H5O7 (150.0314)


D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

L-Tartaric acid

L(+)-Tartaric acid

C4H6O6 (150.0164)


C26170 - Protective Agent > C275 - Antioxidant DL-Tartaric acid is a non-racemic mixture of L- and D-tartaric acids with antioxidant activities[1][2]. L-Tartaric acid (L-(+)-Tartaric acid) is an endogenous metabolite. L-Tartaric acid is the primary nonfermentable soluble acid in grapes and the principal acid in wine. L-Tartaric acid can be used as a flavorant and antioxidant for a range of foods and beverages[1]. L-Tartaric acid (L-(+)-Tartaric acid) is an endogenous metabolite. L-Tartaric acid is the primary nonfermentable soluble acid in grapes and the principal acid in wine. L-Tartaric acid can be used as a flavorant and antioxidant for a range of foods and beverages[1].

   

mesotartaric acid

mesotartaric acid

C4H6O6 (150.0164)


DL-Tartaric acid is a non-racemic mixture of L- and D-tartaric acids with antioxidant activities[1][2].

   

Propyl disulfide

Dipropyl disulfide

C6H14S2 (150.0537)


An organic disulfide where the alkyl groups specified are propyl. It is a component of the essential oils obtained from Allium.

   

D-Ribofuranose

D-Ribofuranose

C5H10O5 (150.0528)


A ribofuranose having D-configuration. D-Ribose(mixture of isomers) is an energy enhancer, and acts as a sugar moiety of ATP, and widely used as a metabolic therapy supplement for chronic fatigue syndrome or cardiac energy metabolism. D-Ribose(mixture of isomers) is active in protein glycation, induces NF-κB inflammation in a RAGE-dependent manner[1]. D-Ribose(mixture of isomers) is an energy enhancer, and acts as a sugar moiety of ATP, and widely used as a metabolic therapy supplement for chronic fatigue syndrome or cardiac energy metabolism. D-Ribose(mixture of isomers) is active in protein glycation, induces NF-κB inflammation in a RAGE-dependent manner[1]. D-Ribose(mixture of isomers) is an energy enhancer, and acts as a sugar moiety of ATP, and widely used as a metabolic therapy supplement for chronic fatigue syndrome or cardiac energy metabolism. D-Ribose(mixture of isomers) is active in protein glycation, induces NF-κB inflammation in a RAGE-dependent manner[1].

   

2-Formylbenzoic acid

2-Carboxybenzaldehyde

C8H6O3 (150.0317)


An aldehydic acid which consists of benzoic acid substituted by a formyl group at position 2. Metabolite of ampicillin phthalidyl ester. 2-Carboxybenzaldehyde is the major metabolite found in phenanthrene metabolism. Phenanthrene can be degrade by Pseudomonas sp. Lphe-2 strain[1].

   

beta-D-xylose

Beta-D-Xylopyranose

C5H10O5 (150.0528)


D-Xylopyranose in which the anomeric configuration is beta.

   

(2R,4S)-2-Methyl-2,3,3,4-tetrahydroxytetrahydrofuran

(2R,4S)-2-Methyl-2,3,3,4-tetrahydroxytetrahydrofuran

C5H10O5 (150.0528)


   

(3S,4R)-2-(hydroxymethyl)oxolane-2,3,4-triol

(3S,4R)-2-(hydroxymethyl)oxolane-2,3,4-triol

C5H10O5 (150.0528)


   

L-Lyxopyranose

L-Lyxopyranose

C5H10O5 (150.0528)


   

L-Arabinofuranose

L-Arabinofuranose

C5H10O5 (150.0528)


The five-membered ring form of L-arabinose.

   
   

beta-D-Apiose

beta-D-Apiose

C5H10O5 (150.0528)


   

(3R,4S)-2-(hydroxymethyl)oxolane-2,3,4-triol

(3R,4S)-2-(hydroxymethyl)oxolane-2,3,4-triol

C5H10O5 (150.0528)


   

(3S,4S)-2-(hydroxymethyl)oxolane-2,3,4-triol

(3S,4S)-2-(hydroxymethyl)oxolane-2,3,4-triol

C5H10O5 (150.0528)


   

alpha-L-arabinofuranose

alpha-L-arabinofuranose

C5H10O5 (150.0528)


   

PIPERONAL

PIPERONAL

C8H6O3 (150.0317)


An arenecarbaldehyde that is 1,3-benzodioxole substituted by a formyl substituent at position 5. It has been isolated from Piper nigrum.

   

aldehydo-D-arabinose

aldehydo-D-arabinose

C5H10O5 (150.0528)


   

alpha-D-ribose

alpha-D-ribose

C5H10O5 (150.0528)


   

Pentose

L-Arabinopyranose

C5H10O5 (150.0528)


   

2-Deoxy-D-ribonic acid

2-Deoxy-D-ribonic acid

C5H10O5 (150.0528)


A pentonic acid that is the 2-deoxy derivative of D-ribonic acid.

   

pentofuranose

pentofuranose

C5H10O5 (150.0528)


   

DL-Tartaric acid

L-(+)-Tartaric acid

C4H6O6 (150.0164)


DL-Tartaric acid is a non-racemic mixture of L- and D-tartaric acids with antioxidant activities[1][2].

   

1,6-Hexanedithiol

1,6-Hexanedithiol

C6H14S2 (150.0537)


   

Diisopropyl disulfide

Diisopropyl disulfide

C6H14S2 (150.0537)


   

5-Hydroxybenzofuran-2(3H)-one

2,5-Dihydroxyphenylacetic acid gamma-lactone

C8H6O3 (150.0317)


   

2-Fluoro-3-ureidopropionic acid

alpha-Fluoro-beta-ureidopropionic acid

C4H7FN2O3 (150.0441)


   

4-Hydroxyisobenzofuran-1(3H)-one

4-Hydroxyisobenzofuran-1(3H)-one

C8H6O3 (150.0317)


   

1-(Propylthio)1-propanethiol

1-(Propylthio)1-propanethiol

C6H14S2 (150.0537)


   

2-Deoxypentonic acid

2-Deoxypentonic acid

C5H10O5 (150.0528)


   

(E)-8-Hydroxy-2-octene-4,6-diynoic acid

(E)-8-Hydroxy-2-octene-4,6-diynoic acid

C8H6O3 (150.0317)


   

alpha-L-ribose

alpha-L-ribose

C5H10O5 (150.0528)


   

D-xylofuranose

D-xylofuranose

C5H10O5 (150.0528)


The furanose form of D-xylose.

   

aldehydo-L-xylose

aldehydo-L-xylose

C5H10O5 (150.0528)


A xylose of ring-opened form having L-configuration.

   

alpha-D-xylose

alpha-D-xylose

C5H10O5 (150.0528)


A D-xylopyranose in with an alpha-configuration at the anomeric position.

   

beta-D-ribose

beta-D-ribose

C5H10O5 (150.0528)


A D-ribofuranose in which the anomeric centre has beta-configuration.

   

beta-L-ribose

beta-L-ribose

C5H10O5 (150.0528)


   

D-ribopyranose

D-ribopyranose

C5H10O5 (150.0528)


A D-ribose and the D-enantiomer of ribopyranose.

   

D-Xylopyranose

D-Xylopyranose

C5H10O5 (150.0528)


D-Xylose in its pyranose form.

   

5-hydroxybenzofuran-2-one

5-hydroxybenzofuran-2-one

C8H6O3 (150.0317)


A member of the class of 1-benzofurans that is 1-benzofuran-2(3H)-one substituted by a hydroxy group at position 5.

   

aldehydo-L-arabinose

aldehydo-L-arabinose

C5H10O5 (150.0528)


The open-chain aldehyhde form of L-arabinose.

   

MESO-TARTARIC ACID

MESO-TARTARIC ACID

C4H6O6 (150.0164)


A 2,3-dihydroxybutanedioic acid that has meso configuration.

   

2,3-Dihydroxybutanedioic acid

2,3-Dihydroxybutanedioic acid

C4H6O6 (150.0164)


A tetraric acid that is butanedioic acid substituted by hydroxy groups at positions 2 and 3.

   
   

Aldopentose

Aldopentose

C5H10O5 (150.0528)


   

D-Lyxopyranose

D-Lyxopyranose

C5H10O5 (150.0528)


   
   

Ribulose/Xylose

Ribulose/Xylose

C5H10O5 (150.0528)


   

Deoxy-ribonic acid

Deoxy-ribonic acid

C5H10O5 (150.0528)


   

Hydroxy(methylthio)butanoic acid

Hydroxy(methylthio)butanoic acid

C5H10O3S (150.0351)


   

Methylhypoxanthine

Methylhypoxanthine

C6H6N4O (150.0542)


   

β-d-ribofuranoside

β-d-ribofuranoside

C5H10O5 (150.0528)


   

5-hydroxy-2h-1-benzofuran-3-one

5-hydroxy-2h-1-benzofuran-3-one

C8H6O3 (150.0317)


   

6,7-dihydro-4h-cubane-1,2,3-triol

6,7-dihydro-4h-cubane-1,2,3-triol

C8H6O3 (150.0317)


   

2-c-methyl-d-erythronic acid

NA

C5H10O5 (150.0528)


{"Ingredient_id": "HBIN005472","Ingredient_name": "2-c-methyl-d-erythronic acid","Alias": "NA","Ingredient_formula": "C5H10O5","Ingredient_Smile": "CC(C(CO)O)(C(=O)O)O","Ingredient_weight": "150.13","OB_score": "NA","CAS_id": "73343-21-2","SymMap_id": "NA","TCMID_id": "NA","TCMSP_id": "NA","TCM_ID_id": "8670","PubChem_id": "129775721","DrugBank_id": "NA"}

   

D-arabinose

NA

C5H10O5 (150.0528)


{"Ingredient_id": "HBIN016563","Ingredient_name": "\uff24-arabinose","Alias": "NA","Ingredient_formula": "C5H10O5","Ingredient_Smile": "C(C(C(C(C=O)O)O)O)O","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "37348","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}

   

α-d-ribulose

α-d-ribulose

C5H10O5 (150.0528)


   

4-hydroxybenzene-1,3-dicarbaldehyde

4-hydroxybenzene-1,3-dicarbaldehyde

C8H6O3 (150.0317)


   
   

5-(prop-1-yn-1-yl)thiophene-2-carbaldehyde

5-(prop-1-yn-1-yl)thiophene-2-carbaldehyde

C8H6OS (150.0139)


   

2-(hydroxymethyl)thiolane-3,4-diol

2-(hydroxymethyl)thiolane-3,4-diol

C5H10O3S (150.0351)


   

β-d-ribopyranose

β-d-ribopyranose

C5H10O5 (150.0528)


   

o-phthalaldehydic acid

o-phthalaldehydic acid

C8H6O3 (150.0317)


   

dodeca-1,11-dien-3,5,7,9-tetrayne

dodeca-1,11-dien-3,5,7,9-tetrayne

C12H6 (150.0469)


   

3-methoxy-4-(λ⁵-diazynylidene)cyclohexa-2,5-dien-1-one

3-methoxy-4-(λ⁵-diazynylidene)cyclohexa-2,5-dien-1-one

C7H6N2O2 (150.0429)


   

3-cyano-4-methoxypyridin-1-ium-1-olate

3-cyano-4-methoxypyridin-1-ium-1-olate

C7H6N2O2 (150.0429)


   

7-hydroxy-3h-2-benzofuran-1-one

7-hydroxy-3h-2-benzofuran-1-one

C8H6O3 (150.0317)


   

β-d-lyxose

β-d-lyxose

C5H10O5 (150.0528)


   

(2r,3s,4s)-2-(hydroxymethyl)thiolane-3,4-diol

(2r,3s,4s)-2-(hydroxymethyl)thiolane-3,4-diol

C5H10O3S (150.0351)


   

α-d-xylopyranose

α-d-xylopyranose

C5H10O5 (150.0528)


   

(2r,3r,4r)-2,3,4-trihydroxypentanoic acid

(2r,3r,4r)-2,3,4-trihydroxypentanoic acid

C5H10O5 (150.0528)


   

β-d-arabinofuranose

β-d-arabinofuranose

C5H10O5 (150.0528)