Murideoxycholate (BioDeep_00001871995)

Main id: BioDeep_00000018632

 

Bile acids


代谢物信息卡片


3alpha,6beta-Dihydroxy-5beta-cholan-24-oic Acid

化学式: C24H40O4 (392.2926)
中文名称: 鼠胆酸脱氧胆酸
谱图信息: 最多检出来源 Mus musculus(not specific) 7.97%

Reviewed

Last reviewed on 2024-07-16.

Cite this Page

Murideoxycholate. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/murideoxycholate (retrieved 2024-12-23) (BioDeep RN: BioDeep_00001871995). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: C1[C@]2(C)[C@@]3([H])CC[C@]4(C)[C@@]([H])([C@]([H])(C)CCC(O)=O)CC[C@@]4([H])[C@]3([H])C[C@@H](O)[C@]2([H])C[C@H](O)C1
InChI: InChI=1S/C24H40O4/c1-14(4-7-22(27)28)17-5-6-18-16-13-21(26)20-12-15(25)8-10-24(20,3)19(16)9-11-23(17,18)2/h14-21,25-26H,4-13H2,1-3H3,(H,27,28)/t14-,15-,16+,17-,18+,19+,20+,21-,23-,24-/m1/s1

描述信息

A 3alpha-hydroxy steroid that is cholan-24-oic acid substituted by hydroxy groups at positions 3 and 6.
D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts
D005765 - Gastrointestinal Agents > D002793 - Cholic Acids

同义名列表

6 个代谢物同义名

3alpha,6beta-Dihydroxy-5beta-cholan-24-oic Acid; 3alpha,6beta-Dihydroxy-5beta-cholanic acid; 6beta-Hydroxylithocholate; murideoxycholic acid; Murideoxycholate; ST 24:1;O4



数据库引用编号

10 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

0 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 7 ABCB1, ACAT2, CDH1, CYP2B6, CYP2D6, PTP4A2, TJP1
Peripheral membrane protein 4 CYP1B1, CYP2B6, GORASP1, TJP1
Endoplasmic reticulum membrane 5 ACAT2, CYP1B1, CYP2B6, CYP2D6, CYP7A1
Nucleus 3 CDH1, PTP4A2, TJP1
cytosol 6 ACAT2, CDH1, IL1B, MTTP, PTP4A2, TJP1
trans-Golgi network 1 CDH1
nucleoplasm 1 CDH1
Cell membrane 6 ABCB1, ABCB11, CDH1, NPC1L1, OCLN, TJP1
Cytoplasmic side 2 GORASP1, TJP1
lamellipodium 1 CDH1
Multi-pass membrane protein 5 ABCB1, ABCB11, ACAT2, NPC1L1, OCLN
Golgi apparatus membrane 1 GORASP1
cell junction 3 CDH1, OCLN, TJP1
cell surface 2 ABCB1, ABCB11
glutamatergic synapse 1 CDH1
Golgi apparatus 3 CDH1, GORASP1, MTTP
Golgi membrane 3 ABCB11, GORASP1, INS
lysosomal membrane 1 OCLN
postsynapse 1 CDH1
Cytoplasm, cytosol 2 ACAT2, IL1B
Lysosome 1 IL1B
endosome 2 ABCB11, CDH1
plasma membrane 8 ABCB1, ABCB11, CDH1, MUC2, NPC1L1, OCLN, PTP4A2, TJP1
Membrane 7 ABCB1, ABCB11, CDH1, CYP1B1, CYP2D6, NPC1L1, OCLN
apical plasma membrane 5 ABCB1, ABCB11, NPC1L1, OCLN, TJP1
basolateral plasma membrane 2 MTTP, TJP1
brush border 1 ACAT2
extracellular exosome 4 ABCB1, ABCB11, ACAT2, CDH1
endoplasmic reticulum 3 ACAT2, CYP2D6, MTTP
extracellular space 3 IL1B, INS, MUC2
perinuclear region of cytoplasm 1 CDH1
Cell junction, tight junction 2 OCLN, TJP1
adherens junction 2 CDH1, TJP1
apicolateral plasma membrane 2 OCLN, TJP1
bicellular tight junction 2 OCLN, TJP1
gap junction 1 TJP1
intercalated disc 1 TJP1
intercellular canaliculus 2 ABCB11, TJP1
mitochondrion 4 ACAT2, CYP1B1, CYP2D6, TJP1
protein-containing complex 2 OCLN, TJP1
intracellular membrane-bounded organelle 4 CYP1B1, CYP2B6, CYP2D6, CYP7A1
Microsome membrane 4 CYP1B1, CYP2B6, CYP2D6, CYP7A1
Single-pass type I membrane protein 1 CDH1
Secreted 3 IL1B, INS, MUC2
extracellular region 4 CDH1, IL1B, INS, MUC2
cytoplasmic side of plasma membrane 1 CDH1
Single-pass membrane protein 2 CYP2D6, CYP7A1
nuclear membrane 1 CDH1
actin cytoskeleton 1 CDH1
cytoplasmic vesicle 1 OCLN
Early endosome 1 PTP4A2
apical part of cell 1 TJP1
cell-cell junction 1 OCLN
recycling endosome 1 ABCB11
vesicle 1 MTTP
Apical cell membrane 3 ABCB1, ABCB11, NPC1L1
cis-Golgi network 1 GORASP1
Cell junction, adherens junction 1 CDH1
flotillin complex 1 CDH1
extracellular matrix 1 MUC2
collagen-containing extracellular matrix 1 MUC2
secretory granule 1 IL1B
lateral plasma membrane 1 CDH1
receptor complex 1 MTTP
cell leading edge 1 OCLN
cell projection 1 TJP1
Cell projection, podosome 1 TJP1
podosome 1 TJP1
brush border membrane 2 MTTP, NPC1L1
Golgi apparatus, trans-Golgi network 1 CDH1
microvillus membrane 1 MTTP
Recycling endosome membrane 1 ABCB11
Endomembrane system 1 NPC1L1
endosome lumen 1 INS
Cytoplasmic vesicle membrane 1 NPC1L1
secretory granule lumen 1 INS
Golgi lumen 2 INS, MUC2
endoplasmic reticulum lumen 2 INS, MTTP
endocytic vesicle 1 OCLN
transport vesicle 1 INS
tight junction 2 OCLN, TJP1
Secreted, extracellular exosome 1 IL1B
anaphase-promoting complex 1 CDH1
Endoplasmic reticulum-Golgi intermediate compartment membrane 2 GORASP1, INS
Golgi apparatus, cis-Golgi network membrane 1 GORASP1
[Isoform 2]: Nucleus 1 CDH1
external side of apical plasma membrane 1 ABCB1
apical junction complex 2 CDH1, TJP1
Cell junction, desmosome 1 CDH1
desmosome 1 CDH1
catenin complex 1 CDH1
intracellular canaliculus 1 ABCB11
inner mucus layer 1 MUC2
outer mucus layer 1 MUC2


文献列表

  • Jing Zhong, Xiaofang He, Xinxin Gao, Qiaohong Liu, Yu Zhao, Ying Hong, Weize Zhu, Juan Yan, Yifan Li, Yan Li, Ningning Zheng, Yiyang Bao, Hao Wang, Junli Ma, Wenjin Huang, Zekun Liu, Yuanzhi Lyu, Xisong Ke, Wei Jia, Cen Xie, Yiyang Hu, Lili Sheng, Houkai Li. Hyodeoxycholic acid ameliorates nonalcoholic fatty liver disease by inhibiting RAN-mediated PPARα nucleus-cytoplasm shuttling. Nature communications. 2023 09; 14(1):5451. doi: 10.1038/s41467-023-41061-8. [PMID: 37673856]
  • Junliang Kuang, Jieyi Wang, Yitao Li, Mengci Li, Mingliang Zhao, Kun Ge, Dan Zheng, Kenneth C P Cheung, Boya Liao, Shouli Wang, Tianlu Chen, Yinan Zhang, Congrong Wang, Guang Ji, Peng Chen, Hongwei Zhou, Cen Xie, Aihua Zhao, Weiping Jia, Xiaojiao Zheng, Wei Jia. Hyodeoxycholic acid alleviates non-alcoholic fatty liver disease through modulating the gut-liver axis. Cell metabolism. 2023 Aug; ?(?):. doi: 10.1016/j.cmet.2023.07.011. [PMID: 37591244]
  • Minghao Hu, Tingting Gou, Yuchen Chen, Min Xu, Rong Chen, Tao Zhou, Junjing Liu, Cheng Peng, Qiang Ye. A Novel Drug Delivery System: Hyodeoxycholic Acid-Modified Metformin Liposomes for Type 2 Diabetes Treatment. Molecules (Basel, Switzerland). 2023 Mar; 28(6):. doi: 10.3390/molecules28062471. [PMID: 36985444]
  • Han Zhu, Yuyan Bai, Gaorui Wang, Yousong Su, Yanlin Tao, Lupeng Wang, Liu Yang, Hui Wu, Fei Huang, Hailian Shi, Xiaojun Wu. Hyodeoxycholic acid inhibits lipopolysaccharide-induced microglia inflammatory responses through regulating TGR5/AKT/NF-κB signaling pathway. Journal of psychopharmacology (Oxford, England). 2022 07; 36(7):849-859. doi: 10.1177/02698811221089041. [PMID: 35475391]
  • Anders Ø Petersen, Hanna Julienne, Tuulia Hyötyläinen, Partho Sen, Yong Fan, Helle Krogh Pedersen, Sirkku Jäntti, Tue H Hansen, Trine Nielsen, Torben Jørgensen, Torben Hansen, Pernille Neve Myers, H Bjørn Nielsen, S Dusko Ehrlich, Matej Orešič, Oluf Pedersen. Conjugated C-6 hydroxylated bile acids in serum relate to human metabolic health and gut Clostridia species. Scientific reports. 2021 06; 11(1):13252. doi: 10.1038/s41598-021-91482-y. [PMID: 34168163]
  • Nitza Soto, Karoll Ferrer, Katy Díaz, César González, Lautaro Taborga, Andrés F Olea, Héctor Carrasco, Luis Espinoza. Synthesis and Biological Activity of New Brassinosteroid Analogs of Type 24-Nor-5β-Cholane and 23-Benzoate Function in the Side Chain. International journal of molecular sciences. 2021 May; 22(9):. doi: 10.3390/ijms22094808. [PMID: 34062717]
  • Min Song, Qiang Yang, Fenglin Zhang, Lin Chen, Han Su, Xiaohua Yang, Haiwen He, Fangfang Liu, Jisong Zheng, Mingfa Ling, Xumin Lai, Xiaotong Zhu, Lina Wang, Ping Gao, Gang Shu, Qingyan Jiang, Songbo Wang. Hyodeoxycholic acid (HDCA) suppresses intestinal epithelial cell proliferation through FXR-PI3K/AKT pathway, accompanied by alteration of bile acids metabolism profiles induced by gut bacteria. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2020 05; 34(5):7103-7117. doi: 10.1096/fj.201903244r. [PMID: 32246800]
  • Zizhen Zhang, Hao Chen, Ziyang Chen, Peng Ding, Yingchen Ju, Qiong Gu, Jun Xu, Huihao Zhou. Identify liver X receptor β modulator building blocks by developing a fluorescence polarization-based competition assay. European journal of medicinal chemistry. 2019 Sep; 178(?):458-467. doi: 10.1016/j.ejmech.2019.06.011. [PMID: 31202993]
  • Rodrigo Carvajal, Cesar González, Andrés F Olea, Mauricio Fuentealba, Luis Espinoza. Synthesis of 2-Deoxybrassinosteroids Analogs with 24-nor, 22(S)-23-Dihydroxy-Type Side Chains from Hyodeoxycholic Acid. Molecules (Basel, Switzerland). 2018 May; 23(6):. doi: 10.3390/molecules23061306. [PMID: 29844268]
  • Jiayu Zhang, Shifeng Wang, Lulu Xu, Qiao Zhang, Zhanpeng Shang, Yanling Zhang, Qinghua Wu, Shiyou Li, Yanjiang Qiao. Multiple perspectives of qingkailing injection-fraction-single compound in revealing the hepatotoxicity of baicalin and hyodeoxycholic acid. Journal of ethnopharmacology. 2018 Apr; 215(?):147-155. doi: 10.1016/j.jep.2017.11.035. [PMID: 29222033]
  • María Isabel Duran, Cesar González, Alison Acosta, Andrés F Olea, Katy Díaz, Luis Espinoza. Synthesis of Five Known Brassinosteroid Analogs from Hyodeoxycholic Acid and Their Activities as Plant-Growth Regulators. International journal of molecular sciences. 2017 Mar; 18(3):. doi: 10.3390/ijms18030516. [PMID: 28282853]
  • Simona De Marino, Adriana Carino, Dario Masullo, Claudia Finamore, Silvia Marchianò, Sabrina Cipriani, Francesco Saverio Di Leva, Bruno Catalanotti, Ettore Novellino, Vittorio Limongelli, Stefano Fiorucci, Angela Zampella. Hyodeoxycholic acid derivatives as liver X receptor α and G-protein-coupled bile acid receptor agonists. Scientific reports. 2017 02; 7(?):43290. doi: 10.1038/srep43290. [PMID: 28233865]
  • Shiro Watanabe, Kyosuke Fujita. Dietary hyodeoxycholic acid exerts hypolipidemic effects by reducing farnesoid X receptor antagonist bile acids in mouse enterohepatic tissues. Lipids. 2014 Oct; 49(10):963-73. doi: 10.1007/s11745-014-3947-y. [PMID: 25189147]
  • Zidong Donna Fu, Curtis D Klaassen. Increased bile acids in enterohepatic circulation by short-term calorie restriction in male mice. Toxicology and applied pharmacology. 2013 Dec; 273(3):680-90. doi: 10.1016/j.taap.2013.10.020. [PMID: 24183703]
  • Martin Perreault, Louis Gauthier-Landry, Jocelyn Trottier, Mélanie Verreault, Patrick Caron, Moshe Finel, Olivier Barbier. The Human UDP-glucuronosyltransferase UGT2A1 and UGT2A2 enzymes are highly active in bile acid glucuronidation. Drug metabolism and disposition: the biological fate of chemicals. 2013 Sep; 41(9):1616-20. doi: 10.1124/dmd.113.052613. [PMID: 23756265]
  • Diana M Shih, Zory Shaposhnik, Yonghong Meng, Melenie Rosales, Xuping Wang, Judy Wu, Boris Ratiner, Filiberto Zadini, Giorgio Zadini, Aldons J Lusis. Hyodeoxycholic acid improves HDL function and inhibits atherosclerotic lesion formation in LDLR-knockout mice. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2013 Sep; 27(9):3805-17. doi: 10.1096/fj.12-223008. [PMID: 23752203]
  • Martin Perreault, Andrzej Białek, Jocelyn Trottier, Mélanie Verreault, Patrick Caron, Piotr Milkiewicz, Olivier Barbier. Role of glucuronidation for hepatic detoxification and urinary elimination of toxic bile acids during biliary obstruction. PloS one. 2013; 8(11):e80994. doi: 10.1371/journal.pone.0080994. [PMID: 24244729]
  • Youcai Zhang, Pallavi B Limaye, Lois D Lehman-McKeeman, Curtis D Klaassen. Dysfunction of organic anion transporting polypeptide 1a1 alters intestinal bacteria and bile acid metabolism in mice. PloS one. 2012; 7(4):e34522. doi: 10.1371/journal.pone.0034522. [PMID: 22496825]
  • Zidong Donna Fu, Iván L Csanaky, Curtis D Klaassen. Gender-divergent profile of bile acid homeostasis during aging of mice. PloS one. 2012; 7(3):e32551. doi: 10.1371/journal.pone.0032551. [PMID: 22403674]
  • Yu-Kun Jennifer Zhang, Grace L Guo, Curtis D Klaassen. Diurnal variations of mouse plasma and hepatic bile acid concentrations as well as expression of biosynthetic enzymes and transporters. PloS one. 2011 Feb; 6(2):e16683. doi: 10.1371/journal.pone.0016683. [PMID: 21346810]
  • Masahito Hagio, Megumi Matsumoto, Michihiro Fukushima, Hiroshi Hara, Satoshi Ishizuka. Improved analysis of bile acids in tissues and intestinal contents of rats using LC/ESI-MS. Journal of lipid research. 2009 Jan; 50(1):173-80. doi: 10.1194/jlr.d800041-jlr200. [PMID: 18772484]
  • Qian Hua, Xiao-Lei Zhu, Peng-Tao Li, Yuan Liu, Na Zhang, Ya Xu, Xu Jia. The inhibitory effects of cholalic acid and hyodeoxycholalic acid on the expression of TNFalpha and IL-1beta after cerebral ischemia in rats. Archives of pharmacal research. 2009 Jan; 32(1):65-73. doi: 10.1007/s12272-009-1119-z. [PMID: 19183878]
  • Anand K Deo, Stelvio M Bandiera. Biotransformation of lithocholic acid by rat hepatic microsomes: metabolite analysis by liquid chromatography/mass spectrometry. Drug metabolism and disposition: the biological fate of chemicals. 2008 Feb; 36(2):442-51. doi: 10.1124/dmd.107.017533. [PMID: 18039809]
  • Yan He, Yong-xin Zhang, Hui-dong Zhao, Qi-wei Zhang. [Determination of chyodeoxycholic acid in Bile Arisaema by HPLC-ELSD]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2007 Aug; 32(16):1634-6. doi: ". [PMID: 18027654]
  • Xiaorong Ran, Qionglin Liang, Guoan Luo, Qingfei Liu, Yanshu Pan, Bing Wang, Chunhong Pang. Simultaneous determination of geniposide, baicalin, cholic acid and hyodeoxycholic acid in rat serum for the pharmacokinetic investigations by high performance liquid chromatography-tandem mass spectrometry. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2006 Sep; 842(1):22-7. doi: 10.1016/j.jchromb.2006.05.001. [PMID: 16750434]
  • Noam Zelcer, Koen van de Wetering, Rudi de Waart, George L Scheffer, Hanns-Ulrich Marschall, Peter R Wielinga, Annemieke Kuil, Cindy Kunne, Alexander Smith, Martin van der Valk, Jan Wijnholds, Ronald Oude Elferink, Piet Borst. Mice lacking Mrp3 (Abcc3) have normal bile salt transport, but altered hepatic transport of endogenous glucuronides. Journal of hepatology. 2006 Apr; 44(4):768-75. doi: 10.1016/j.jhep.2005.07.022. [PMID: 16225954]
  • Z T Chen, Q Dong, L Zhang. [Study on effect of qingkailing injection and its active principle in inducing cell apoptosis in human acute promyelocytic leukemia]. Zhongguo Zhong xi yi jie he za zhi Zhongguo Zhongxiyi jiehe zazhi = Chinese journal of integrated traditional and Western medicine. 2001 Nov; 21(11):840-2. doi: ". [PMID: 12575380]
  • E Sehayek, J G Ono, E M Duncan, A K Batta, G Salen, S Shefer, L B Neguyen, K Yang, M Lipkin, J L Breslow. Hyodeoxycholic acid efficiently suppresses atherosclerosis formation and plasma cholesterol levels in mice. Journal of lipid research. 2001 Aug; 42(8):1250-6. doi: 10.1016/s0022-2275(20)31575-3. [PMID: 11483626]
  • M Schwarz, D W Russell, J M Dietschy, S D Turley. Marked reduction in bile acid synthesis in cholesterol 7alpha-hydroxylase-deficient mice does not lead to diminished tissue cholesterol turnover or to hypercholesterolemia. Journal of lipid research. 1998 Sep; 39(9):1833-43. doi: 10.1016/s0022-2275(20)32171-4. [PMID: 9741696]
  • A K Batta, G Salen, H Holubec, T A Brasitus, D Alberts, D L Earnest. Enrichment of the more hydrophilic bile acid ursodeoxycholic acid in the fecal water-soluble fraction after feeding to rats with colon polyps. Cancer research. 1998 Apr; 58(8):1684-7. doi: . [PMID: 9563483]
  • H Wietholtz, H U Marschall, J Sjövall, S Matern. Stimulation of bile acid 6 alpha-hydroxylation by rifampin. Journal of hepatology. 1996 Jun; 24(6):713-8. doi: 10.1016/s0168-8278(96)80268-6. [PMID: 8835747]
  • C Cohen-Solal, M Parquet, J Férézou, C Sérougne, C Lutton. Effects of hyodeoxycholic acid and alpha-hyocholic acid, two 6 alpha-hydroxylated bile acids, on cholesterol and bile acid metabolism in the hamster. Biochimica et biophysica acta. 1995 Jul; 1257(2):189-97. doi: 10.1016/0005-2760(95)00073-l. [PMID: 7619860]
  • H U Marschall, W J Griffiths, J Zhang, H Wietholtz, H Matern, S Matern, J Sjövall. Positions of conjugation of bile acids with glucose and N-acetylglucosamine in vitro. Journal of lipid research. 1994 Sep; 35(9):1599-610. doi: 10.1016/s0022-2275(20)41158-7. [PMID: 7806974]
  • T Pillot, M Ouzzine, S Fournel-Gigleux, C Lafaurie, A Radominska, B Burchell, G Siest, J Magdalou. Glucuronidation of hyodeoxycholic acid in human liver. Evidence for a selective role of UDP-glucuronosyltransferase 2B4. The Journal of biological chemistry. 1993 Dec; 268(34):25636-42. doi: . [PMID: 8244999]
  • J Zhang, W J Griffiths, T Bergman, J Sjövall. Derivatization of bile acids with taurine for analysis by fast atom bombardment mass spectrometry with collision-induced fragmentation. Journal of lipid research. 1993 Nov; 34(11):1895-900. doi: 10.1016/s0022-2275(20)35107-5. [PMID: 8263413]
  • J Khallou, V Legrand-Defretin, M Parquet, T Coste, J Rautureau, C Lutton. Metabolism and time-course excretion of murideoxycholic acid, a 6 beta-hydroxylated bile acid, in humans. Journal of hepatology. 1993 Mar; 17(3):364-72. doi: 10.1016/s0168-8278(05)80219-3. [PMID: 8315264]
  • M L Borum, K L Shehan, H Fromm, S Jahangeer, M K Floor, O Alabaster. Fecal bile acid excretion and composition in response to changes in dietary wheat bran, fat and calcium in the rat. Lipids. 1992 Dec; 27(12):999-1004. doi: 10.1007/bf02535579. [PMID: 1336804]
  • H U Marschall, H Matern, H Wietholtz, B Egestad, S Matern, J Sjövall. Bile acid N-acetylglucosaminidation. In vivo and in vitro evidence for a selective conjugation reaction of 7 beta-hydroxylated bile acids in humans. The Journal of clinical investigation. 1992 Jun; 89(6):1981-7. doi: 10.1172/jci115806. [PMID: 1602004]
  • S Matern, H U Marschall, A Schill, B Schumacher, W Lehnert, J Sjövall, H Matern. Synthesis of 13C-labeled chenodeoxycholic, hyodeoxycholic, and ursodeoxycholic acids for the study of bile acid metabolism in liver disease. Clinica chimica acta; international journal of clinical chemistry. 1991 Nov; 203(1):77-89. doi: 10.1016/0009-8981(91)90158-9. [PMID: 1769122]
  • A Roda, A Minutello, M A Angellotti, A Fini. Bile acid structure-activity relationship: evaluation of bile acid lipophilicity using 1-octanol/water partition coefficient and reverse phase HPLC. Journal of lipid research. 1990 Aug; 31(8):1433-43. doi: . [PMID: 2280184]
  • B I Cohen, N Matoba, E H Mosbach, N Ayyad, K Hakam, S O Suh, C K McSherry. Bile acids substituted in the 6 position prevent cholesterol gallstone formation in the hamster. Gastroenterology. 1990 Feb; 98(2):397-405. doi: 10.1016/0016-5085(90)90831-k. [PMID: 2295395]
  • T Okanoue, M Kimoto, A Maki, Y Usui, N Nishimura, N Kobayashi, Y Kamiyama, K Ozawa. Changes in serum bile acid composition in relation to histological findings after liver transplantation in piglets. European surgical research. Europaische chirurgische Forschung. Recherches chirurgicales europeennes. 1989; 21(3-4):145-55. doi: 10.1159/000129017. [PMID: 2806341]
  • T Iida, T Momose, T Tamura, T Matsumoto, F C Chang, J Goto, T Nambara. Potential bile acid metabolites. 13. Improved routes to 3 beta, 6 beta- and 3 beta, 6 alpha-dihydroxy-5 beta-cholanoic acids. Journal of lipid research. 1988 Feb; 29(2):165-71. doi: 10.1016/s0022-2275(20)38549-7. [PMID: 3367086]
  • J M Little, P Zimniak, A Radominska, R Lester. Hyodeoxycholate-6-O-glucuronide cannot be quantitated with 3 alpha-hydroxysteroid dehydrogenase. Journal of lipid research. 1987 Nov; 28(11):1370-2. doi: 10.1016/s0022-2275(20)38600-4. [PMID: 3480926]
  • H U Marschall, H Matern, B Egestad, S Matern, S Sjövall. 6 alpha-glucuronidation of hyodeoxycholic acid by human liver, kidney and small bowel microsomes. Biochimica et biophysica acta. 1987 Sep; 921(2):392-7. doi: 10.1016/0005-2760(87)90041-5. [PMID: 2820501]
  • H Matern, S Matern. Formation of bile acid glucosides and dolichyl phosphoglucose by microsomal glucosyltransferases in liver, kidney and intestine of man. Biochimica et biophysica acta. 1987 Sep; 921(1):1-6. doi: 10.1016/0005-2760(87)90163-9. [PMID: 2956993]
  • H U Marschall, B Egestad, H Matern, S Matern, J Sjövall. Evidence for bile acid glucosides as normal constituents in human urine. FEBS letters. 1987 Mar; 213(2):411-4. doi: 10.1016/0014-5793(87)81532-6. [PMID: 2951276]
  • B I Cohen, E H Mosbach, C K McSherry, R J Stenger, S Kuroki, B Rzigalinski. Gallstone prevention in prairie dogs: comparison of chow vs. semisynthetic diets. Hepatology (Baltimore, Md.). 1986 Sep; 6(5):874-80. doi: 10.1002/hep.1840060512. [PMID: 3758942]
  • B I Cohen, E H Mosbach, C K McSherry, B Rzigalinski, S Kuroki. A hydrophilic bile acid effects partial dissolution of cholesterol gallstones in the prairie dog. Lipids. 1986 Sep; 21(9):575-9. doi: 10.1007/bf02534055. [PMID: 3762330]
  • L M Nelson, R I Russell. Influence of the intake and composition of elemental diets on bile acid metabolism and hepatic lipids in the rat. JPEN. Journal of parenteral and enteral nutrition. 1986 Jul; 10(4):399-404. doi: 10.1177/0148607186010004399. [PMID: 3755773]
  • M Parquet, M Pessah, E Sacquet, C Salvat, A Raizman, R Infante. Glucuronidation of bile acids in human liver, intestine and kidney. An in vitro study on hyodeoxycholic acid. FEBS letters. 1985 Sep; 189(2):183-7. doi: 10.1016/0014-5793(85)81020-6. [PMID: 3930288]
  • H Eyssen, G De Pauw, J Van Eldere. Formation of hyodeoxycholate from beta-muricholate in gnotobiotic rats associated with Clostridium HDCA-1. Progress in clinical and biological research. 1985; 181(?):103-6. doi: NULL. [PMID: 4022963]
  • C K McSherry, E H Mosbach, B I Cohen, M Une, R J Stenger, A K Singhal. Hyodeoxycholic acid: a new approach to gallstone prevention. American journal of surgery. 1985 Jan; 149(1):126-32. doi: 10.1016/s0002-9610(85)80021-0. [PMID: 3970744]
  • A K Singhal, B I Cohen, J Finver-Sadowsky, C K McSherry, E H Mosbach. Role of hydrophilic bile acids and of sterols on cholelithiasis in the hamster. Journal of lipid research. 1984 Jun; 25(6):564-70. doi: 10.1016/s0022-2275(20)37769-5. [PMID: 6547738]
  • A K Singhal, B I Cohen, E H Mosbach, M Une, R J Stenger, C K McSherry, P May-Donath, T Palaia. Prevention of cholesterol-induced gallstones by hyodeoxycholic acid in the prairie dog. Journal of lipid research. 1984 Jun; 25(6):539-49. doi: . [PMID: 6747458]
  • E C Sacquet, D P Gadelle, M J Riottot, P M Raibaud. Absence of transformation of beta-muricholic acid by human microflora implanted in the digestive tracts of germfree male rats. Applied and environmental microbiology. 1984 May; 47(5):1167-8. doi: 10.1128/aem.47.5.1167-1168.1984. [PMID: 6742831]
  • E Sacquet, M Parquet, M Riottot, A Raizman, P Jarrige, C Huguet, R Infante. Intestinal absorption, excretion, and biotransformation of hyodeoxycholic acid in man. Journal of lipid research. 1983 May; 24(5):604-13. doi: 10.1016/s0022-2275(20)37965-7. [PMID: 6875384]
  • K Uchida, Y Nomura, M Kadowaki, K Arisue, N Takeuchi, Y Ishikawa. Effects of sodium ursodeoxycholate, hyodeoxycholate and dehydrocholate on cholesterol and bile acid metabolism in rats. Journal of pharmacobio-dynamics. 1983 May; 6(5):346-57. doi: 10.1248/bpb1978.6.346. [PMID: 6620121]
  • N Iritani, Y Nara, Y Yamori. Cholesterol and bile acid metabolism in hypertensive arteriolipidosis-prone rats (ALR). Japanese circulation journal. 1982 Feb; 46(2):151-5. doi: 10.1253/jcj.46.151. [PMID: 7057614]
  • W T BEHER, G D BAKER, W L ANTHONY. Effect of cholic and hyodeoxycholic acids on metabolism of exogenous cholesterol in mice. Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.). 1960 Feb; 103(?):385-7. doi: 10.3181/00379727-103-25529. [PMID: 13798288]