Kaempferide (BioDeep_00000003535)

 

Secondary id: BioDeep_00000398665, BioDeep_00000402862

natural product human metabolite PANOMIX_OTCML-2023 Antitumor activity BioNovoGene_Lab2019


代谢物信息卡片


3,5,7-Trihydroxy-2-(4-methoxyphenyl)-4H-1-benzopyran-4-one

化学式: C16H12O6 (300.0634)
中文名称: 莰非素, 山奈素, 山奈酚-4'-O-甲醚, 3,5,7-三羟基-4'-甲氧基黄酮
谱图信息: 最多检出来源 Viridiplantae(plant) 19.87%

Reviewed

Last reviewed on 2024-10-31.

Cite this Page

Kaempferide. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/kaempferide (retrieved 2025-01-07) (BioDeep RN: BioDeep_00000003535). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: C1(O)=CC2OC(C3C=CC(OC)=CC=3)=C(O)C(=O)C=2C(O)=C1
InChI: InChI=1/C16H12O6/c1-21-10-4-2-8(3-5-10)16-15(20)14(19)13-11(18)6-9(17)7-12(13)22-16/h2-7,17-18,20H,1H3

描述信息

Kaempferide is a monomethoxyflavone that is the 4-O-methyl derivative of kaempferol. It has a role as an antihypertensive agent and a metabolite. It is a trihydroxyflavone, a monomethoxyflavone and a 7-hydroxyflavonol. It is functionally related to a kaempferol. It is a conjugate acid of a kaempferide(1-).
Kaempferide is a natural product found in Ageratina altissima, Chromolaena odorata, and other organisms with data available.
Isolated from roots of Alpinia officinarum (lesser galangal). Kaempferide is found in many foods, some of which are herbs and spices, cloves, sour cherry, and european plum.
Kaempferide is found in cloves. Kaempferide is isolated from roots of Alpinia officinarum (lesser galangal).
A monomethoxyflavone that is the 4-O-methyl derivative of kaempferol.
Acquisition and generation of the data is financially supported in part by CREST/JST.
Kaempferide is an O-methylated flavonol also found in kaempferol. Kaempferide has antiviral activity.
Kaempferide is an orally active flavonol isolated from Hippophae rhamnoides L. Kaempferide has anticancer, anti-inflammatory, antioxidant, antidiabetic, antiobesity, antihypertensive, and neuroprotective activities. Kaempferide induces apoptosis. Kaempferide promotes osteogenesis through antioxidants and can be used in osteoporosis research[1][2][3][4][5][6].
Kaempferide is an O-methylated flavonol also found in kaempferol. Kaempferide has antiviral activity.

同义名列表

39 个代谢物同义名

3,5,7-Trihydroxy-2-(4-methoxyphenyl)-4H-1-benzopyran-4-one, 9CI; 4H-1-Benzopyran-4-one, 3,5,7-trihydroxy-2-(4-methoxyphenyl)-; 3,5,7-Trihydroxy-2-(4-methoxyphenyl)-4H-1-benzopyran-4-one; 4H-1-Benzopyran-4-one,5,7-trihydroxy-2-(4-methoxyphenyl)-; 3,5,7-Trihydroxy-2-(4-methoxyphenyl)-4H-chromen-4-one #; 3,5,7-Trihydroxy-2-(4-methoxyphenyl)-4H-chromen-4-one; 1.3,5,7-Trihydroxy-2-(4-methoxyphenyl)-4-benzopyrone; 3,5,7-Trihydroxy-2-(4-methoxyphenyl)-4-benzopyrone; 3,5,7-trihydroxy-2-(4-methoxyphenyl)chromen-4-one; 5-18-05-00253 (Beilstein Handbook Reference); FLAVANONE, 4-METHOXY-3,5,7-TRIHYDROXY-; 4-Methoxy-3,5,7-trihydroxy-Flavanone; Flavone, 3,5,7-trihydroxy-4-methoxy-; 3,5,7-Trihydroxy-4-methoxy-Flavone; Flavone,5,7-trihydroxy-4-methoxy-; 3,5,7-Trihydroxy-4-methoxyflavone; 3 5 7-trihydroxy-4-methoxyflavone; 4-Methoxy-3,5,7-trihydroxyflavone; WLN: T66 BO EVJ CR DO1& DQ GQ IQ; Kaempferide, analytical standard; 5,7-Dihydroxy-4-methoxyflavonol; SQFSKOYWJBQGKQ-UHFFFAOYSA-N; Kaempferol 4-O-methyl ether; Kaempferol 4-methyl ether; 4-O-Methylkaempferol; 4-Methoxykaempferol; 4-Methylkaempferol; Kaempferide (AS); Kaempferide; Artemisinin; Campheride; Kaemferide; Kaemperide; Kaempferid; KAMPFERIDE; Kampheride; Kempferide; Kaempferol 4'-O-methyl ether; Kaempferide



数据库引用编号

39 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

213 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 14 ADIG, AKT1, BCL2, CASP3, CAT, MAPK14, MAPK8, NFE2L2, NOS3, PIK3CA, PPARG, PTGS2, SOD1, TYR
Peripheral membrane protein 1 PTGS2
Endoplasmic reticulum membrane 3 BCL2, HMOX1, PTGS2
Nucleus 11 ADIG, AKT1, BCL2, CASP3, HMOX1, MAPK14, MAPK8, NFE2L2, NOS3, PPARG, SOD1
cytosol 12 AKT1, BCL2, CASP3, CAT, HMOX1, MAPK14, MAPK8, NFE2L2, NOS3, PIK3CA, PPARG, SOD1
centrosome 1 NFE2L2
nucleoplasm 9 AKT1, CASP3, HMOX1, MAPK14, MAPK8, NFE2L2, NOS3, PPARG, SOD1
RNA polymerase II transcription regulator complex 2 NFE2L2, PPARG
Cell membrane 2 AKT1, TNF
Cytoplasmic side 1 HMOX1
lamellipodium 2 AKT1, PIK3CA
Synapse 1 MAPK8
cell cortex 1 AKT1
cell surface 1 TNF
glutamatergic synapse 3 AKT1, CASP3, MAPK14
Golgi apparatus 2 NFE2L2, NOS3
Golgi membrane 1 NOS3
neuronal cell body 3 CASP3, SOD1, TNF
postsynapse 1 AKT1
Cytoplasm, cytosol 1 NFE2L2
Lysosome 1 TYR
plasma membrane 5 AKT1, NFE2L2, NOS3, PIK3CA, TNF
Membrane 5 ADIG, AKT1, BCL2, CAT, HMOX1
axon 1 MAPK8
caveola 2 NOS3, PTGS2
extracellular exosome 3 BMP3, CAT, SOD1
endoplasmic reticulum 3 BCL2, HMOX1, PTGS2
extracellular space 7 BMP3, CXCL8, HMOX1, IL10, IL6, SOD1, TNF
perinuclear region of cytoplasm 5 HMOX1, NOS3, PIK3CA, PPARG, TYR
intercalated disc 1 PIK3CA
mitochondrion 4 BCL2, CAT, MAPK14, SOD1
protein-containing complex 5 AKT1, BCL2, CAT, PTGS2, SOD1
intracellular membrane-bounded organelle 3 CAT, PPARG, TYR
Microsome membrane 1 PTGS2
postsynaptic density 1 CASP3
Single-pass type I membrane protein 1 TYR
Secreted 5 ADIG, BMP3, CXCL8, IL10, IL6
extracellular region 9 ADIG, BMP3, CAT, CXCL8, IL10, IL6, MAPK14, SOD1, TNF
Mitochondrion outer membrane 1 BCL2
Single-pass membrane protein 2 ADIG, BCL2
mitochondrial outer membrane 2 BCL2, HMOX1
mitochondrial matrix 2 CAT, SOD1
Nucleus membrane 1 BCL2
Bcl-2 family protein complex 1 BCL2
nuclear membrane 1 BCL2
external side of plasma membrane 1 TNF
cytoplasmic vesicle 1 SOD1
microtubule cytoskeleton 1 AKT1
axon cytoplasm 1 SOD1
Melanosome membrane 1 TYR
Cytoplasm, P-body 1 NOS3
P-body 1 NOS3
cell-cell junction 1 AKT1
Golgi-associated vesicle 1 TYR
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
vesicle 1 AKT1
Membrane raft 1 TNF
pore complex 1 BCL2
focal adhesion 1 CAT
spindle 1 AKT1
Peroxisome 2 CAT, SOD1
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 1 CAT
Mitochondrion intermembrane space 1 AKT1
mitochondrial intermembrane space 2 AKT1, SOD1
nuclear speck 1 MAPK14
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
dendrite cytoplasm 1 SOD1
receptor complex 1 PPARG
neuron projection 1 PTGS2
ciliary basal body 1 AKT1
chromatin 2 NFE2L2, PPARG
mediator complex 1 NFE2L2
phagocytic cup 1 TNF
cytoskeleton 1 NOS3
spindle pole 1 MAPK14
Lipid droplet 1 ADIG
Melanosome 1 TYR
Cytoplasm, Stress granule 1 NOS3
cytoplasmic stress granule 1 NOS3
myelin sheath 1 BCL2
ficolin-1-rich granule lumen 2 CAT, MAPK14
secretory granule lumen 2 CAT, MAPK14
endoplasmic reticulum lumen 2 IL6, PTGS2
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
endocytic vesicle membrane 1 NOS3
Single-pass type IV membrane protein 1 HMOX1
protein-DNA complex 1 NFE2L2
basal dendrite 1 MAPK8
death-inducing signaling complex 1 CASP3
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
catalase complex 1 CAT
interleukin-6 receptor complex 1 IL6
BAD-BCL-2 complex 1 BCL2
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Muhammad Umar Ijaz, Zainab Rafi, Ali Hamza, Amany A Sayed, Ghadeer M Albadrani, Muath Q Al-Ghadi, Mohamed M Abdel-Daim. Mitigative potential of kaempferide against polyethylene microplastics induced testicular damage by activating Nrf-2/Keap-1 pathway. Ecotoxicology and environmental safety. 2024 Jan; 269(?):115746. doi: 10.1016/j.ecoenv.2023.115746. [PMID: 38035520]
  • Zetian Qiu, Xue Liu, Jia Li, Bin Qiao, Guang-Rong Zhao. Metabolic Division in an Escherichia coli Coculture System for Efficient Production of Kaempferide. ACS synthetic biology. 2022 03; 11(3):1213-1227. doi: 10.1021/acssynbio.1c00510. [PMID: 35167258]
  • Fangfang Tie, Jin Ding, Na Hu, Qi Dong, Zhi Chen, Honglun Wang. Kaempferol and Kaempferide Attenuate Oleic Acid-Induced Lipid Accumulation and Oxidative Stress in HepG2 Cells. International journal of molecular sciences. 2021 Aug; 22(16):. doi: 10.3390/ijms22168847. [PMID: 34445549]
  • Heng Tang, Qingfu Zeng, Ting Tang, Yunjie Wei, Peng Pu. Kaempferide improves glycolipid metabolism disorder by activating PPARγ in high-fat-diet-fed mice. Life sciences. 2021 Apr; 270(?):119133. doi: 10.1016/j.lfs.2021.119133. [PMID: 33508298]
  • Dasol Kim, Hui-Yun Hwang, Eun Sun Ji, Jin Young Kim, Jong Shin Yoo, Ho Jeong Kwon. Activation of mitochondrial TUFM ameliorates metabolic dysregulation through coordinating autophagy induction. Communications biology. 2021 01; 4(1):1. doi: 10.1038/s42003-020-01566-0. [PMID: 33398033]
  • Yin-Sheng Quan, Xiao-Yong Zhang, Xiu-Mei Yin, Si-Hong Wang, Li-Li Jin. Potential α-glucosidase inhibitor from Hylotelephium erythrostictum. Bioorganic & medicinal chemistry letters. 2020 12; 30(24):127665. doi: 10.1016/j.bmcl.2020.127665. [PMID: 33152378]
  • Rongrong Ou, Lianzhu Lin, Mouming Zhao, Zhiqing Xie. Action mechanisms and interaction of two key xanthine oxidase inhibitors in galangal: Combination of in vitro and in silico molecular docking studies. International journal of biological macromolecules. 2020 Nov; 162(?):1526-1535. doi: 10.1016/j.ijbiomac.2020.07.297. [PMID: 32777423]
  • Supakanya Kumkarnjana, Rutt Suttisri, Ubonthip Nimmannit, Apirada Sucontphunt, Mattaka Khongkow, Thongchai Koobkokkruad, Nontima Vardhanabhuti. Flavonoids kaempferide and 4,2'-dihydroxy-4',5',6'-trimethoxychalcone inhibit mitotic clonal expansion and induce apoptosis during the early phase of adipogenesis in 3T3-L1 cells. Journal of integrative medicine. 2019 Jul; 17(4):288-295. doi: 10.1016/j.joim.2019.04.004. [PMID: 31078439]
  • Wan-Xin Zhang, In-Cheng Chao, De-Jun Hu, Farid Shakerian, Liya Ge, Xiao Liang, Ying Wang, Jing Zhao, Shao-Ping Li. Comparison of Antioxidant Activity and Main Active Compounds Among Different Parts of Alpinia officinarum Hance Using High-Performance Thin Layer Chromatography-Bioautography. Journal of AOAC International. 2019 May; 102(3):726-733. doi: 10.5740/jaoacint.18-0307. [PMID: 30388970]
  • Conglei Pan, Haitao Lü. Preparative separation of quercetin, ombuin and kaempferide from Gynostemma pentaphyllum by high-speed countercurrent chromatography. Journal of chromatographic science. 2019 Mar; 57(3):265-271. doi: 10.1093/chromsci/bmy110. [PMID: 30566585]
  • Zixian Jiao, Weifeng Xu, Jisi Zheng, Pei Shen, An Qin, Shanyong Zhang, Chi Yang. Kaempferide Prevents Titanium Particle Induced Osteolysis by Suppressing JNK Activation during Osteoclast Formation. Scientific reports. 2017 11; 7(1):16665. doi: 10.1038/s41598-017-16853-w. [PMID: 29192233]
  • Ji Ye Wang, Hong Chen, Yin Yin Wang, Xiao Qin Wang, Han Ying Chen, Mei Zhang, Yun Tang, Bo Zhang. Network pharmacological mechanisms of Vernonia anthelmintica (L.) in the treatment of vitiligo: Isorhamnetin induction of melanogenesis via up-regulation of melanin-biosynthetic genes. BMC systems biology. 2017 Nov; 11(1):103. doi: 10.1186/s12918-017-0486-1. [PMID: 29145845]
  • Xianqian Zhao, Peiqiang Wang, Mingzhuo Li, Yeru Wang, Xiaolan Jiang, Lilan Cui, Yumei Qian, Juhua Zhuang, Liping Gao, Tao Xia. Functional Characterization of a New Tea (Camellia sinensis) Flavonoid Glycosyltransferase. Journal of agricultural and food chemistry. 2017 Mar; 65(10):2074-2083. doi: 10.1021/acs.jafc.6b05619. [PMID: 28220704]
  • Dong Wang, Xinjie Zhang, Defang Li, Wenjin Hao, Fanqing Meng, Bo Wang, Jichun Han, Qiusheng Zheng. Kaempferide Protects against Myocardial Ischemia/Reperfusion Injury through Activation of the PI3K/Akt/GSK-3β Pathway. Mediators of inflammation. 2017; 2017(?):5278218. doi: 10.1155/2017/5278218. [PMID: 28928604]
  • Yu Liu, Juan Yang, Yang-ling Tuo, Ting Wei, Yong Zeng, Ping Wang, Xian-li Meng. [Determination of plasma concentration of quercetin, kaempferid and isorhamnetin in Hippophae rhamnoides extract by HPLC-MS/MS and pharmacokinetics in rats]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2015 Oct; 40(19):3859-65. doi: . [PMID: 26975114]
  • Elke H Heiss, Thi Van Anh Tran, Kristin Zimmermann, Stefan Schwaiger, Corina Vouk, Barbara Mayerhofer, Clemens Malainer, Atanas G Atanasov, Hermann Stuppner, Verena M Dirsch. Identification of chromomoric acid C-I as an Nrf2 activator in Chromolaena odorata. Journal of natural products. 2014 Mar; 77(3):503-8. doi: 10.1021/np400778m. [PMID: 24476568]
  • Hui Cao, Xiaohui Jing, Donghui Wu, Yujun Shi. Methylation of genistein and kaempferol improves their affinities for proteins. International journal of food sciences and nutrition. 2013 Jun; 64(4):437-43. doi: 10.3109/09637486.2012.759186. [PMID: 23311465]
  • F Q Xu, Y Y Feng, L Guo, G L Guo, B L Yan. The effective method for investigation meridian tropism theory in rats. African journal of traditional, complementary, and alternative medicines : AJTCAM. 2013; 10(2):356-67. doi: 10.4314/ajtcam.v10i2.23. [PMID: 24146462]
  • Sebastian Granica, Jakub P Piwowarski, Magdalena Popławska, Marta Jakubowska, Joanna Borzym, Anna K Kiss. Novel insight into qualitative standardization of Polygoni avicularis herba (Ph. Eur.). Journal of pharmaceutical and biomedical analysis. 2013 Jan; 72(?):216-22. doi: 10.1016/j.jpba.2012.08.027. [PMID: 23021006]
  • Jianbo Xiao, Guoyin Kai, Xiaoqing Chen. Effect of CdTe QDs on the protein-drug interactions. Nanotoxicology. 2012 May; 6(3):304-14. doi: 10.3109/17435390.2011.579359. [PMID: 21554013]
  • María Elena Pahua-Ramos, Alicia Ortiz-Moreno, Germán Chamorro-Cevallos, María Dolores Hernández-Navarro, Leticia Garduño-Siciliano, Hugo Necoechea-Mondragón, Marcela Hernández-Ortega. Hypolipidemic effect of avocado (Persea americana Mill) seed in a hypercholesterolemic mouse model. Plant foods for human nutrition (Dordrecht, Netherlands). 2012 Mar; 67(1):10-6. doi: 10.1007/s11130-012-0280-6. [PMID: 22383066]
  • Pascal Wafo, Ramsay S T Kamdem, Zulfiqar Ali, Shazia Anjum, Afshan Begum, Ogbole O Oluyemisi, Shamsun N Khan, Bonaventure T Ngadjui, Xavier F Etoa, Muhammed Iqbal Choudhary. Kaurane-type diterpenoids from Chromoleana odorata, their X-ray diffraction studies and potent α-glucosidase inhibition of 16-kauren-19-oic acid. Fitoterapia. 2011 Jun; 82(4):642-6. doi: 10.1016/j.fitote.2011.02.003. [PMID: 21316426]
  • Griangsak Eumkeb, Santi Sakdarat, Supatcharee Siriwong. Reversing β-lactam antibiotic resistance of Staphylococcus aureus with galangin from Alpinia officinarum Hance and synergism with ceftazidime. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2010 Dec; 18(1):40-5. doi: 10.1016/j.phymed.2010.09.003. [PMID: 21036573]
  • Marica Medić-Sarić, Vesna Rastija, Mirza Bojić, Zeljan Males. From functional food to medicinal product: systematic approach in analysis of polyphenolics from propolis and wine. Nutrition journal. 2009 Jul; 8(?):33. doi: 10.1186/1475-2891-8-33. [PMID: 19624827]
  • M B Pandey, A K Singh, U Singh, S Singh, V B Pandey. A new chalcone glycoside from Rhamnus nipalensis. Natural product research. 2008 Dec; 22(18):1657-9. doi: 10.1080/14786410701876635. [PMID: 19085424]
  • Xiao-Hui Gao, Ning Xie, Feng Feng. [Studies on chemical constituents of Salacia prinoides]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 2008 Sep; 31(9):1348-51. doi: . [PMID: 19180955]
  • Bruno B Silva, Pedro L Rosalen, Jaime A Cury, Masaharu Ikegaki, Vinícius C Souza, Alessandro Esteves, Severino M Alencar. Chemical composition and botanical origin of red propolis, a new type of brazilian propolis. Evidence-based complementary and alternative medicine : eCAM. 2008 Sep; 5(3):313-6. doi: 10.1093/ecam/nem059. [PMID: 18830449]
  • Denise Crispim Tavares, Walclécio Morais Lira, Camila Bastianini Santini, Catarina Satie Takahashi, Jairo Kenupp Bastos. Effects of propolis crude hydroalcoholic extract on chromosomal aberrations induced by doxorubicin in rats. Planta medica. 2007 Dec; 73(15):1531-6. doi: 10.1055/s-2007-993737. [PMID: 17999350]
  • Lawrence Onyango Arot Manguro, Peter Lemmen. Phenolics of Moringa oleifera leaves. Natural product research. 2007 Jan; 21(1):56-68. doi: 10.1080/14786410601035811. [PMID: 17365690]
  • S Singh, R K Upadhyay, M B Pandey, J P Singh, V B Pandey. Flavonoids from Echinops echinatus. Journal of Asian natural products research. 2006 Apr; 8(3):197-200. doi: 10.1080/1028602042000324826. [PMID: 16864424]
  • L M C Simões, L E Gregório, A A Da Silva Filho, M L de Souza, A E C S Azzolini, J K Bastos, Y M Lucisano-Valim. Effect of Brazilian green propolis on the production of reactive oxygen species by stimulated neutrophils. Journal of ethnopharmacology. 2004 Sep; 94(1):59-65. doi: 10.1016/j.jep.2004.04.026. [PMID: 15261964]
  • Juha-Pekka Salminen, Maria Lahtinen, Kyösti Lempa, Lauri Kapari, Erkki Haukioja, Kalevi Pihlaja. Metabolic modifications of birch leaf phenolics by an herbivorous insect: detoxification of flavonoid aglycones via glycosylation. Zeitschrift fur Naturforschung. C, Journal of biosciences. 2004 May; 59(5-6):437-44. doi: 10.1515/znc-2004-5-627. [PMID: 18998416]
  • Lawrence O Arot Manguro, Ivar Ugi, Peter Lemmen, Rudolf Hermann. Flavonol glycosides of Warburgia ugandensis leaves. Phytochemistry. 2003 Oct; 64(4):891-6. doi: 10.1016/s0031-9422(03)00374-1. [PMID: 14559287]
  • M Abou-Shoer, G E Ma, X H Li, N M Koonchanok, R L Geahlen, C J Chang. Flavonoids from Koelreuteria henryi and other sources as protein-tyrosine kinase inhibitors. Journal of natural products. 1993 Jun; 56(6):967-9. doi: 10.1021/np50096a027. [PMID: 8350096]
  • . . . . doi: . [PMID: 21343428]
  • . . . . doi: . [PMID: 11314958]