H2O (BioDeep_00000279392)
Main id: BioDeep_00000004362
代谢物信息卡片
化学式: H2O (18.0106)
中文名称: 分子生物学级水
谱图信息:
最多检出来源 () 0%
Last reviewed on 2024-10-17.
Cite this Page
H2O. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/h2o (retrieved
2024-12-22) (BioDeep RN: BioDeep_00000279392). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: O
InChI: InChI=1S/H2O/h1H2
描述信息
An oxygen hydride consisting of an oxygen atom that is covalently bonded to two hydrogen atoms.
Water. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=7732-18-5 (retrieved 2024-10-17) (CAS RN: 7732-18-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
同义名列表
数据库引用编号
17 个数据库交叉引用编号
- ChEBI: CHEBI:197504
- ChEBI: CHEBI:15377
- KEGG: C00001
- KEGGdrug: D00001
- PubChem: 962
- DrugBank: DB09145
- ChEMBL: CHEMBL1098659
- MeSH: Water
- CAS: 7732-18-5
- PMhub: MS000016772
- MetaboLights: MTBLC15377
- PDB-CCD: HOH
- PDB-CCD: O
- 3DMET: B01124
- NIKKAJI: J43.587B
- PubChem: 3303
- KNApSAcK: 15377
分类词条
相关代谢途径
Reactome(291)
- Metabolism
- Biological oxidations
- Aflatoxin activation and detoxification
- Phase I - Functionalization of compounds
- Metabolism of vitamins and cofactors
- Metabolism of fat-soluble vitamins
- Retinoid metabolism and transport
- Visual phototransduction
- Sensory Perception
- Metabolism of proteins
- Post-translational protein modification
- Gamma carboxylation, hypusinylation, hydroxylation, and arylsulfatase activation
- Gamma-carboxylation, transport, and amino-terminal cleavage of proteins
- Gamma-carboxylation of protein precursors
- Disease
- Phase II - Conjugation of compounds
- Cytosolic sulfonation of small molecules
- Diseases of programmed cell death
- Amino acid and derivative metabolism
- Glyoxylate metabolism and glycine degradation
- Diseases of signal transduction by growth factor receptors and second messengers
- Drug ADME
- Aspirin ADME
- Asparagine N-linked glycosylation
- Biosynthesis of the N-glycan precursor (dolichol lipid-linked oligosaccharide, LLO) and transfer to a nascent protein
- Synthesis of substrates in N-glycan biosythesis
- GDP-fucose biosynthesis
- Metabolism of lipids
- Metabolism of steroids
- Cholesterol biosynthesis
- Metabolism of cofactors
- Ubiquinol biosynthesis
- Synthesis of Dolichyl-phosphate
- Diseases of metabolism
- Diseases of glycosylation
- Diseases associated with glycosylation precursor biosynthesis
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism
- Amino acid metabolism
- Arginine metabolism
- Transport of small molecules
- Aquaporin-mediated transport
- Passive transport by Aquaporins
- Metabolism of polyamines
- Agmatine biosynthesis
- Urea cycle
- Developmental Biology
- Choline catabolism
- Cytochrome P450 - arranged by substrate type
- Xenobiotics
- Aromatic amines can be N-hydroxylated or N-dealkylated by CYP1A2
- Methylation
- DNA Repair
- Signaling Pathways
- Signaling by Rho GTPases
- RHO GTPase Effectors
- RHO GTPases activate PKNs
- Cell Cycle
- Cell Cycle, Mitotic
- M Phase
- Mitotic Prophase
- Chromatin organization
- Chromatin modifying enzymes
- Signaling by Rho GTPases, Miro GTPases and RHOBTB3
- Maternal to zygotic transition (MZT)
- Chromatin modifications during the maternal to zygotic transition (MZT)
- Mycobacterium tuberculosis biological processes
- Mycothiol metabolism
- Mycothiol-dependent detoxification
- Chorismate via Shikimate Pathway
- Immune System
- Innate Immune System
- Antimicrobial peptides
- ROS and RNS production in phagocytes
- Events associated with phagocytolytic activity of PMN cells
- Purine metabolism
- Urate synthesis
- Ion channel transport
- Nucleotide metabolism
- Nucleotide catabolism
- Purine catabolism
- Disorders of transmembrane transporters
- Biosynthesis of specialized proresolving mediators (SPMs)
- Biosynthesis of EPA-derived SPMs
- Biosynthesis of E-series 18(R)-resolvins
- Fatty acid metabolism
- Mitochondrial Fatty Acid Beta-Oxidation
- mitochondrial fatty acid beta-oxidation of saturated fatty acids
- Beta oxidation of myristoyl-CoA to lauroyl-CoA
- Amino acid synthesis and interconversion (transamination)
- Serine biosynthesis
- Sulfur compound metabolism
- Cysteine synthesis from O-phosphoserine
- Metabolism of water-soluble vitamins and cofactors
- Vitamin B6 activation to pyridoxal phosphate
- Azathioprine ADME
- Tryptophan catabolism
- Beta oxidation of hexanoyl-CoA to butanoyl-CoA
- Bile acid and bile salt metabolism
- Synthesis of bile acids and bile salts
- Synthesis of bile acids and bile salts via 27-hydroxycholesterol
- Endogenous sterols
- Sterols are 12-hydroxylated by CYP8B1
- Metabolism of nitric oxide: NOS3 activation and regulation
- eNOS activation and regulation
- eNOS activation
- Signaling by Receptor Tyrosine Kinases
- Signaling by VEGF
- VEGFA-VEGFR2 Pathway
- Cellular responses to stimuli
- Cellular responses to stress
- Detoxification of Reactive Oxygen Species
- Infectious disease
- Latent infection of Homo sapiens with Mycobacterium tuberculosis
- Latent infection - Other responses of Mtb to phagocytosis
- Tolerance of reactive oxygen produced by macrophages
- Gene expression (Transcription)
- RNA Polymerase II Transcription
- Generic Transcription Pathway
- Transcriptional Regulation by TP53
- Adaptive Immune System
- Class I MHC mediated antigen processing & presentation
- Antigen processing-Cross presentation
- Infection with Mycobacterium tuberculosis
- Leishmania infection
- Cellular response to chemical stress
- Cytoprotection by HMOX1
- Bacterial Infection Pathways
- Parasitic Infection Pathways
- Arachidonic acid metabolism
- Synthesis of Prostaglandins (PG) and Thromboxanes (TX)
- Selenoamino acid metabolism
- Metabolism of ingested SeMet, Sec, MeSec into H2Se
- CYP2E1 reactions
- Peroxisomal lipid metabolism
- Beta-oxidation of pristanoyl-CoA
- Histidine catabolism
- Biosynthesis of electrophilic -3 PUFA oxo-derivatives
- The tricarboxylic acid cycle
- Glycolysis
- Iron uptake and transport
- Carbohydrate metabolism
- Glucose metabolism
- Fatty acyl-CoA biosynthesis
- The citric acid (TCA) cycle and respiratory electron transport
- Pyruvate metabolism and Citric Acid (TCA) cycle
- Citric acid cycle (TCA cycle)
- Pentose phosphate pathway
- Integration of energy metabolism
- Diseases of carbohydrate metabolism
- Lysine catabolism
- Cysteine synthesis from O-acetylserine
- Heme synthesis
- Extracellular matrix organization
- Collagen formation
- Assembly of collagen fibrils and other multimeric structures
- Crosslinking of collagen fibrils
- Degradation of the extracellular matrix
- Collagen degradation
- Phospholipid metabolism
- Glycerophospholipid biosynthesis
- Synthesis of PE
- Phenylalanine and tyrosine catabolism
- Sulfur amino acid metabolism
- Cysteine formation from homocysteine
- Degradation of cysteine and homocysteine
- Threonine catabolism
- Amine Oxidase reactions
- Biogenic amines are oxidatively deaminated to aldehydes by MAOA and MAOB
- Neuronal System
- Transmission across Chemical Synapses
- Neurotransmitter release cycle
- Norepinephrine Neurotransmitter Release Cycle
- Neurotransmitter clearance
- Clearance of dopamine
- Enzymatic degradation of dopamine by COMT
- Enzymatic degradation of Dopamine by monoamine oxidase
- Surfactant metabolism
- HIV Infection
- Host Interactions of HIV factors
- APOBEC3G mediated resistance to HIV-1 infection
- Tolerance by Mtb to nitric oxide produced by macrophages
- Metabolism of RNA
- mRNA Editing
- mRNA Editing: C to U Conversion
- mRNA Editing: A to I Conversion
- C6 deamination of adenosine
- tRNA processing
- tRNA modification in the nucleus and cytosol
- Aspartate and asparagine metabolism
- Phenylalanine and tyrosine metabolism
- Phenylalanine metabolism
- Viral Infection Pathways
- Porphyrin metabolism
- Heme biosynthesis
- Signaling by GPCR
- GPCR ligand binding
- Class A/1 (Rhodopsin-like receptors)
- GPCR downstream signalling
- G alpha (i) signalling events
- Synthesis of bile acids and bile salts via 7alpha-hydroxycholesterol
- Clearance of seratonin
- Metabolism of serotonin
- Ion transport by P-type ATPases
- Hemostasis
- Glycogen metabolism
- Glycogen breakdown (glycogenolysis)
- Gluconeogenesis
- Glycosaminoglycan metabolism
- Keratan sulfate/keratin metabolism
- Heparan sulfate/heparin (HS-GAG) metabolism
- Chondroitin sulfate/dermatan sulfate metabolism
- Sphingolipid metabolism
- Glycosphingolipid metabolism
- Phosphate bond hydrolysis by NUDT proteins
- Branched-chain amino acid catabolism
- Glutathione conjugation
- Glutathione synthesis and recycling
- Opioid Signalling
- DARPP-32 events
- Intracellular signaling by second messengers
- PI3K/AKT Signaling
- Negative regulation of the PI3K/AKT network
- Transport to the Golgi and subsequent modification
- N-glycan antennae elongation in the medial/trans-Golgi
- Glycogen storage diseases
- GSD II
- Defects in vitamin and cofactor metabolism
- Diseases associated with glycosaminoglycan metabolism
- APAP ADME
- Mycothiol biosynthesis
- Inositol phosphate metabolism
- Synthesis of IP2, IP, and Ins in the cytosol
- Vitamin D (calciferol) metabolism
- Vitamins
- Metabolic disorders of biological oxidation enzymes
- Nicotinate metabolism
- Fatty acids
- De novo synthesis of UMP
- Metabolism of amine-derived hormones
- Thyroxine biosynthesis
- Sphingolipid de novo biosynthesis
- Lipid metabolism
- Sphingolipid catabolism
- Digestion and absorption
- Digestion
- Digestion of dietary carbohydrate
- Trehalose biosynthesis
- Platelet homeostasis
- Signaling by Nuclear Receptors
- ESR-mediated signaling
- Muscle contraction
- Smooth Muscle Contraction
- Extra-nuclear estrogen signaling
- Ion influx/efflux at host-pathogen interface
- Synthesis of epoxy (EET) and dihydroxyeicosatrienoic acids (DHET)
- Beta oxidation of palmitoyl-CoA to myristoyl-CoA
- PI Metabolism
- Glycerophospholipid catabolism
- Interconversion of polyamines
- PAOs oxidise polyamines to amines
- Death Receptor Signaling
- p75 NTR receptor-mediated signalling
- Ceramide signalling
- Cytokine Signaling in Immune system
- Signaling by CSF1 (M-CSF) in myeloid cells
- Glycosphingolipid catabolism
- Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation
- Tyrosine catabolism
- Intestinal saccharidase deficiencies
- Synthesis of (16-20)-hydroxyeicosatetraenoic acids (HETE)
- alpha-linolenic (omega3) and linoleic (omega6) acid metabolism
- alpha-linolenic acid (ALA) metabolism
- Linoleic acid (LA) metabolism
- Beta oxidation of decanoyl-CoA to octanoyl-CoA-CoA
- Alpha-oxidation of phytanate
- Beta-oxidation of very long chain fatty acids
- Synthesis of bile acids and bile salts via 24-hydroxycholesterol
- Metabolism of steroid hormones
- Pregnenolone biosynthesis
- Glucocorticoid biosynthesis
- Mineralocorticoid biosynthesis
- Estrogen biosynthesis
- Nicotinamide salvaging
- Metabolism of folate and pterines
- Heme degradation
- Eicosanoids
- Miscellaneous substrates
- FMO oxidises nucleophiles
- Signaling by Retinoic Acid
- RA biosynthesis pathway
- Glutamate and glutamine metabolism
BioCyc(1011)
- salvage pathways of pyrimidine ribonucleotides
- superpathway of ribose and deoxyribose phosphate degradation
- (deoxy)ribose phosphate degradation
- pyrimidine ribonucleosides degradation I
- pyrimidine ribonucleosides degradation
- nucleoside and nucleotide degradation (archaea)
- superpathway of pyrimidine deoxyribonucleoside salvage
- superpathway of pyrimidine ribonucleosides salvage
- pyrimidine ribonucleosides salvage I
- pyrimidine ribonucleosides salvage II
- pyrimidine deoxyribonucleosides salvage
- superpathway of pyrimidine ribonucleosides degradation
- UTP and CTP dephosphorylation I
- pyrimidine salvage pathway
- pyrimidine ribonucleosides degradation II
- salvage pathways of purine and pyrimidine nucleotides
- purine and pyrimidine metabolism
- creatinine degradation II
- echinenone and zeaxanthin biosynthesis (Synechocystis)
- staphyloxanthin biosynthesis
- lysine degradation VI
- 4-hydroxyacetophenone degradation
- 4-aminophenol degradation
- 4-nitrophenol degradation I
- alkylnitronates degradation
- firefly bioluminescence
- superpathway of parathion degradation
- chitin biosynthesis
- allantoin degradation to ureidoglycolate II (ammonia producing)
- allantoin degradation to glyoxylate III
- O-antigen building blocks biosynthesis (E. coli)
- superpathway of b heme biosynthesis from glycine
- superpathway of L-phenylalanine biosynthesis
- superpathway of N-acetylglucosamine, N-acetylmannosamine and N-acetylneuraminate degradation
- patulin biosynthesis
- trehalose degradation II (cytosolic)
- anaerobic energy metabolism (invertebrates, mitochondrial)
- vicianin bioactivation
- superpathway of anaerobic energy metabolism (invertebrates)
- superpathway of demethylmenaquinol-8 biosynthesis I
- superpathway of N-acetylneuraminate degradation
- β-(1,4)-mannan degradation
- superpathway of L-methionine biosynthesis (transsulfuration)
- superpathway of L-homoserine and L-methionine biosynthesis
- L-methionine biosynthesis I
- superpathway of hexitol degradation (bacteria)
- mannitol cycle
- lupanine biosynthesis
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis I
- superpathway of L-aspartate and L-asparagine biosynthesis
- superpathway of aromatic amino acid biosynthesis
- chorismate biosynthesis I
- chorismate biosynthesis from 3-dehydroquinate
- CMP-3-deoxy-D-manno-octulosonate biosynthesis
- superpathway of bacteriochlorophyll a biosynthesis
- 2-carboxy-1,4-naphthoquinol biosynthesis
- superpathway of L-tyrosine biosynthesis
- superpathway of menaquinol-8 biosynthesis I
- superpathway of hyoscyamine and scopolamine biosynthesis
- superpathway of chorismate metabolism
- gallate degradation III (anaerobic)
- aspartate superpathway
- betacyanin biosynthesis
- superpathway of betalain biosynthesis
- superpathway of S-adenosyl-L-methionine biosynthesis
- superpathway of L-tryptophan biosynthesis
- superpathway of anaerobic sucrose degradation
- superpathway of UDP-N-acetylglucosamine-derived O-antigen building blocks biosynthesis
- tetrapyrrole biosynthesis II (from glycine)
- methanogenesis from acetate
- gallate biosynthesis
- hyoscyamine and scopolamine biosynthesis
- p-cymene degradation
- p-cymene degradation to p-cumate
- kauralexin biosynthesis
- oryzalide A biosynthesis
- Amaryllidacea alkaloids biosynthesis
- plant sterol biosynthesis
- vitamin K degradation
- spinosyn A biosynthesis
- chlorzoxazone degradation
- aliphatic glucosinolate biosynthesis, side chain elongation cycle
- glucosinolate biosynthesis from tyrosine
- bacteriochlorophyll e biosynthesis
- aromatic glucosinolate activation
- superpathway of tryptophan utilization
- superpathway of melatonin degradation
- melatonin degradation III
- abietic acid biosynthesis
- superpathway of diterpene resin acids biosynthesis
- brassinosteroids inactivation
- superpathway of C28 brassinosteroid biosynthesis
- brassinosteroid biosynthesis I
- superpathway of glycol metabolism and degradation
- superpathway of cytosolic glycolysis (plants), pyruvate dehydrogenase and TCA cycle
- heme b biosynthesis I (aerobic)
- coumarin metabolism (to melilotic acid)
- hordatine biosynthesis
- glycogen degradation I
- glycolate and glyoxylate degradation II
- protocatechuate degradation I (meta-cleavage pathway)
- glycolysis IV (plant cytosol)
- trans-4-hydroxy-L-proline degradation II
- rutin degradation (plants)
- indolmycin biosynthesis
- gossypol biosynthesis
- shinorine biosynthesis
- bacteriochlorophyll c biosynthesis
- bacteriochlorophyll d biosynthesis
- pyrimidine deoxyribonucleotides de novo biosynthesis III
- glycogen degradation III (via anhydrofructose)
- base-degraded thiamine salvage
- base-degraded thiamin salvage
- theophylline degradation
- starch biosynthesis
- L-lysine biosynthesis II
- L-lysine biosynthesis I
- indole-3-acetate activation II
- cyclooctatin biosynthesis
- superpathway of fucose and rhamnose degradation
- 2-methylpropene degradation
- glucosinolate biosynthesis from hexahomomethionine
- ubiquinone (coenzyme Q) biosynthesis
- superpathway of sterol biosynthesis
- ornithine biosynthesis (arginine degradation)
- putrescine biosynthesis IV
- putrescine biosynthesis I
- allantoin degradation to glyoxylate I
- allantoin degradation to ureidoglycolate I (urea producing)
- superpathway of allantoin degradation in yeast
- superpathway of allantoin degradation in plants
- urea cycle
- canavanine degradation
- spermidine biosynthesis III
- superpathway of polyamine biosynthesis I
- nicotine degradation I (pyridine pathway)
- superpathway of arginine and polyamine biosynthesis
- uracil degradation II (oxidative)
- clavulanate biosynthesis
- superpathway of L-citrulline metabolism
- L-citrulline biosynthesis
- L-Nδ-acetylornithine biosynthesis
- urea degradation I
- urea degradation II
- L-arginine degradation VIII (arginine oxidase pathway)
- L-arginine degradation VI (arginase 2 pathway)
- L-arginine degradation XII
- superpathway of L-arginine, putrescine, and 4-aminobutanoate degradation
- L-arginine degradation I (arginase pathway)
- L-arginine degradation III (arginine decarboxylase/agmatinase pathway)
- L-arginine degradation XI
- L-arginine degradation X (arginine monooxygenase pathway)
- L-arginine degradation VII (arginase 3 pathway)
- L-arginine degradation IX (arginine:pyruvate transaminase pathway)
- superpathway of L-arginine and L-ornithine degradation
- creatinine degradation III
- creatinine degradation I
- superpathway of purines degradation in plants
- superpathway of citrulline metabolism
- urea degradation
- arginine degradation VI (arginase 2 pathway)
- citrulline biosynthesis
- L-Nδ-acetylornithine biosynthesis
- arginine degradation III (arginine decarboxylase/agmatinase pathway)
- superpathway of arginine and ornithine degradation
- arginine degradation VII (arginase 3 pathway)
- arginine degradation I (arginase pathway)
- superpathway of arginine, putrescine, and 4-aminobutyrate degradation
- arginine degradation X (arginine monooxygenase pathway)
- arginine degradation VII
- formaldehyde oxidation (glutathione-dependent)
- superpathway of aromatic compound degradation
- formaldehyde oxidation
- nicotine degradation II
- methanol oxidation to carbon dioxide
- vanillin and vanillate degradation II
- formaldehyde oxidation I
- phosphopantothenate biosynthesis I
- morphine biosynthesis
- methanol oxidation to formaldehyde IV
- methanol and methylamine oxidation to formaldehyde
- pterocarpan phytoalexins modification (maackiain, medicarpin, pisatin, phaseollin)
- superpathway of C1 compounds oxidation to CO2
- 12-epi-hapalindole biosynthesis
- paerucumarin biosynthesis
- superpathway of trimethylamine degradation
- trimethylamine degradation
- proline betaine degradation
- rhabduscin biosynthesis
- hapalindole H biosynthesis
- melatonin degradation I
- superpathway of dimethylsulfone degradation
- methanesulfonate degradation
- 12-epi-fischerindole biosynthesis
- heme degradation VI
- 4-hydroxycoumarin and dicoumarol biosynthesis
- propane degradation II
- 5,5'-dehydrodivanillate degradation
- glycine betaine degradation I
- superpathway of coenzyme A biosynthesis I (bacteria)
- nicotine degradation IV
- ectoine biosynthesis
- formaldehyde assimilation III (dihydroxyacetone cycle)
- formaldehyde assimilation I (serine pathway)
- caffeine degradation IV (bacteria, via demethylation and oxidation)
- caffeine degradation III (bacteria, via demethylation)
- 3-[(E)-2-isocyanoethenyl]-1H-indole biosynthesis
- dimethyl sulfide degradation I
- dimethyl sulfide degradation II (oxidation)
- methylamine degradation II
- methylamine degradation I
- formaldehyde oxidation III (mycothiol-dependent)
- formaldehyde oxidation II (glutathione-dependent)
- formaldehyde oxidation V (bacillithiol-dependent)
- formaldehyde oxidation IV (thiol-independent)
- formaldehyde oxidation VII (THF pathway)
- formaldehyde oxidation VI (H4MPT pathway)
- rutin degradation
- indole glucosinolate activation (herbivore attack)
- colchicine biosynthesis
- formaldehyde oxidation V (tetrahydrofolate pathway)
- glycine betaine degradation
- formaldehyde oxidation V (H4MPT pathway)
- linamarin biosynthesis
- superpathway of linamarin and lotaustralin biosynthesis
- bacterioruberin biosynthesis
- C.p.450 monoglucoside biosynthesis
- protein N-glycosylation processing phase (mammalian)
- protein N-glycosylation processing phase (plants and animals)
- matairesinol biosynthesis
- justicidin B biosynthesis
- sesamin biosynthesis
- glucosinolate biosynthesis from dihomomethionine
- 6-hydroxymethyl-dihydropterin diphosphate biosynthesis IV (Plasmodium)
- salvage pathways of purine nucleosides
- purine nucleotide metabolism (phosphotransfer and nucleotide modification)
- salvage pathways of adenine, hypoxanthine, and their nucleosides
- purine nucleotides de novo biosynthesis I
- superpathway of histidine, purine, and pyrimidine biosynthesis
- purine nucleotides de novo biosynthesis II
- salvage pathways of purine nucleosides I
- aurone biosynthesis
- polymethylated quercetin glucoside biosynthesis I - quercetin series (Chrysosplenium)
- polymethylated quercetin glucoside biosynthesis II - quercetagetin series (Chrysosplenium)
- isoflavonoid biosynthesis II
- aflatoxins B1 and G1 biosynthesis
- superpathway of polymethylated quercetin/quercetagetin glucoside biosynthesis (Chrysosplenium)
- pulcherrimin biosynthesis
- aurachin A, B, C and D biosynthesis
- D-arabinose degradation I
- superpathway of pentose and pentitol degradation
- decaprenoxanthin and decaprenoxanthin diglucoside biosynthesis
- pentachlorophenol degradation
- cytokinins degradation
- hentriaconta-3,6,9,12,15,19,22,25,28-nonaene biosynthesis
- dimethyl sulfoxide degradation
- dimethyl sulfone degradation
- dimethyl sulfide degradation III (oxidation)
- hydrogen to dimethyl sulfoxide electron transfer
- formate to dimethyl sulfoxide electron transfer
- NADH to dimethyl sulfoxide electron transfer
- respiration (anaerobic)-- electron acceptors reaction list
- ginsenosides biosynthesis
- 2-heptyl-3-hydroxy-4(1H)-quinolone biosynthesis
- superpathway of quinolone and alkylquinolone biosynthesis
- chitin degradation II
- chitin degradation III (carnivorous plants)
- chitin degradation to ethanol
- anhydromuropeptides recycling II
- anhydromuropeptides recycling I
- chitin degradation III (Serratia)
- chitin degradation I (archaea)
- chitin degradation II (Vibrio)
- chitosan biosynthesis
- anhydromuropeptides recycling
- acidification and chitin degradation (in carnivorous plants)
- peptidoglycan maturation (meso-diaminopimelate containing)
- tryptophan degradation via kynurenine
- NAD biosynthesis (from tryptophan)
- choline degradation IV
- glycine betaine biosynthesis III (plants)
- 2,6-dinitrotoluene degradation
- glyceollin biosynthesis
- superpathway of pterocarpan biosynthesis (via daidzein)
- meleagrin biosynthesis
- superpathway of roquefortine, meleagrin and neoxaline biosynthesis
- ubiquinol-10 biosynthesis
- ubiquinol-10 biosynthesis (eukaryotic)
- ubiquinol-10 biosynthesis (prokaryotic)
- ubiquinone-10 biosynthesis (eukaryotic)
- superpathway of nicotine biosynthesis
- (1,3)-β-D-xylan degradation
- superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass
- superpathay of heme b biosynthesis from glutamate
- berberine biosynthesis
- CMP-N-acetylneuraminate biosynthesis II (bacteria)
- indole-3-acetate biosynthesis V (bacteria and fungi)
- TCA cycle I (prokaryotic)
- L-tryptophan degradation I (via anthranilate)
- γ-butyrobetaine degradation
- aromatic biogenic amine degradation (bacteria)
- superpathway of microbial D-galacturonate and D-glucuronate degradation
- choline-O-sulfate degradation
- choline degradation I
- D-carnitine degradation I
- L-carnitine degradation II
- mixed acid fermentation
- 2-aminophenol degradation
- 2-hydroxybiphenyl degradation
- N-methyl-Δ1-pyrrolinium cation biosynthesis
- nicotine degradation II (pyrrolidine pathway)
- glycerol degradation III
- nicotinate degradation I
- 1,3-propanediol biosynthesis (engineered)
- streptomycin biosynthesis
- L-valine degradation I
- superpathway of CMP-sialic acids biosynthesis
- glycocholate metabolism (bacteria)
- L-arginine degradation V (arginine deiminase pathway)
- superpathway of glycerol degradation to 1,3-propanediol
- superpathway of glyoxylate bypass and TCA
- luteolin triglucuronide degradation
- tetrapyrrole biosynthesis I (from glutamate)
- superpathway of proto- and siroheme biosynthesis
- (-)-dehydrodiconiferyl alcohol degradation
- phenolphthiocerol biosynthesis
- 6-methylpretetramide biosynthesis
- superpathway of tetracycline and oxytetracycline biosynthesis
- bacteriochlorophyll a biosynthesis
- vindoline and vinblastine biosynthesis
- superpathway of testosterone and androsterone degradation
- nitrite-dependent anaerobic methane oxidation
- methane oxidation to methanol II
- methane oxidation to methanol I
- methylphosphonate degradation I
- methylphosphonate degradation II
- dibenzo-p-dioxin degradation
- CMP-pseudaminate biosynthesis
- lolitrem B biosynthesis
- plant sterol biosynthesis II
- phenazine-1-carboxylate biosynthesis
- bacteriochlorophyll b biosynthesis
- 3,8-divinyl-chlorophyllide a biosynthesis I (aerobic, light-dependent)
- 3,8-divinyl-chlorophyllide a biosynthesis II (anaerobic)
- 3,8-divinyl-chlorophyllide a biosynthesis III (aerobic, light independent)
- polyamine degradation (N-acetyl pathway)
- lysine biosynthesis
- aromatic compound degradation
- lysine degradation
- fatty acid oxidation pathway
- TCA cycle, aerobic respiration
- oxidative ethanol degradation
- phenylacetate degradation
- N-acetylglucosamine , N-acetylmannosamine and N-acetylneuraminic acid dissimilation
- abscisic acid biosynthesis
- diadinoxanthin and fucoxanthin biosynthesis
- superpathway of carotenoid biosynthesis in plants
- spheroidene and spheroidenone biosynthesis
- pantothenate and coenzyme A biosynthesis
- superpathway of carotenoid biosynthesis
- CMP-legionaminate biosynthesis II
- CMP-legionaminate biosynthesis I
- serine biosynthesis
- jasmonic acid biosynthesis
- superpathway of gluconate degradation
- superpathway of central carbon metabolism
- CMP-KDO biosynthesis I
- IAA biosynthesis I
- NAD biosynthesis II (from tryptophan)
- tryptophan degradation I (via anthranilate)
- peptidoglycan and lipid A precursor biosynthesis
- γ-hexachlorocyclohexane degradation
- superpathway of L-lysine degradation
- purine nucleotides degradation II (aerobic)
- inosine 5'-phosphate degradation
- superpathway of guanosine nucleotides de novo biosynthesis I
- L-lysine fermentation to acetate and butanoate
- superpathway of tetrahydrofolate biosynthesis
- superpathway of tetrahydrofolate biosynthesis and salvage
- N10-formyl-tetrahydrofolate biosynthesis
- guanosine ribonucleotides de novo biosynthesis
- L-phenylalanine degradation IV (mammalian, via side chain)
- lactose and galactose degradation I
- superpathway of ergotamine biosynthesis
- ergotamine biosynthesis
- glyphosate degradation III
- jasmonoyl-L-isoleucine inactivation
- NADH to cytochrome bo oxidase electron transfer I
- NADH to cytochrome bd oxidase electron transfer I
- capsanthin and capsorubin biosynthesis
- isopropanol biosynthesis (engineered)
- acetone degradation III (to propane-1,2-diol)
- acetone degradation I (to methylglyoxal)
- acetone degradation II (to acetoacetate)
- linear furanocoumarin biosynthesis
- atrazine degradation II
- superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation
- geosmin biosynthesis
- superpathway of Clostridium acetobutylicum solventogenic fermentation
- propane degradation I
- linamarin degradation
- linustatin bioactivation
- ketogenesis
- ammonia oxidation I (aerobic)
- bile acids degradation
- caffeine degradation V (bacteria, via trimethylurate)
- coumarins biosynthesis (engineered)
- esculetin modification
- superpathway of scopolin and esculin biosynthesis
- simple coumarins biosynthesis
- aflatoxins B2 and G2 biosynthesis
- adenosylcobalamin biosynthesis I (early cobalt insertion)
- 5,6-dimethylbenzimidazole biosynthesis
- pyridine nucleotide cycling
- 1,2-dichloroethane degradation
- 2,4-dichlorophenoxyacetate degradation
- (-)-maackiain biosynthesis
- tetrahydroxyxanthone biosynthesis (from benzoate)
- tetrahydroxyxanthone biosynthesis (from 3-hydroxybenzoate)
- plumbagin biosynthesis
- superpathway of pterocarpan biosynthesis (via formononetin)
- superpathway of tetrahydroxyxanthone biosynthesis
- superpathway of formononetin derivative biosynthesis
- salvigenin biosynthesis
- protein S-nitrosylation and denitrosylation
- superpathway of glycolysis and the Entner-Doudoroff pathway
- photosynthetic 3-hydroxybutanoate biosynthesis (engineered)
- superoxide radicals degradation
- Entner-Doudoroff pathway I
- Entner-Doudoroff shunt
- reactive oxygen species degradation
- pentose phosphate pathway
- NAD/NADP-NADH/NADPH cytosolic interconversion (yeast)
- superpathway NAD/NADP - NADH/NADPH interconversion (yeast)
- phosphatidate metabolism, as a signaling molecule
- flavin biosynthesis II (archaea)
- gluconeogenesis I
- glycogen degradation II
- L-arginine biosynthesis II (acetyl cycle)
- glycolysis II (from fructose 6-phosphate)
- glycolysis I (from glucose 6-phosphate)
- myo-inositol biosynthesis
- ppGpp biosynthesis
- superpathway NAD/NADP - NADH/NADPH interconversion
- NAD/NADP-NADH/NADPH cytosolic interconversion
- glycophosphatidylinositol (GPI) anchor biosynthesis
- lipophosphoglycan (LPG) biosynthesis
- glycoinositolphospholipid (GIPL) biosynthesis
- peptidoglycan biosynthesis I
- seleno-amino acid biosynthesis
- 1,8-cineole degradation
- oleandomycin biosynthesis
- lactose degradation III
- menthol biosynthesis
- UMP biosynthesis
- L-phenylalanine biosynthesis I
- validamycin biosynthesis
- 3,4,6-trichlorocatechol degradation
- eupatolitin 3-O-glucoside biosynthesis
- phenol degradation I (aerobic)
- phenyl adenosylcobamide biosynthesis from adenosylcobinamide-GDP
- nivalenol biosynthesis
- T-2 toxin biosynthesis
- superpathway of trichothecene biosynthesis
- sarcinaxanthin diglucoside biosynthesis
- decaprenoxanthin diglucoside biosynthesis
- glucosinolate biosynthesis from pentahomomethionine
- itaconate biosynthesis
- juvenile hormone III biosynthesis I
- juvenile hormone III biosynthesis II
- brassinosteroid biosynthesis II
- spirilloxanthin and 2,2'-diketo-spirilloxanthin biosynthesis
- lauryl-hydroxychlorobactene glucoside biosynthesis
- ellagic acid degradation to urolithins
- ginsenoside degradation I
- ginsenoside degradation II
- zerumbone biosynthesis
- styrene degradation
- lactucaxanthin biosynthesis
- cysteine degradation
- sulfate assimilation
- superpathway of histidine, purine and pyrimidine biosynthesis
- glutamate degradation to ammonia
- riboflavin and FMN and FAD biosynthesis
- N-acetylglucosamine degradation
- polyamine degradation (oxidative deamination pathway)
- allantoin degradation
- pyridoxal 5'-phosphate (vitamin B6) biosynthesis
- cysteine and homocysteine interconversion
- nitrogen fixation
- lysine degradation VIII
- glutamate and glutamine biosynthesis
- glutamate biosynthesis II
- cysteine biosynthesis/homocysteine degradation
- methionine biosynthesis
- superpathway of threonine degradation
- glutamate degradation
- 2-amino-3-carboxymuconate semialdehyde degradation to 2-oxopentenoate
- cysteine biosynthesis II
- proline biosynthesis II (from arginine)
- tryptophan degradation III (eukaryotic)
- uracil degradation II (reductive)
- histidine degradation III
- Serine degradation II
- heme biosynthesis II
- cysteine biosynthesis III (mammalia)
- arginine biosynthesis IV
- L-asparagine degradation I
- ammonia oxidation III
- ammonia oxidation IV (autotrophic ammonia oxidizers)
- superpathway of L-asparagine biosynthesis
- L-glutamate degradation X
- nitrifier denitrification
- IAA biosynthesis V
- purine nucleotides degradation III (anaerobic)
- purine nucleotides degradation IV (anaerobic)
- folate transformations II (plants)
- glutamate degradation V (via hydroxyglutarate)
- glycine degradation I
- lysine fermentation to acetate and butyrate
- glutamate degradation I
- glutamate degradation VII (to butanoate)
- 4-aminobutyrate degradation V
- glutamate degradation VI (to pyruvate)
- tetrapyrrole biosynthesis I
- alanine degradation II (to D-lactate)
- leucine degradation IV
- isoleucine degradation III
- suberin biosynthesis
- dimethylsulfoniopropionate biosynthesis II (Spartina)
- phenylalanine degradation IV (mammalian, via side chain)
- heme biosynthesis I
- ornithine degradation II (Stickland reaction)
- TCA cycle VI (obligate autotrophs)
- tryptophan degradation X (mammalian, via tryptamine)
- glutamine biosynthesis III
- glutamate degradation IX
- threonine degradation III (to methylglyoxal)
- superpathway of threonine metabolism
- glutathione-mediated detoxification
- acrylonitrile degradation
- superpathway of aspartate and asparagine biosynthesis; interconversion of aspartate and asparagine
- superpathway of lysine, threonine and methionine biosynthesis II
- isoleucine biosynthesis I
- superpathway of lysine, threonine and methionine biosynthesis I
- formylTHF biosynthesis II
- formylTHF biosynthesis I
- salvage pathways of guanine, xanthine, and their nucleosides
- methionine biosynthesis II
- methionine biosynthesis I
- isoleucine biosynthesis I (from threonine)
- lactate biosynthesis (archaea)
- reductive acetyl coenzyme A pathway II (autotrophic methanogens)
- tetracycline and oxytetracycline biosynthesis
- gluconeogenesis II (Methanobacterium thermoautotrophicum)
- Methanobacterium thermoautotrophicum biosynthetic metabolism
- 2,4,6-trinitrophenol and 2,4-dinitrophenol degradation
- methyl-coenzyme M oxidation to CO2
- methanogenesis from H2 and CO2
- chitin derivatives degradation
- rhodoquinone-9 biosynthesis
- ubiquinone-9 biosynthesis (eukaryotic)
- o-diquinones biosynthesis
- superpathway of ergosterol biosynthesis I
- ergosterol biosynthesis I
- superpathway of ergosterol biosynthesis
- ergosterol biosynthesis
- superpathway of cholesterol degradation II (cholesterol dehydrogenase)
- superpathway of cholesterol degradation I (cholesterol oxidase)
- cholesterol degradation to androstenedione I (cholesterol oxidase)
- cholesterol degradation to androstenedione II (cholesterol dehydrogenase)
- limonene degradation II (L-limonene)
- afrormosin conjugates interconversion
- terrequinone A biosynthesis
- 2,4,6-trichlorophenol degradation
- arabidopyrone biosynthesis
- poly(3-O-β-D-glucopyranosyl-N-acetylgalactosamine 1-phosphate) wall teichoic acid biosynthesis
- L-lysine degradation IV
- L-lysine degradation III
- stephacidin A biosynthesis
- melibiose degradation
- Spodoptera littoralis pheromone biosynthesis
- ephedrine biosynthesis
- amygdalin and prunasin degradation
- prunasin and amygdalin biosynthesis
- phenylpropanoid biosynthesis
- hopanoid biosynthesis (bacteria)
- diploterol and cycloartenol biosynthesis
- Ac/N-end rule pathway
- guanosine nucleotides degradation
- purine nucleotides degradation
- lysine degradation I (saccharopine pathway)
- secologanin and strictosidine biosynthesis
- fumigaclavine biosynthesis
- superpathway of 5-aminoimidazole ribonucleotide biosynthesis
- L-homomethionine biosynthesis
- 5-aminoimidazole ribonucleotide biosynthesis II
- thiosulfate oxidation IV (multienzyme complex)
- allantoin degradation to glyoxylate II
- allantoin degradation IV (anaerobic)
- 2-nitrobenzoate degradation I
- procollagen hydroxylation and glycosylation
- podophyllotoxin glucosides metabolism
- ethylmalonyl-CoA pathway
- ethylene glycol biosynthesis (engineered)
- (3R)-linalool biosynthesis
- superpathway of linalool biosynthesis
- methylaspartate cycle
- superpathway of heme b biosynthesis from uroporphyrinogen-III
- colanic acid building blocks biosynthesis
- sanguinarine and macarpine biosynthesis
- (aminomethyl)phosphonate degradation
- CMP-N-acetylneuraminate biosynthesis I (eukaryotes)
- archaetidylinositol biosynthesis
- 3-phosphoinositide biosynthesis
- methyl indole-3-acetate interconversion
- sucrose biosynthesis II
- suberin monomers biosynthesis
- pyrimidine deoxyribonucleotides de novo biosynthesis I
- L-glutamine degradation I
- vitamin B6 degradation
- crotonyl-CoA/ethylmalonyl-CoA/hydroxybutyryl-CoA cycle (engineered)
- superpathway of pyrimidine deoxyribonucleosides degradation
- TCA cycle V (2-oxoglutarate:ferredoxin oxidoreductase)
- diacylglycerol and triacylglycerol biosynthesis
- (4S)-carvone biosynthesis
- geraniol and geranial biosynthesis
- superpathway of rosmarinic acid biosynthesis
- Entner-Doudoroff pathway II (non-phosphorylative)
- L-lysine degradation V
- L-lysine degradation XI (mammalian)
- L-lysine degradation IX
- superpathway of Clostridium acetobutylicum acidogenic fermentation
- patchoulol biosynthesis
- grixazone biosynthesis
- 3,3'-disulfanediyldipropannoate degradation
- 3-amino-5-hydroxybenzoate biosynthesis
- gliotoxin biosynthesis
- oxalate biosynthesis
- L-glutamate and L-glutamine biosynthesis
- purine ribonucleosides degradation
- superpathway of purine deoxyribonucleosides degradation
- L-carnitine degradation III
- nitrite oxidation
- superpathway of adenosine nucleotides de novo biosynthesis I
- superpathway of purine nucleotides de novo biosynthesis I
- methylgallate degradation
- reductive TCA cycle I
- 4-hydroxymandelate degradation
- D-glucarate degradation I
- hexitol fermentation to lactate, formate, ethanol and acetate
- 4-amino-3-hydroxybenzoate degradation
- orcinol degradation
- superpathway of aromatic compound degradation via 2-hydroxypentadienoate
- ferrichrome biosynthesis
- indole-3-acetate activation I
- 4-hydroxyphenylacetate degradation
- purine nucleobases degradation I (anaerobic)
- purine nucleobases degradation II (anaerobic)
- superpathway of aromatic compound degradation via 3-oxoadipate
- 3-phenylpropanoate and 3-(3-hydroxyphenyl)propanoate degradation
- 2-hydroxypenta-2,4-dienoate degradation
- emetine biosynthesis
- UDP-sugars interconversion
- nitrilotriacetate degradation
- norspermidine biosynthesis
- plaunotol biosynthesis
- peptidoglycan biosynthesis II (staphylococci)
- superpathway of polyamine biosynthesis III
- drosopterin and aurodrosopterin biosynthesis
- superpathway of geranylgeranyl diphosphate biosynthesis II (via MEP)
- L-leucine degradation I
- taxadiene biosynthesis (engineered)
- superpathway of GDP-mannose-derived O-antigen building blocks biosynthesis
- cephamycin C biosynthesis
- superpathway of rifamycin B biosynthesis
- ATP biosynthesis
- novobiocin biosynthesis
- superpathway of penicillin, cephalosporin and cephamycin biosynthesis
- starch degradation III
- L-histidine degradation I
- L-valine biosynthesis
- deacetylcephalosporin C biosynthesis
- myo-, chiro- and scyllo-inositol degradation
- superpathway of CDP-glucose-derived O-antigen building blocks biosynthesis
- CDP-4-dehydro-3,6-dideoxy-D-glucose biosynthesis
- myo-inositol degradation I
- L-histidine biosynthesis
- adenine salvage
- gentisate degradation II
- rhizocticin A and B biosynthesis
- pectin degradation I
- phosphinothricin tripeptide biosynthesis
- isopenicillin N biosynthesis
- puromycin biosynthesis
- L-arginine biosynthesis I (via L-ornithine)
- L-threonine degradation III (to methylglyoxal)
- meta cleavage pathway of aromatic compounds
- 2-nitrophenol degradation
- artemisinin biosynthesis
- superpathway of β-D-glucuronosides degradation
- 5-nitroanthranilate degradation
- CMP-N-acetyl-7-O-acetylneuraminate biosynthesis
- CMP-2-keto-3-deoxy-D-glycero-D-galacto-nononate biosynthesis
- flaviolin dimer and mompain biosynthesis
- glycolysis V (Pyrococcus)
- glycolysis III (from glucose)
- L-rhamnose degradation II
- L-ascorbate degradation I (bacterial, anaerobic)
- catechol degradation II (meta-cleavage pathway)
- catechol degradation I (meta-cleavage pathway)
- aromatic compounds degradation via β-ketoadipate
- catechol degradation III (ortho-cleavage pathway)
- catechol degradation to β-ketoadipate
- guanosine nucleotides degradation III
- L-ornithine biosynthesis I
- androstenedione degradation
- UDP-α-D-xylose biosynthesis
- cardiolipin biosynthesis II
- gallate degradation II
- superpathway of D-glucarate and D-galactarate degradation
- Entner-Doudoroff pathway III (semi-phosphorylative)
- mandelate degradation to acetyl-CoA
- phosphatidylglycerol biosynthesis II (non-plastidic)
- methylerythritol phosphate pathway I
- methylerythritol phosphate pathway II
- rhamnogalacturonan type I degradation II (bacteria)
- ubiquinol-8 biosynthesis (prokaryotic)
- L-ascorbate biosynthesis IV
- lipoate salvage II
- superpathway of phylloquinol biosynthesis
- superpathway of UDP-glucose-derived O-antigen building blocks biosynthesis
- D-galacturonate degradation I
- glucose degradation (oxidative)
- D-fructuronate degradation
- D-galactonate degradation
- betalamic acid biosynthesis
- superpathway of hexuronide and hexuronate degradation
- UTP and CTP dephosphorylation II
- UDP-α-D-glucuronate biosynthesis (from myo-inositol)
- superpathway of ubiquinol-8 biosynthesis (prokaryotic)
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis
- di-myo-inositol phosphate biosynthesis
- superpathway of L-threonine metabolism
- sphingolipid biosynthesis (plants)
- L-carnitine biosynthesis
- trans-4-hydroxy-L-proline degradation I
- 3-chlorocatechol degradation I (ortho)
- 3-chlorocatechol degradation II (ortho)
- (S)-reticuline biosynthesis I
- superpathway of pyrimidine deoxyribonucleotides de novo biosynthesis
- chitobiose degradation
- glucose and glucose-1-phosphate degradation
- C4 photosynthetic carbon assimilation cycle, NAD-ME type
- trehalose biosynthesis III
- trehalose biosynthesis I
- superpathway of L-methionine salvage and degradation
- manganese oxidation I
- manganese oxidation II
- erythro-tetrahydrobiopterin biosynthesis I
- L-isoleucine biosynthesis IV
- 3-dehydroquinate biosynthesis I
- S-adenosyl-L-methionine cycle II
- L-isoleucine biosynthesis II
- glutathione degradation (DUG pathway - yeast)
- complex N-linked glycan biosynthesis (vertebrates)
- complex N-linked glycan biosynthesis (plants)
- superpathway of glutathione metabolism (truncated γ-glutamyl cycle)
- glutathione degradation
- glutathione degradation (DUG pathway)
- trehalose biosynthesis
- limonene degradation III (to perillate)
- zymosterol biosynthesis
- cholesterol biosynthesis I
- cholesterol biosynthesis III (via desmosterol)
- superpathway of cholesterol biosynthesis
- cis-zeatin biosynthesis
- fenchone biosynthesis
- fenchol biosynthesis I
- isoprene degradation
- glycolysis I
- selenocysteine biosynthesis I (bacteria)
- superpathway of glycolysis, pyruvate dehydrogenase and TCA cycle
- ethanol degradation II (cytosol)
- fatty acid β-oxidation II (core pathway)
- oxidative ethanol degradation III (microsomal)
- ethanol degradation IV (peroxisomal)
- superpathway of glyoxylate cycle
- superpathway of glycolysis and Entner-Doudoroff
- glycolysis II
- arginine biosynthesis I
- tetrahydrofolate biosynthesis I
- starch degradation II
- epoxypseudoisoeugenol-2-methylbutanoate biosynthesis
- folate polyglutamylation I
- methionine and S-adenosylmethionine synthesis
- (+)-pisatin biosynthesis
- pyrrolnitrin biosynthesis
- linalool biosynthesis I
- nitrate reduction III (dissimilatory)
- nitrate reduction VIII (dissimilatory)
- nitrate reduction IX (dissimilatory)
- succinate to cytochrome bo oxidase electron transfer
- NADH to cytochrome bo oxidase electron transfer II
- D-lactate to cytochrome bo oxidase electron transfer
- glycerol-3-phosphate to cytochrome bo oxidase electron transfer
- proline to cytochrome bo oxidase electron transfer
- pyruvate to cytochrome bo oxidase electron transfer
- holomycin biosynthesis
- versicolorin B biosynthesis
- methylglyoxal degradation VI
- okenone biosynthesis
- isoflavonoid biosynthesis I
- formononetin biosynthesis
- 2,2'-dihydroxybiphenyl degradation
- pyrimidine nucleobases salvage II
- superpathway of pyrimidine nucleobases salvage
- wogonin metabolism
- 2,4-xylenol degradation to protocatechuate
- dhurrin biosynthesis
- taxiphyllin biosynthesis
- histidine degradation I
- cyanide detoxification II
- sitosterol degradation to androstenedione
- fumitremorgin C biosynthesis
- superpathway of fumitremorgin biosynthesis
- coniferin metabolism
- sphingolipid metabolism
- superpathway of phospholipid biosynthesis
- ester phospholipid biosynthesis
- phytocassanes biosynthesis, shared reactions
- trans-3-hydroxy-L-proline degradation
- hyperxanthone E biosynthesis
- citronellol degradation
- ascorbate glutathione cycle
- trehalose degradation
- superpathway of mycolyl-arabinogalactan-peptidoglycan complex biosynthesis
- mAGP
- trehalose degradation VI (periplasmic)
- trehalose degradation I (low osmolarity)
- polyacyltrehalose biosynthesis
- glycogen biosynthesis III (from α-maltose 1-phosphate)
- trehalose biosynthesis II
- trehalose biosynthesis V
- trehalose degradation II (trehalase)
- mycolyl-arabinogalactan-peptidoglycan complex biosynthesis
- purine deoxyribonucleosides degradation
- purine deoxyribonucleosides degradation II
- purine deoxyribonucleosides degradation I
- melatonin degradation II
- resorcinol degradation
- γ-resorcylate degradation II
- γ-resorcylate degradation I
- 4-nitrophenol degradation II
- 2,4,5-trichlorophenoxyacetate degradation
- citrulline-nitric oxide cycle
- nitrate reduction VII (denitrification)
- NADH to cytochrome bd oxidase electron transfer II
- succinate to cytochrome bd oxidase electron transfer
- nitric oxide biosynthesis II (mammals)
- nitrogen fixation I (ferredoxin)
- nitric oxide biosynthesis I (plants)
- nitric oxide biosynthesis III (bacteria)
- ammonia oxidation II (anaerobic)
- nitrate reduction I (denitrification)
- L-citrulline-nitric oxide cycle
- nitric oxide biosynthesis (plants)
- fumiquinazoline D biosynthesis
- nitrate reduction VIIIb (dissimilatory)
- coenzyme M biosynthesis I
- coelimycin P1 biosynthesis
- ginsenoside degradation III
- histamine degradation
- fluorene degradation I
- salicortin biosynthesis
- benzoate biosynthesis I (CoA-dependent, β-oxidative)
- superpathway of benzoxazinoid glucosides biosynthesis
- DIBOA-glucoside biosynthesis
- indole-3-acetate degradation
- folate metabolism
- threonine degradation I
- nostoxanthin biosynthesis
- 4'-methoxyviridicatin biosynthesis
- stipitatate biosynthesis
- calonectrin biosynthesis
- myo-, chiro- and scillo-inositol degradation
- myo-inositol de novo biosynthesis
- myo-inositol degradation
- PIP metabolism
- superpathway of inositol phosphate compounds
- phytate degradation I
- myo-inositol degradation II
- D-myo-inositol (1,4,5)-trisphosphate degradation
- superpathway of D-myo-inositol (1,4,5)-trisphosphate metabolism
- phosphatidylinositol phosphate biosynthesis
- UDP-D-glucuronate biosynthesis (from myo-inositol)
- curcuminoid biosynthesis
- cholesterol biosynthesis II (via 24,25-dihydrolanosterol)
- bisphenol A degradation
- isoprene biosynthesis II (engineered)
- isoprene biosynthesis I
- glycine betaine biosynthesis I (Gram-negative bacteria)
- γ-coniciene and coniine biosynthesis
- proline biosynthesis II
- 7-dehydroporiferasterol biosynthesis
- butachlor degradation
- fructan degradation
- pyruvate fermentation to isobutanol (engineered)
- butanol and isobutanol biosynthesis (engineered)
- sophorosyloxydocosanoate deacetylation
- triacylglycerol degradation
- (+)-camphor biosynthesis
- acyl-CoA hydrolysis
- nylon-6 oligomer degradation
- S-methyl-5'-thioadenosine degradation IV
- S-methyl-5'-thioadenosine degradation I
- L-methionine salvage cycle I (bacteria and plants)
- L-methionine salvage cycle II (plants)
- superpathway of bitter acids biosynthesis
- colupulone and cohumulone biosynthesis
- taxol biosynthesis
- tetracenomycin C biosynthesis
- rebeccamycin biosynthesis
- L-glutamate degradation VII (to butanoate)
- L-ascorbate degradation III
- L-ascorbate degradation II (bacterial, aerobic)
- L-ascorbate degradation IV
- L-glutamate degradation VI (to pyruvate)
- indole-3-acetate inactivation VII
- salicin biosynthesis
- daphnin interconversion
- S-adenosylmethionine cycle
- S-adenosylmethionine biosynthesis
- superpathway of erythromycin biosynthesis
- superpathway of megalomicin A biosynthesis
- erythromycin D biosynthesis
- superpathway of erythromycin biosynthesis (without sugar biosynthesis)
- phaseollin biosynthesis
- marneral biosynthesis
- protein O-[N-acetyl]-glucosylation
- neurosporaxanthin biosynthesis
- bixin biosynthesis
- flexixanthin biosynthesis
- myxol-2' fucoside biosynthesis
- crocetin biosynthesis
- camptothecin biosynthesis
- superpathway of seleno-compound metabolism
- seleno-amino acid detoxification and volatilization II
- superpathway of L-threonine biosynthesis
- superpathway of L-isoleucine biosynthesis I
- paxilline and diprenylpaxilline biosynthesis
- 2,3-trans-flavanols biosynthesis
- prodigiosin biosynthesis
- teichuronic acid biosynthesis (B. subtilis 168)
- ricinine degradation
- cichoriin interconversion
- thiocyanate degradation II
- carbon disulfide oxidation I (anaerobic)
- carbon disulfide oxidation II (aerobic)
- carbon disulfide oxidation III (metazoa)
- polybrominated dihydroxylated diphenyl ethers biosynthesis
- spongiadioxin C biosynthesis
- ajmaline and sarpagine biosynthesis
- dTDP-L-daunosamine biosynthesis
- isoleucine degradation I
- astaxanthin biosynthesis (bacteria, fungi, algae)
- leucopelargonidin and leucocyanidin biosynthesis
- anthocyanin biosynthesis (pelargonidin 3-O-glucoside)
- glucosinolate biosynthesis from tetrahomomethionine
- androgen biosynthesis
- phenylethanol glycoconjugate biosynthesis
- gibberellin biosynthesis IV (Gibberella fujikuroi)
- GA12 biosynthesis
- superpathway of gibberellin biosynthesis
- superpathway of gibberellin GA12 biosynthesis
- ent -kaurene biosynthesis II
- uracil degradation I (reductive)
- squid bioluminescence
- glycogen catabolism
- starch degradation V
- starch degradation IV
- starch degradation I
- GABA degradation
- phenylalanine biosynthesis
- arginine degradation (arginase pathway)
- pyridoxal 5'-phosphate biosynthesis
- 4-hydroxyproline degradation II
- (5R)-carbapenem biosynthesis
- TCA cycle variation IV
- methylglyoxal pathway
- purine degradation II (anaerobic)
- O-antigen biosynthesis (E. coli)
- methionine and methyl-donor-molecule biosynthesis
- C4 photosynthetic carbon assimilation cycle
- chlorophyllide a biosynthesis I
- 3-phenylpropionate degradation
- toluene degradation to protocatechuate (via p-cresol)
- fatty acid biosynthesis -- elongase pathway
- glyoxalase pathway
- respiration (anaerobic)
- biopterin metabolism
- ascorbate biosynthesis
- glycerolipid biosynthesis - initial steps
- fatty acid β-oxidation IV (unsaturated, even number)
- superpathway of 4-aminobutyrate degradation
- 4-aminobutyrate degradation II
- threonine biosynthesis
- lysine biosynthesis VI
- lysine biosynthesis I
- ornithine biosynthesis
- D-carnitine degradation II
PlantCyc(281)
- UTP and CTP dephosphorylation I
- pyrimidine ribonucleosides salvage I
- superpathway of pyrimidine ribonucleosides salvage
- pyrimidine ribonucleosides salvage II
- pyrimidine salvage pathway
- betacyanin biosynthesis
- superpathway of hyoscyamine and scopolamine biosynthesis
- hyoscyamine and scopolamine biosynthesis
- superpathway of betalain biosynthesis
- lupanine biosynthesis
- vicianin bioactivation
- superpathway of anaerobic sucrose degradation
- wighteone and luteone biosynthesis
- superpathway of isoflavonoids (via naringenin)
- oryzalide A biosynthesis
- kauralexin biosynthesis
- lipid IVA biosynthesis
- glucosinolate biosynthesis from tyrosine
- aromatic glucosinolate activation
- abietic acid biosynthesis
- superpathway of diterpene resin acids biosynthesis
- brassinolide biosynthesis II
- brassinolide biosynthesis I
- brassinosteroid biosynthesis I
- brassinosteroids inactivation
- superpathway of C28 brassinosteroid biosynthesis
- glycolysis IV (plant cytosol)
- superpathway of cytosolic glycolysis (plants), pyruvate dehydrogenase and TCA cycle
- coumarin metabolism (to melilotic acid)
- hordatine biosynthesis
- rutin degradation (plants)
- gossypol biosynthesis
- orientin and isoorientin biosynthesis I
- leucodelphinidin biosynthesis
- luteolinidin 5-O-glucoside biosynthesis
- luteolin biosynthesis
- flavonoid biosynthesis (in equisetum)
- leucopelargonidin and leucocyanidin biosynthesis
- eriodictyol C-glucosylation
- indole-3-acetate activation II
- L-arginine degradation X (arginine monooxygenase pathway)
- urea degradation I
- superpathway of L-citrulline metabolism
- L-arginine degradation VI (arginase 2 pathway)
- canavanine degradation
- putrescine biosynthesis I
- allantoin degradation to ureidoglycolate I (urea producing)
- L-citrulline biosynthesis
- superpathway of allantoin degradation in plants
- allantoin degradation to glyoxylate III
- L-arginine degradation I (arginase pathway)
- allantoin degradation to glyoxylate I
- superpathway of purines degradation in plants
- L-Nδ-acetylornithine biosynthesis
- urea cycle
- urea degradation II
- putrescine biosynthesis IV
- Organic Nitrogen Assimilation
- superpathway of hyoscyamine (atropine) and scopolamine biosynthesis
- formaldehyde oxidation VII (THF pathway)
- 4-hydroxycoumarin and dicoumarol biosynthesis
- formaldehyde oxidation II (glutathione-dependent)
- colchicine biosynthesis
- indole glucosinolate activation (herbivore attack)
- morphine biosynthesis
- superpathway of linamarin and lotaustralin biosynthesis
- linamarin biosynthesis
- superpathway of pterocarpan biosynthesis (via daidzein)
- glyceollin biosynthesis
- adenine and adenosine salvage III
- superpathway of adenosine nucleotides de novo biosynthesis I
- inosine 5'-phosphate degradation
- superpathway of purine nucleotides de novo biosynthesis I
- inosine-5'-phosphate biosynthesis II
- guanosine ribonucleotides de novo biosynthesis
- adenosine nucleotides degradation I
- ureide biosynthesis
- purine nucleotides degradation I (plants)
- aurone biosynthesis
- polymethylated quercetin glucoside biosynthesis I - quercetin series (Chrysosplenium)
- polymethylated quercetin glucoside biosynthesis II - quercetagetin series (Chrysosplenium)
- superpathway of polymethylated quercetin/quercetagetin glucoside biosynthesis (Chrysosplenium)
- ajmaline and sarpagine biosynthesis
- resveratrol biosynthesis
- phytosterol biosynthesis (plants)
- cytokinins degradation
- ginsenosides biosynthesis
- NAD/NADH phosphorylation and dephosphorylation
- superpathway of gibberellin biosynthesis
- gibberellin biosynthesis II (early C-3 hydroxylation)
- guanosine nucleotides degradation II
- nucleobase ascorbate transport I
- urate conversion to allantoin I
- superpathway of guanosine nucleotides degradation (plants)
- guanosine nucleotides degradation I
- glycine betaine biosynthesis III (plants)
- ubiquinol-10 biosynthesis (eukaryotic)
- ubiquinol-10 biosynthesis (late decarboxylation)
- superpathway of proto- and siroheme biosynthesis
- N-methyl-Δ1-pyrrolinium cation biosynthesis
- superpathway of nicotine biosynthesis
- berberine biosynthesis
- luteolin triglucuronide degradation
- superpathway of Allium flavor precursors
- alliin metabolism
- 3,8-divinyl-chlorophyllide a biosynthesis III (aerobic, light independent)
- superpathway of carotenoid biosynthesis in plants
- vindoline, vindorosine and vinblastine biosynthesis
- capsaicin biosynthesis
- geosmin biosynthesis
- linustatin bioactivation
- linamarin degradation
- linear furanocoumarin biosynthesis
- ketogenesis
- simple coumarins biosynthesis
- simplecoumarins biosynthesis
- coumarins biosynthesis (engineered)
- esculetin modification
- superpathway of scopolin and esculin biosynthesis
- gibberellin inactivation I (2β-hydroxylation)
- tetrahydroxyxanthone biosynthesis (from 3-hydroxybenzoate)
- superpathway of tetrahydroxyxanthone biosynthesis
- (-)-maackiain biosynthesis
- superpathway of pterocarpan biosynthesis (via formononetin)
- plumbagin biosynthesis
- tetrahydroxyxanthone biosynthesis (from benzoate)
- superpathway of formononetin derivative biosynthesis
- salvigenin biosynthesis
- reactive oxygen species degradation
- superoxide radicals degradation
- tropane alkaloids biosynthesis
- 4-hydroxyindole-3-carbonyl nitrile biosynthesis
- superpathway of flavones and derivatives biosynthesis
- menthol biosynthesis
- eupatolitin 3-O-glucoside biosynthesis
- aliphatic glucosinolate biosynthesis, side chain elongation cycle
- glucosinolate biosynthesis from pentahomomethionine
- juvenile hormone III biosynthesis I
- UMP biosynthesis I
- superpathway of pyrimidine deoxyribonucleotides de novo biosynthesis
- superpathway of pyrimidine ribonucleotides de novo biosynthesis
- L-lysine degradation I
- L-proline degradation
- superpathway of glyoxylate cycle and fatty acid degradation
- superpathway of photosynthetic hydrogen production
- photosynthesis light reactions
- brassinosteroid biosynthesis II
- zerumbone biosynthesis
- ephedrine biosynthesis
- lactucaxanthin biosynthesis
- sulfite oxidation IV (sulfite oxidase)
- sulfide oxidation III (persulfide dioxygenase)
- sulfite oxidation IV
- sulfoquinovosyl diacylglycerol biosynthesis
- assimilatory sulfate reduction II
- L-glutamate biosynthesis I
- Inorganic Nitrogen Assimilation
- o-diquinones biosynthesis
- afrormosin conjugates interconversion
- matairesinol biosynthesis
- amygdalin and prunasin degradation
- prunasin and amygdalin biosynthesis
- flavonol biosynthesis
- syringetin biosynthesis
- phenylpropanoid biosynthesis
- diploterol biosynthesis
- C4 photosynthetic carbon assimilation cycle, NAD-ME type
- phosphatidate metabolism, as a signaling molecule
- UDP-α-D-glucuronate biosynthesis (from myo-inositol)
- methyl indole-3-acetate interconversion
- 1,4-dihydroxy-2-naphthoate biosynthesis II (plants)
- L-histidine biosynthesis
- cardiolipin biosynthesis II
- plaunotol biosynthesis
- podophyllotoxin glucosides metabolism
- superpathway of phylloquinol biosynthesis
- (S)-reticuline biosynthesis I
- (4S)-carvone biosynthesis
- suberin monomers biosynthesis
- S-adenosyl-L-methionine cycle II
- allantoin degradation to glyoxylate II
- (3R)-linalool biosynthesis
- allantoin degradation to ureidoglycolate II (ammonia producing)
- indole-3-acetate activation I
- superpathway of linalool biosynthesis
- superpathway of phospholipid biosynthesis II (plants)
- sucrose biosynthesis II
- superpathway of rosmarinic acid biosynthesis
- geraniol and geranial biosynthesis
- sphingolipid biosynthesis (plants)
- sanguinarine and macarpine biosynthesis
- phosphatidylglycerol biosynthesis II (non-plastidic)
- artemisinin and arteannuin B biosynthesis
- 2-carboxy-1,4-naphthoquinol biosynthesis
- chorismate biosynthesis I
- emetine biosynthesis
- betalamic acid biosynthesis
- phosphatidylglycerol biosynthesis I (plastidic)
- jasmonoyl-L-isoleucine inactivation
- perillyl aldehyde biosynthesis
- cholesterol biosynthesis I
- zymosterol biosynthesis
- superpathway of seleno-compound metabolism
- selenate reduction
- fenchol biosynthesis I
- fenchone biosynthesis
- chrysin biosynthesis
- pinocembrin C-glucosylation
- starch degradation II
- hypoglycin biosynthesis
- epoxypseudoisoeugenol-2-methylbutanoate biosynthesis
- tetrahydrofolate salvage from 5,10-methenyltetrahydrofolate
- L-methionine biosynthesis II
- S-adenosyl-L-methionine salvage II
- L-methionine biosynthesis II (plants)
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II
- seleno-amino acid biosynthesis (plants)
- tea aroma glycosidic precursor bioactivation
- (3S)-linalool biosynthesis
- linalool biosynthesis I
- wogonin metabolism
- taxiphyllin biosynthesis
- dhurrin biosynthesis
- daidzein conjugates interconversion
- coniferin metabolism
- phytocassanes biosynthesis, shared reactions
- L-ascorbate biosynthesis II (plants, L-gulose pathway)
- hyperxanthone E biosynthesis
- saponin biosynthesis III
- ascorbate glutathione cycle
- trehalose biosynthesis I
- trehalose degradation II (cytosolic)
- superpathway of hydrolyzable tannin biosynthesis
- DIBOA-glucoside biosynthesis
- superpathway of benzoxazinoid glucosides biosynthesis
- (-)-glycinol biosynthesis
- jasmonic acid biosynthesis
- nostoxanthin biosynthesis
- Amaryllidacea alkaloids biosynthesis
- 3-phosphoinositide biosynthesis
- glycerophosphodiester degradation
- myo-inositol biosynthesis
- D-myo-inositol (1,4,5)-trisphosphate degradation
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis
- phytate degradation I
- L-ascorbate biosynthesis VI (plants, myo-inositol pathway)
- curcuminoid biosynthesis
- cholesterol biosynthesis (plants)
- cholesterol biosynthesis (plants, early side-chain reductase)
- isoprene biosynthesis II (engineered)
- isoprene biosynthesis I
- abscisic acid biosynthesis
- (+)-camphor biosynthesis
- L-methionine salvage cycle II (plants)
- L-methionine salvage cycle I (bacteria and plants)
- S-methyl-5'-thioadenosine degradation I
- taxol biosynthesis
- L-ascorbate degradation IV
- L-ascorbate degradation III
- salicin biosynthesis
- daphnin interconversion
- isoflavonoid biosynthesis I
- ppGpp biosynthesis
- marneral biosynthesis
- bixin biosynthesis
- crocetin biosynthesis
- camptothecin biosynthesis
- seleno-amino acid detoxification and volatilization II
- justicidin B biosynthesis
- 2,3-trans-flavanols biosynthesis
- proanthocyanidins biosynthesis from flavanols
- ricinine degradation
- formononetin biosynthesis
- astaxanthin biosynthesis (bacteria, fungi, algae)
- glucosinolate biosynthesis from tetrahomomethionine
- gibberellin A12 biosynthesis
- ent -kaurene biosynthesis II
- GA12 biosynthesis
- superpathway of gibberellin GA12 biosynthesis
- starch degradation I
- fatty acid β-oxidation IV (unsaturated, even number)
代谢反应
0 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
0 个相关的物种来源信息
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Gabriel R A de Toledo, Gabriela N Reissig, Luiz G S Senko, Danillo R Pereira, Arlan F da Silva, Gustavo M Souza. Common bean under different water availability reveals classifiable stimuli-specific signatures in plant electrome.
Plant signaling & behavior.
2024 Dec; 19(1):2333144. doi:
10.1080/15592324.2024.2333144
. [PMID: 38545860] - Kaleb Fransgo, Lei-Chen Lin, Hyungmin Rho. Distinct interactions of ericoid mycorrhizae and plant growth-promoting bacteria: impacts on blueberry growth and heat resilience.
Plant signaling & behavior.
2024 Dec; 19(1):2329842. doi:
10.1080/15592324.2024.2329842
. [PMID: 38493504] - Kahurangi Cronin, Ian Hutton, K C Burns. Harsh environmental conditions promote cooperative behavior in an epiphytic fern.
Plant signaling & behavior.
2024 Dec; 19(1):2335453. doi:
10.1080/15592324.2024.2335453
. [PMID: 38555490] - Xing-Chen Wang, Xin-Yu Shen, Lin Chen, Rong Wei, Ming-Yuan Wei, Cai-Hong Gu, Rong-Rong Xu, Sheng-Qing Ding, Bo Pan. Preparation, characterization, and anticancer effects of an inclusion complex of coixol with β-cyclodextrin polymers.
Pharmaceutical biology.
2024 Dec; 62(1):2294331. doi:
10.1080/13880209.2023.2294331
. [PMID: 38126136] - Muhammad Abdur Rehman Shah, Yajie Zhang, Yi Cui, Xinjuan Hu, Feifei Zhu, Santosh Kumar, Gang Li, Ameer Ali Kubar, Shahid Mehmood, Shuhao Huo. Ultrasonic-assisted green extraction and incorporation of Spirulina platensis bioactive components into turmeric essential oil-in-water nanoemulsion for enhanced antioxidant and antimicrobial activities.
Food chemistry.
2024 Sep; 452(?):139561. doi:
10.1016/j.foodchem.2024.139561
. [PMID: 38728897] - Gong Yi Yong, Nishalini Muniandy, Adilet Beishenaliev, Beng Fye Lau, Chin Siang Kue. Anti-angiogenic and anti-tumour activities of Lignosus rhinocerus (Cooke) Ryvarden water extracts on HCT116 human colorectal carcinoma cells implanted in chick embryos.
Journal of ethnopharmacology.
2024 Sep; 331(?):118213. doi:
10.1016/j.jep.2024.118213
. [PMID: 38636576] - Sooseong Lee, Jae Jun Lee, Sumin Jung, Boeun Choi, Han-Seul Lee, Ki-Tae Kim, Cheal Kim. Fast and easy detection of hypochlorite by a smartphone-based fluorescent turn-on probe: Applications to water samples, zebrafish and plant imaging.
Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.
2024 Sep; 317(?):124418. doi:
10.1016/j.saa.2024.124418
. [PMID: 38749200] - Khoa A Nguyen, Vincent J P Boerkamp, John P M van Duynhoven, Arend Dubbelboer, Marie Hennebelle, Peter A Wierenga. A mechanistic kinetic model for lipid oxidation in Tween 20-stabilized O/W emulsions.
Food chemistry.
2024 Sep; 451(?):139404. doi:
10.1016/j.foodchem.2024.139404
. [PMID: 38714112] - Zhongqi Fan, Ling Fang, Qingqing Liu, Hetong Lin, Mengshi Lin, Yifen Lin, Hui Wang, Yen-Con Hung, Yihui Chen. Comparative transcriptome and metabolome reveal the role of acidic electrolyzed oxidizing water in improving postharvest disease resistance of longan fruit.
Food chemistry.
2024 Aug; 449(?):139235. doi:
10.1016/j.foodchem.2024.139235
. [PMID: 38583405] - Rémy Cochereau, Hugo Voisin, Véronique Solé-Jamault, Bruno Novales, Joëlle Davy, Frédéric Jamme, Denis Renard, Adeline Boire. Influence of pH and lipid membrane on the liquid-liquid phase separation of wheat γ-gliadin in aqueous conditions.
Journal of colloid and interface science.
2024 Aug; 668(?):252-263. doi:
10.1016/j.jcis.2024.04.136
. [PMID: 38678881] - Meiling Li, Hetong Lin, Chao Wang, Yazhen Chen, Mengshi Lin, Yen-Con Hung, Yifen Lin, Zhongqi Fan, Hui Wang, Yihui Chen. Acidic electrolyzed-oxidizing water treatment mitigated the disease progression in Phomopsis longanae Chi-infected longans by modulating ROS and membrane lipid metabolism.
Food chemistry.
2024 Aug; 449(?):139175. doi:
10.1016/j.foodchem.2024.139175
. [PMID: 38593723] - Jiaqi Hu, Xiyun Sun, Hongwei Xiao, Chunju Liu, Feifei Yang, Wuyi Liu, Yulong Wu, Yaoyao Wang, Ru Zhao, Haiou Wang. Effect of guar gum, gelatin, and pectin on moisture changes in freeze-dried restructured strawberry blocks.
Food chemistry.
2024 Aug; 449(?):139244. doi:
10.1016/j.foodchem.2024.139244
. [PMID: 38583397] - Ying Tu, Ran An, Hua Gu, Na Li, Huan Yan, Hai-Yang Liu, Li He. The water extracts from the oil cakes of Prinsepia utilis repair the epidermal barrier via up-regulating Corneocyte Envelope-proteins, lipid synthases, and tight junction proteins.
Journal of ethnopharmacology.
2024 Aug; 330(?):118194. doi:
10.1016/j.jep.2024.118194
. [PMID: 38641077] - Xueping Yang, Alejandra Arroyo Cerezo, Paolo Berzaghi, Luisa Magrin. Comparative near Infrared (NIR) spectroscopy calibrations performance of dried and undried forage on dry and wet matter bases.
Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.
2024 Aug; 316(?):124287. doi:
10.1016/j.saa.2024.124287
. [PMID: 38701573] - Huang-Fei Jin, Qian-Xue Shen, Ying Shi, Fang-Ming Liu, Bin Wang, Jun Cao, Li-Hong Ye. Magnetic-stirring-enhanced mechanical amorphous dispersion extraction for the hydrophobic phytochemical constituents using an aqueous solution from a medicinal plant.
Journal of pharmaceutical and biomedical analysis.
2024 Aug; 245(?):116191. doi:
10.1016/j.jpba.2024.116191
. [PMID: 38728950] - Songdanyang Cui, Pengfei Li, Li Ji, Ting Wang, Yantao Liu, Yanjiao Lan, Jianxin Jiang. Superabsorbent quaternary ammonium guar gum hydrogel with controlled release of humic acid for soil improvement and plant growth.
Carbohydrate polymers.
2024 Aug; 337(?):122188. doi:
10.1016/j.carbpol.2024.122188
. [PMID: 38710565] - Chengyan Gao, Mantong Zhao, Xinwen Wang, Jiamei Wang, Chuan Li, Xiuping Dong, Zhongyuan Liu, Dayong Zhou. Plasma-activated water in combination with coconut exocarp flavonoids emerge as promising preservation technique for golden pompano: Impact of the treatment sequence.
Food chemistry.
2024 Jul; 447(?):138981. doi:
10.1016/j.foodchem.2024.138981
. [PMID: 38518613] - Jinglei Zhang, Huajian Xu, Huixia Liu, Wenqi Wang, Mingming Zheng, Yingnan Liu, Yibin Zhou, Yueshuang Li, Xiaonan Sui, Yaqing Xiao. Insight into the improvement mechanism of gel properties of pea protein isolate based on the synergistic effect of cellulose nanocrystals and calcium ions.
Food chemistry.
2024 Jul; 447(?):138975. doi:
10.1016/j.foodchem.2024.138975
. [PMID: 38489882] - Liliane Majed, Salem Hayar, Sylvie Dousset, Britt Marianna Maestroni, Khaled El Omari. Effect of vine leaves processing on Azoxystrobin, Fenazaquin and Indoxacarb residues dissipation: processing factors and consumer safety assessment.
Food chemistry.
2024 Jul; 447(?):139065. doi:
10.1016/j.foodchem.2024.139065
. [PMID: 38513485] - Mohammad Alrosan, Ali Madi Almajwal, Ali Al-Qaisi, Sana Gammoh, Muhammad H Alu'datt, Farah R Al Qudsi, Thuan-Chew Tan, Ammar A Razzak Mahmood, Khalid Bani-Melhem. Trehalose-conjugated lentil-casein protein complexes prepared by structural interaction: Effects on water solubility and protein digestibility.
Food chemistry.
2024 Jul; 447(?):138882. doi:
10.1016/j.foodchem.2024.138882
. [PMID: 38452537] - Bin Zhu, Jinjie Yang, Jingjing Dou, Yijie Ning, Baokun Qi, Yang Li. Comparison of the physical stability, microstructure and protein-lipid co-oxidation of O/W emulsions stabilized by l-arginine/l-lysine-modified soy protein hydrolysate.
Food chemistry.
2024 Jul; 447(?):138901. doi:
10.1016/j.foodchem.2024.138901
. [PMID: 38458131] - Feiyu Tang, Bin Wang, Jinpeng Li, Jun Xu, Jinsong Zeng, Wenhua Gao, Kefu Chen. Water-soluble silver nanoclusters with multicolor fluorescence generated by dialdehyde nanofibrillated cellulose for biological imaging.
Carbohydrate polymers.
2024 Jul; 336(?):122138. doi:
10.1016/j.carbpol.2024.122138
. [PMID: 38670763] - Qing Jin, Yiming Feng, Xavier Cabana-Puig, Tran N Chau, Ronnie Difulvio, Dajun Yu, Anyang Hu, Song Li, Xin M Luo, Jactone Ogejo, Feng Lin, Haibo Huang. Combined dilute alkali and milling process enhances the functionality and gut microbiota fermentability of insoluble corn fiber.
Food chemistry.
2024 Jul; 446(?):138815. doi:
10.1016/j.foodchem.2024.138815
. [PMID: 38428087] - Peyman Ebrahimi, Ipek Bayram, Anna Lante, Eric A Decker. Acid-hydrolyzed phenolic extract of parsley (Petroselinum crispum L.) leaves inhibits lipid oxidation in soybean oil-in-water emulsions.
Food research international (Ottawa, Ont.).
2024 Jul; 187(?):114452. doi:
10.1016/j.foodres.2024.114452
. [PMID: 38763687] - Flore Vancoillie, Sarah H E Verkempinck, Lili Sluys, Sarah De Mazière, Christof Van Poucke, Marc E Hendrickx, Ann M Van Loey, Tara Grauwet. Stability and bioaccessibility of micronutrients and phytochemicals present in processed leek and Brussels sprouts during static in vitro digestion.
Food chemistry.
2024 Jul; 445(?):138644. doi:
10.1016/j.foodchem.2024.138644
. [PMID: 38354638] - Jiyu Yang, Sijia Zhu, Weiwen Ren, Hongshan Liang, Bin Li, Jing Li. Constructing gellan gum/konjac glucomannan/wheat fiber composite hydrogel to simulate edible cartilage by ionic cross-link and moisture regulation.
Food research international (Ottawa, Ont.).
2024 Jul; 187(?):114329. doi:
10.1016/j.foodres.2024.114329
. [PMID: 38763632] - Zhiyue Wang, Zeyuan Deng, Chengwei Yu, Jianyong Wu, Ting Luo. Effects of steam explosion on raspberry leaf structure and the release of water-soluble nutrients and phenolics.
Food chemistry.
2024 Jul; 445(?):138708. doi:
10.1016/j.foodchem.2024.138708
. [PMID: 38387314] - Nikhil Dnyaneshwar Patil, Aarti Bains, Sawinder Kaur, Rahul Yadav, Nemat Ali, Sandip Patil, Gulden Goksen, Prince Chawla. Influence of dual succinylation and ultrasonication modification on the amino acid content, structural and functional properties of Chickpea (Cicer arietinum L.) protein concentrate.
Food chemistry.
2024 Jul; 445(?):138671. doi:
10.1016/j.foodchem.2024.138671
. [PMID: 38367556] - Jin Liu, Wei Pan, Tao Pei, Fuyun Wang, Wenting Zhao, Enhua Wang, Li Li, Xu Jing. High-throughput semi-automated emulsive liquid-liquid microextraction for detecting SDHI fungicides in water, juice, and alcoholic beverage samples via UHPLC-MS/MS.
Talanta.
2024 Jul; 274(?):126038. doi:
10.1016/j.talanta.2024.126038
. [PMID: 38579419] - Yuchen Guo, Jiahua Gao, Yun Bai, Xia Wang, Xinglian Xu, Xinqing Lu, Jianping Yue, Minyi Han. Effect of pulsed electric field (PEF) on NaCl diffusion in beef and consequence on meat quality.
Meat science.
2024 Jul; 213(?):109507. doi:
10.1016/j.meatsci.2024.109507
. [PMID: 38583336] - Menglong Sheng, Songyi Lin, Tingting Ma, Lei Qin, Yixin Chang, Dong Chen. The improvement effects of Lentinus edodes powder marination on sous vide cooked chicken patties: Physicochemical attributes, oxidative properties and flavor characteristics.
Food chemistry.
2024 Jun; 444(?):138689. doi:
10.1016/j.foodchem.2024.138689
. [PMID: 38350164] - Xingran Kou, Min Hong, Fei Pan, Xin Huang, Qingran Meng, Yunchong Zhang, Qinfei Ke. Inhibitory effects of nobiletin-mediated interfacial instability of bile salt emulsified oil droplets on lipid digestion.
Food chemistry.
2024 Jun; 444(?):138751. doi:
10.1016/j.foodchem.2024.138751
. [PMID: 38412567] - Yaochang Li, Lian Zhou, Wenhao Zhou, Haizhi Zhang, Xinguang Qin, Gang Liu. Whey protein isolate and inulin-glycosylated conjugate affect the physicochemical properties and oxidative stability of pomegranate seed oil emulsion.
Food chemistry.
2024 Jun; 444(?):138649. doi:
10.1016/j.foodchem.2024.138649
. [PMID: 38330610] - Ning Wang, Boyu Liu, Donghua Wang, Kaiwen Xing, Wen Wang, Tong Wang, Dianyu Yu. Oil-in-water and oleogel-in-water emulsion encapsulate with hemp seed oil containing Δ9-tetrahydrocannabinol and cannabinol: Stability, degradation and in vitro simulation characteristics.
Food chemistry.
2024 Jun; 444(?):138633. doi:
10.1016/j.foodchem.2024.138633
. [PMID: 38330607] - Glaucia Cristina de Lima E Souza Mesquita, Elkejer Ribeiro Da Cruz, Dione Silva Corrêa, Alexandre de Barros Falcão Ferraz, Jéssica Machado Miri, Ingrid Vicente Farias, Flávio Henrique Reginatto, Fernanda Brião Menezes Boaretto, Duani Maria Dos Santos, Juliana da Silva, Ivana Grivicich, Jaqueline Nascimento Picada. Genotoxic and antiproliferative properties of Endopleura uchi bark aqueous extract.
Journal of toxicology and environmental health. Part A.
2024 Jun; 87(12):516-531. doi:
10.1080/15287394.2024.2340069
. [PMID: 38619152] - Lei Chen, Fei Shao, Kaiwen Chen, Nan Wu, Bingbing Sun, Dan Ge, Guirong Wang, Huanan Wang, Qing Yang. Organized assembly of chitosan into mechanically strong bio-composite by introducing a recombinant insect structural protein OfCPH-1.
Carbohydrate polymers.
2024 Jun; 334(?):122044. doi:
10.1016/j.carbpol.2024.122044
. [PMID: 38553240] - Rafaela T Privatti, Maria C Capellini, Keila K Aracava, Silvana M P Pugine, Mariza P de Melo, Christianne E C Rodrigues. Saline as solvent and ethanol-based purification process for the extraction of proteins and isoflavones from wet okara.
Food chemistry.
2024 Jun; 443(?):138605. doi:
10.1016/j.foodchem.2024.138605
. [PMID: 38301555] - Yuanyuan Wang, Jiamei Wang, Zhicheng Cai, Xiaohan Sang, Wentao Deng, Lixian Zeng, Jianhao Zhang. Combined of plasma-activated water and dielectric barrier discharge atmospheric cold plasma treatment improves the characteristic flavor of Asian sea bass (Lates calcarifer) through facilitating lipid oxidation.
Food chemistry.
2024 Jun; 443(?):138584. doi:
10.1016/j.foodchem.2024.138584
. [PMID: 38306903] - Dekun Meng, Jianying Ma, Xiaojun Min, Yongxin Zang, Wei Sun. Nocturnal stomatal behaviour and its impact on water use strategies of desert herbs in the Gurbantunggut Desert, Northwest China.
The Science of the total environment.
2024 Jun; 929(?):172749. doi:
10.1016/j.scitotenv.2024.172749
. [PMID: 38670360] - Ecaterina Savchina, Antonella L Grosso, Petra Massoner, Ksenia Morozova, Giovanna Ferrentino, Matteo M Scampicchio. Structuring vegetable oils through enzymatic glycerolysis for water-in-oil emulsions.
Food chemistry.
2024 Jun; 443(?):138596. doi:
10.1016/j.foodchem.2024.138596
. [PMID: 38301566] - Wei Gu, Ruolin Kong, Shuyang Qi, Xuxi Cheng, Xuyi Cai, Ziyun Zhou, Shunan Zhang, Hongyu Zhao, Jinyun Song, Qinglian Hu, Huiwen Yu, Huangjin Tong, Yiwei Wang, Tulin Lu. Sono-assembly of ellagic acid into nanostructures significantly enhances aqueous solubility and bioavailability.
Food chemistry.
2024 Jun; 442(?):138485. doi:
10.1016/j.foodchem.2024.138485
. [PMID: 38278106] - Longren Liao, Yuhan Shen, Chenglin Xie, Yongkui Zhang, Changhong Yao. Ultrasonication followed by aqueous two-phase system for extraction, on-site modification and isolation of microalgal starch with reduced digestibility.
Ultrasonics sonochemistry.
2024 Jun; 106(?):106891. doi:
10.1016/j.ultsonch.2024.106891
. [PMID: 38701549] - Aline de Camargo Santos, Bruce Schaffer, Andreas G Ioannou, Pamela Moon, Muhammad Shahid, Diane Rowland, Barry Tillman, Matthew Bremgartner, Vasileios Fotopoulos, Elias Bassil. Melatonin seed priming improves early establishment and water stress tolerance of peanut.
Plant physiology and biochemistry : PPB.
2024 Jun; 211(?):108664. doi:
10.1016/j.plaphy.2024.108664
. [PMID: 38703498] - Negar Etminani-Esfahani, Abbas Rahmati. Effect of chain structures of monomer on hydroxyethyl cellulose-based superabsorbent properties and improvement of chickpeas plant growth of water deficit-stressed.
International journal of biological macromolecules.
2024 Jun; 269(Pt 2):131906. doi:
10.1016/j.ijbiomac.2024.131906
. [PMID: 38679266] - Ezequiel Fernandez-Tschieder, John D Marshall, Dan Binkley. Carbon budget at the individual-tree scale: dominant Eucalyptus trees partition less carbon belowground.
The New phytologist.
2024 Jun; 242(5):1932-1943. doi:
10.1111/nph.19764
. [PMID: 38641865] - C-M Geilfus, C Zörb, J J Jones, M A Wimmer, S M Schmöckel. Water for agriculture: more crop per drop.
Plant biology (Stuttgart, Germany).
2024 Jun; 26(4):499-507. doi:
10.1111/plb.13652
. [PMID: 38773740] - Nienke Köllmann, Rozemarijn Vringer, Puneet Mishra, Lu Zhang, Atze Jan van der Goot. Near-infrared spectroscopy to quantify overall thermal process intensity during high-moisture extrusion of soy protein concentrate.
Food research international (Ottawa, Ont.).
2024 Jun; 186(?):114320. doi:
10.1016/j.foodres.2024.114320
. [PMID: 38729710] - Jake J Grossman, Henry B Coe, Olivia Fey, Natalie Fraser, Musa Salaam, Chelsea Semper, Ceci G Williamson. Temperate woody species across the angiosperm phylogeny acquire tolerance to water deficit stress during the growing season.
The New phytologist.
2024 Jun; 242(5):1981-1995. doi:
10.1111/nph.19692
. [PMID: 38511237] - Mengmeng Rui, Rongjia Chen, Yi Jing, Feibo Wu, Zhong-Hua Chen, David Tissue, Hangjin Jiang, Yizhou Wang. Guard cell and subsidiary cell sizes are key determinants for stomatal kinetics and drought adaptation in cereal crops.
The New phytologist.
2024 Jun; 242(6):2479-2494. doi:
10.1111/nph.19757
. [PMID: 38622763] - Marina Alves Aun, Fernanda Farnese, Lucas Loram-Lourenço, Igor Manoel Paulo Goulart de Abreu, Brenner Ryan Arantes Silva, Jober Condé Evangelista Freitas, Valdeir Martins Alves Filho, Fabiano Guimarães Silva, Augusto Cesar Franco, William M Hammond, Hervé Cochard, Paulo Eduardo Menezes-Silva. Evidence of combined flower thermal and drought vulnerabilities portends reproductive failure under hotter-drought conditions.
Plant, cell & environment.
2024 Jun; 47(6):1971-1986. doi:
10.1111/pce.14857
. [PMID: 38372066] - Xiaoya Sun, Qiqi Pan, Brad Hubley, Zhen Ye, Peng Zhang, Qiang Xie. Geomorphic impacts within Red River Fault and island shifting as witnessed by the phylogeography of the largest water strider.
Molecular phylogenetics and evolution.
2024 Jun; 195(?):108062. doi:
10.1016/j.ympev.2024.108062
. [PMID: 38485104] - Eva Morgner, Meisha Holloway-Phillips, David Basler, Daniel B Nelson, Ansgar Kahmen. Effects of increasing atmospheric CO2 on leaf water δ18O values are small and are attenuated in grasses and amplified in dicotyledonous herbs and legumes when transferred to cellulose δ18O values.
The New phytologist.
2024 Jun; 242(5):1944-1956. doi:
10.1111/nph.19713
. [PMID: 38575849] - Jie Luo, Siyao Feng, Mingpo Li, Yue He, Yuping Deng, Min Cao. Effect of magnetized water irrigation on Cd subcellular allocation and chemical forms in leaves of Festuca arundinacea during phytoremediation.
Ecotoxicology and environmental safety.
2024 Jun; 277(?):116376. doi:
10.1016/j.ecoenv.2024.116376
. [PMID: 38657453] - Christoph Bachofen, Shersingh Joseph Tumber-Dávila, D Scott Mackay, Nate G McDowell, Andrea Carminati, Tamir Klein, Benjamin D Stocker, Maurizio Mencuccini, Charlotte Grossiord. Tree water uptake patterns across the globe.
The New phytologist.
2024 Jun; 242(5):1891-1910. doi:
10.1111/nph.19762
. [PMID: 38649790] - Y Ke, Y-B Zhang, F-P Zhang, D Yang, Q Wang, X-R Peng, X-Y Huang, J Sher, J-L Zhang. Monocots and eudicots have more conservative flower water use strategies than basal angiosperms.
Plant biology (Stuttgart, Germany).
2024 Jun; 26(4):621-632. doi:
10.1111/plb.13637
. [PMID: 38477557] - Karima Meghar, Thierry Tran, Luis Fernando Delgado, Maria Alejandra Ospina, Jhon Larry Moreno, Jorge Luna, Luis Londoño, Dominique Dufour, Fabrice Davrieux. Hyperspectral imaging for the determination of relevant cooking quality traits of boiled cassava.
Journal of the science of food and agriculture.
2024 Jun; 104(8):4782-4792. doi:
10.1002/jsfa.12654
. [PMID: 37086039] - Wenchang Dong, Genxu Wang, Juying Sun, Li Guo, Ruiying Chang, Wenzhi Wang, Yukun Wang, Xiangyang Sun. Plant water source effects on plant-soil feedback for primary succession of terrestrial ecosystems in a glacier region in China.
The Science of the total environment.
2024 Jun; 927(?):172269. doi:
10.1016/j.scitotenv.2024.172269
. [PMID: 38583607] - A G West, K Atkins, J J van Blerk, R P Skelton. Assessing vulnerability to embolism and hydraulic safety margins in reed-like Restionaceae.
Plant biology (Stuttgart, Germany).
2024 Jun; 26(4):633-646. doi:
10.1111/plb.13644
. [PMID: 38588329] - Yujie Zhang, Yansen Xu, Jianghua Wu, Yuqing Zhou, Shiyun Xu, Zhaozhong Feng. Better estimation of evapotranspiration and transpiration using an improved modified Priestly-Taylor model based on a new parameter of leaf senescence in a rice field.
The Science of the total environment.
2024 Jun; 927(?):171842. doi:
10.1016/j.scitotenv.2024.171842
. [PMID: 38513864] - Cong Yin, Siyang Wu, Nan Yang, Tingyang Ai, Jiawei Wan, Qin Rui, Hong Liu, Hairong Xiong, Jiao Liu. Number of denatured rigor cross-bridges determines the intracellular volume shrinkage in porcine muscle fibre under PSE-inducing condition.
Meat science.
2024 Jun; 212(?):109473. doi:
10.1016/j.meatsci.2024.109473
. [PMID: 38422589] - Mandy L Slate, Anita Antoninka, Lydia Bailey, Monica B Berdugo, Des A Callaghan, Mariana Cárdenas, Matthew W Chmielewski, Nicole J Fenton, Hannah Holland-Moritz, Samantha Hopkins, Mélanie Jean, Bier Ekaphan Kraichak, Zoë Lindo, Amelia Merced, Tobi Oke, Daniel Stanton, Julia Stuart, Daniel Tucker, Kirsten K Coe. Impact of changing climate on bryophyte contributions to terrestrial water, carbon, and nitrogen cycles.
The New phytologist.
2024 Jun; 242(6):2411-2429. doi:
10.1111/nph.19772
. [PMID: 38659154] - Yating Li, Günter Hoch. The sensitivity of root water uptake to cold root temperature follows species-specific upper elevational distribution limits of temperate tree species.
Plant, cell & environment.
2024 Jun; 47(6):2192-2205. doi:
10.1111/pce.14874
. [PMID: 38481108] - Lei Zhang, Weisheng Lin, Jordi Sardans, Xiaoling Li, Dafeng Hui, Zhijie Yang, Haizhen Wang, Hao Lin, Yufang Wang, Jianfen Guo, Josep Peñuelas, Yusheng Yang. Soil warming-induced reduction in water content enhanced methane uptake at different soil depths in a subtropical forest.
The Science of the total environment.
2024 Jun; 927(?):171994. doi:
10.1016/j.scitotenv.2024.171994
. [PMID: 38561130] - Arihant Ahuja, Vibhore Kumar Rastogi. Physicochemical and thermal characterization of the edible shellac films incorporated with oleic acid to enhance flexibility, water barrier and retard aging.
International journal of biological macromolecules.
2024 Jun; 269(Pt 2):132136. doi:
10.1016/j.ijbiomac.2024.132136
. [PMID: 38718999] - Xiaomei Liu, Xueqing Xu, Rongnian Xu, Na Wang, Fenghong Yang, Cailing Yang, Yanrong Kong, M Iggy Litaor, Ziqiang Lei. Preparation and properties of a metal-organic frameworks polymer material based on Sa-son seed gum capable of simultaneously absorbing liquid water and water vapor.
International journal of biological macromolecules.
2024 Jun; 269(Pt 2):132158. doi:
10.1016/j.ijbiomac.2024.132158
. [PMID: 38718997] - Alex M Trevelin, Jonas O Vinhal, Laís N Viana, Tatiana D Saint'Pierre, Ricardo J Cassella. Disruption of a three-component solution as a novel strategy for Cu and Ni extraction from vegetable oils for their determination by GF AAS.
Food chemistry.
2024 Jun; 442(?):138492. doi:
10.1016/j.foodchem.2024.138492
. [PMID: 38245986] - Ekaterina Kravchenko, Trishia Liezl Dela Cruz, Svetlana Sushkova, Vishnu D Rajput. Effect of wood and peanut shell hydrochars on the desiccation cracking characteristics of clayey soils.
Chemosphere.
2024 Jun; 358(?):142134. doi:
10.1016/j.chemosphere.2024.142134
. [PMID: 38677609] - Syed Bilal Hussain, Joseph Stinziano, Myrtho O Pierre, Christopher Vincent. Accurate photosynthetic parameter estimation at low stomatal conductance: effects of cuticular conductance and instrumental noise.
Photosynthesis research.
2024 Jun; 160(2-3):111-124. doi:
10.1007/s11120-024-01092-8
. [PMID: 38700726] - Juan C Baca Cabrera, Regina T Hirl, Rudi Schäufele, Jianjun Zhu, Hai Tao Liu, Xiao Ying Gong, Jérôme Ogée, Hans Schnyder. Half of the 18O enrichment of leaf sucrose is conserved in leaf cellulose of a C3 grass across atmospheric humidity and CO2 levels.
Plant, cell & environment.
2024 Jun; 47(6):2274-2287. doi:
10.1111/pce.14881
. [PMID: 38488789] - Drishya Elizebath, Balaraman Vedhanarayanan, Angat Dhiman, Rakesh K Mishra, C N Ramachandran, Tsung-Wu Lin, Vakayil K Praveen. Spontaneous Curvature Induction in an Artificial Bilayer Membrane.
Angewandte Chemie (International ed. in English).
2024 May; 63(22):e202403900. doi:
10.1002/anie.202403900
. [PMID: 38459961] - Krzysztof Banaś, Anna Aksmann, Bartosz J Płachno, Małgorzata Kapusta, Paweł Marciniak, Rafał Ronowski. Individual architecture and photosynthetic performance of the submerged form of Drosera intermedia Hayne.
BMC plant biology.
2024 May; 24(1):449. doi:
10.1186/s12870-024-05155-9
. [PMID: 38783181] - Yi Lu, Zeliang Wu, Zhengxi Du, Xiaozhu Lin, Enwei Tian, Fujian Zhang, Zhi Chao. The anti-urolithiasis activity and safety of strangury-relieving herbs: A comparative study based on fruit fly kidney stone model.
Journal of ethnopharmacology.
2024 May; 326(?):117968. doi:
10.1016/j.jep.2024.117968
. [PMID: 38428655] - Wang Chenxing, Su Jie, Tian Yajuan, Li Ting, Zhong Yuying, Chen Suhong, Lv Guiyuan. The rhizomes of Atractylodes macrocephala Koidz improve gastrointestinal health and pregnancy outcomes in pregnant mice via modulating intestinal barrier and water-fluid metabolism.
Journal of ethnopharmacology.
2024 May; 326(?):117971. doi:
10.1016/j.jep.2024.117971
. [PMID: 38403003] - Suho Lee, Ji Hyun Bak, Yuno Lee, Dae-Woong Jeong, Jaehee Lee, KeunMin Ken Lee, Hasaeam Cho, Hyun Hwi Lee, Changbong Hyeon, Myung Chul Choi. Water Hydrogen-Bond Mediated Layer by Layer Alignment of Lipid Rafts as a Precursor of Intermembrane Processes.
Journal of the American Chemical Society.
2024 May; 146(20):13846-13853. doi:
10.1021/jacs.4c00544
. [PMID: 38652033] - Erich-Christian Oerke, Ulrike Steiner. Hyperspectral imaging reveals small-scale water gradients in apple leaves due to minimal cuticle perforation by Venturia inaequalis conidiophores.
Journal of experimental botany.
2024 May; 75(10):3125-3140. doi:
10.1093/jxb/erae065
. [PMID: 38386894] - Danyang Zhao, Huaxing Bi, Ning Wang, Zehui Liu, Guirong Hou, Jinghan Huang, Yilin Song. Does increasing forest age lead to greater trade-offs in ecosystem services? A study of a Robinia pseudoacacia artificial forest on the Loess Plateau, China.
The Science of the total environment.
2024 May; 926(?):171737. doi:
10.1016/j.scitotenv.2024.171737
. [PMID: 38508272] - Kundan Samal, Rajesh Roshan Dash. Experiments and modeling to develop a Pistia stratiotes based Floating Vegetated System (FVS) for the removal of heavy metals (Pb, Zn, Cr, Cu, Ni).
The Science of the total environment.
2024 May; 926(?):171981. doi:
10.1016/j.scitotenv.2024.171981
. [PMID: 38547997] - Guangqi Zhang, Claire Fortunel, Shan Niu, Juan Zuo, Jean-Luc Maeght, Xiaodong Yang, Shangwen Xia, Zhun Mao. Root topological order drives variation of fine root vessel traits and hydraulic strategies in tropical trees.
Journal of experimental botany.
2024 May; 75(10):2951-2964. doi:
10.1093/jxb/erae083
. [PMID: 38426564] - Alice Gauthey, Christoph Bachofen, Alana Chin, Hervé Cochard, Jonas Gisler, Eugénie Mas, Katrin Meusburger, Richard L Peters, Marcus Schaub, Alex Tunas, Roman Zweifel, Charlotte Grossiord. Twenty years of irrigation acclimation is driven by denser canopies and not by plasticity in twig- and needle-level hydraulics in a Pinus sylvestris forest.
Journal of experimental botany.
2024 May; 75(10):3141-3152. doi:
10.1093/jxb/erae066
. [PMID: 38375924] - Jun Tominaga, Yoshinobu Kawamitsu. Combined leaf gas-exchange system for model assessment.
Journal of experimental botany.
2024 May; 75(10):2982-2993. doi:
10.1093/jxb/erae081
. [PMID: 38426531] - Qijie Guan, Wenwen Kong, Bowen Tan, Wei Zhu, Tahmina Akter, Jing Li, Jingkui Tian, Sixue Chen. Multiomics unravels potential molecular switches in the C3 to CAM transition of Mesembryanthemum crystallinum.
Journal of proteomics.
2024 May; 299(?):105145. doi:
10.1016/j.jprot.2024.105145
. [PMID: 38431086] - Xingle Guo, Xiaojiao Zheng, Xu Guo, Junxue Wu, Xu Jing. Determination of chiral prothioconazole and its chiral metabolite in water, juice, tea, and vinegar using emulsive liquid-liquid microextraction combined with ultra-high performance liquid chromatography.
Food chemistry.
2024 May; 440(?):138314. doi:
10.1016/j.foodchem.2023.138314
. [PMID: 38160595] - Hanna Orlikowska-Rzeznik, Jan Versluis, Huib J Bakker, Lukasz Piatkowski. Cholesterol Changes Interfacial Water Alignment in Model Cell Membranes.
Journal of the American Chemical Society.
2024 May; 146(19):13151-13162. doi:
10.1021/jacs.4c00474
. [PMID: 38687869] - Ju Liu, Yanlei Wang, Bo Gao, Kun Zhang, Hui Li, Jing Ren, Feng Huo, Baofeng Zhao, Lihua Zhang, Suojiang Zhang, Hongyan He. Ionic Liquid Gating Induces Anomalous Permeation through Membrane Channel Proteins.
Journal of the American Chemical Society.
2024 May; 146(19):13588-13597. doi:
10.1021/jacs.4c03506
. [PMID: 38695646] - Kaili Gao, Tongying Liu, Qi Zhang, Yunpu Wang, Xiaoxiao Song, Xuan Luo, Roger Ruan, Le Deng, Xian Cui, Yuhuan Liu. Stabilization of emulsions prepared by ball milling and cellulase treated pomelo peel insoluble dietary fiber: Integrity of porous fiber structure dominates the stability.
Food chemistry.
2024 May; 440(?):138189. doi:
10.1016/j.foodchem.2023.138189
. [PMID: 38100965] - Francesco Spinozzi, Paolo Moretti, Diego Romano Perinelli, Giacomo Corucci, Paolo Piergiovanni, Heinz Amenitsch, Giulio Alfredo Sancini, Giancarlo Franzese, Paolo Blasi. Small-angle X-ray scattering unveils the internal structure of lipid nanoparticles.
Journal of colloid and interface science.
2024 May; 662(?):446-459. doi:
10.1016/j.jcis.2024.02.076
. [PMID: 38364470] - Xiu-Tong Ge, Jia-Hui Zhao, Wen-Jing Ren, Yue Zhou, Yang Chen, Shi-Ru Jiang, Tian-Zhu Jia, Hui Gao, Fan Zhang. Alkaloid uptake pathways in renal tubular epithelial cells from different processed products of Phellodendri chinensis Cortex.
Journal of pharmaceutical and biomedical analysis.
2024 May; 242(?):116014. doi:
10.1016/j.jpba.2024.116014
. [PMID: 38367517] - Jun-Jian Li, Li Li, Shan-Shan Su, Mei-Lan Liao, Qiu-Zi Gong, Mei Liu, Shan Jiang, Zai-Qi Zhang, Hua Zhou, Jian-Xin Liu. Anti-inflammatory properties and characterization of water extracts obtained from Callicarpa kwangtungensis Chun using in vitro and in vivo rat models.
Scientific reports.
2024 05; 14(1):11047. doi:
10.1038/s41598-024-61892-9
. [PMID: 38744989] - Teruko Kaneko, Nick Gould, David Campbell, Michael J Clearwater. Isohydric stomatal behaviour alters fruit vascular flows and minimizes fruit size reductions in drought-stressed 'Hass' avocado (Persea americana Mill.).
Annals of botany.
2024 May; 133(7):969-982. doi:
10.1093/aob/mcae024
. [PMID: 38366557] - Sankar Maity, Somdev Pahari, Santanu Santra, Madhurima Jana. Interfacial Glucose to Regulate Hydrated Lipid Bilayer Properties: Influence of Concentrations.
Journal of chemical information and modeling.
2024 May; 64(9):3841-3854. doi:
10.1021/acs.jcim.3c01991
. [PMID: 38635679] - Juan Gui, Zongxing Li, Fa Du, Xiaoyin Liu, Jian Xue. Vegetation restoration strategies based on plant water use patterns.
The Science of the total environment.
2024 May; 924(?):171611. doi:
10.1016/j.scitotenv.2024.171611
. [PMID: 38462013] - Ghulam Murtaza, Muhammad Usman, Javed Iqbal, Muhammad Nauman Tahir, Mohamed S Elshikh, Jawaher Alkahtani, Monika Toleikienė, Rashid Iqbal, M Irfan Akram, Nazim S Gruda. The impact of biochar addition on morpho-physiological characteristics, yield and water use efficiency of tomato plants under drought and salinity stress.
BMC plant biology.
2024 May; 24(1):356. doi:
10.1186/s12870-024-05058-9
. [PMID: 38724950] - Ju Liu, Jing Ren, Simin Li, Hongyan He, Yanlei Wang. Protein Interface Regulating the Inserting Process of Imidazole Ionic Liquids into the Cell Membrane.
The journal of physical chemistry. B.
2024 May; 128(18):4456-4463. doi:
10.1021/acs.jpcb.3c08451
. [PMID: 38691101] - Feifei Wang, Zhenxiang Zhou, Xiaohui Liu, Liang Zhu, Baojian Guo, Chao Lv, Juan Zhu, Zhong-Hua Chen, Rugen Xu. Transcriptome and metabolome analyses reveal molecular insights into waterlogging tolerance in Barley.
BMC plant biology.
2024 May; 24(1):385. doi:
10.1186/s12870-024-05091-8
. [PMID: 38724918] - Palash Mandal, David A Mortensen, André F Brito, Anna K Wallingford, Marta R M Lima, Nicholas D Warren, Richard G Smith. Water Stress Influences Phytoestrogen Levels in Red Clover (Trifolium pratense) but Not Kura Clover (T. ambiguum).
Journal of agricultural and food chemistry.
2024 May; 72(18):10247-10256. doi:
10.1021/acs.jafc.4c00300
. [PMID: 38683760] - Yuanyuan Fu, Penghui Li, Zhuanyun Si, Shoutian Ma, Yang Gao. Seeds Priming with Melatonin Improves Root Hydraulic Conductivity of Wheat Varieties under Drought, Salinity, and Combined Stress.
International journal of molecular sciences.
2024 May; 25(9):. doi:
10.3390/ijms25095055
. [PMID: 38732273] - Pierre-André Waite, Manish Kumar, Roman M Link, Bernhard Schuldt. Coordinated hydraulic traits influence the two phases of time to hydraulic failure in five temperate tree species differing in stomatal stringency.
Tree physiology.
2024 May; 44(5):. doi:
10.1093/treephys/tpae038
. [PMID: 38606678] - Yan Xiao, Da Yang, Shu-Bin Zhang, Yu-Xuan Mo, Yi-Yi Dong, Ke-Fei Wang, Ling-Yun He, Bing Dong, Gbadamassi G O Dossa, Jiao-Lin Zhang. Nitrogen-fixing and non-nitrogen-fixing legume plants differ in leaf nutrient concentrations and relationships between photosynthetic and hydraulic traits.
Tree physiology.
2024 May; 44(5):. doi:
10.1093/treephys/tpae048
. [PMID: 38691446] - Sharath S Paligi, Jens Lichter, Martyna Kotowska, Rebecca L Schwutke, Michela Audisio, Klara Mrak, Alice Penanhoat, Bernhard Schuldt, Dietrich Hertel, Christoph Leuschner. Water status dynamics and drought tolerance of juvenile European beech, Douglas fir and Norway spruce trees as dependent on neighborhood and nitrogen supply.
Tree physiology.
2024 May; 44(5):. doi:
10.1093/treephys/tpae044
. [PMID: 38662576]