alpha-Bergamotene (BioDeep_00000265868)

Main id: BioDeep_00000011543

 

PANOMIX_OTCML-2023


代谢物信息卡片


alpha-Bergamotene

化学式: C15H24 (204.1878)
中文名称: 阿尔法-佛手柑
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: CC1=CCC2CC1C2(C)CCC=C(C)C
InChI: InChI=1S/C15H24/c1-11(2)6-5-9-15(4)13-8-7-12(3)14(15)10-13/h6-7,13-14H,5,8-10H2,1-4H3

描述信息

A sesquiterpene consisting of a bicyclo[3.1.1]hept-2-ene skeleton substituted at positions 2 and 6 by methyl groups and at position 6 by a 4-methylpent-3-en-1-yl group.

同义名列表

3 个代谢物同义名

alpha-Bergamotene; alpha-Bergamotene; alpha-Bergamotene



数据库引用编号

9 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

57 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 10 ACE, ACE2, ALB, ARHGAP45, FDPS, MAPK14, MAPK8, PTGS2, RBMS3, RPIA
Peripheral membrane protein 1 PTGS2
Endosome membrane 1 ADRB2
Endoplasmic reticulum membrane 3 CYP19A1, HMGCR, PTGS2
Nucleus 6 ADRB2, ALB, MAPK14, MAPK8, PPARA, RBMS3
cytosol 7 ALB, ARHGAP45, FDPS, MAPK14, MAPK8, RBMS3, RPIA
centrosome 1 ALB
nucleoplasm 4 FDPS, MAPK14, MAPK8, PPARA
Cell membrane 4 ACE, ACE2, ADRB2, TNF
ruffle membrane 1 ARHGAP45
Multi-pass membrane protein 4 ADRB2, CYP19A1, HMGCR, KCNA3
Synapse 1 MAPK8
cell surface 2 ACE2, TNF
glutamatergic synapse 2 KCNA3, MAPK14
Golgi apparatus 3 ADRB2, ALB, ATRN
Golgi membrane 1 INS
neuronal cell body 1 TNF
presynaptic membrane 1 KCNA3
Lysosome 2 ACE, ADRB2
endosome 2 ACE, ADRB2
plasma membrane 7 ACE, ACE2, ADRB2, ARHGAP45, ATRN, KCNA3, TNF
Membrane 9 ACE, ACE2, ADRB2, ARHGAP45, CYP19A1, FDPS, HMGCR, KCNA3, RPIA
apical plasma membrane 2 ACE2, ADRB2
axon 2 KCNA3, MAPK8
caveola 1 PTGS2
extracellular exosome 4 ACE, ACE2, ALB, ATRN
endoplasmic reticulum 4 ALB, CYP19A1, HMGCR, PTGS2
extracellular space 7 ACE, ACE2, ALB, ATRN, CTRL, INS, TNF
perinuclear region of cytoplasm 1 KCNA3
mitochondrion 2 MAPK14, RPIA
protein-containing complex 2 ALB, PTGS2
Microsome membrane 2 CYP19A1, PTGS2
Single-pass type I membrane protein 3 ACE, ACE2, ATRN
Secreted 4 ACE, ACE2, ALB, INS
extracellular region 8 ACE, ACE2, ALB, ARHGAP45, DNAH9, INS, MAPK14, TNF
[Isoform 2]: Secreted 1 ATRN
mitochondrial matrix 1 FDPS
anchoring junction 1 ALB
Cell projection, cilium 1 ACE2
motile cilium 1 DNAH9
external side of plasma membrane 2 ACE, TNF
Early endosome 1 ADRB2
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
postsynaptic membrane 1 KCNA3
Apical cell membrane 1 ACE2
Cell projection, ruffle membrane 1 ARHGAP45
Membrane raft 3 ACE2, KCNA3, TNF
microtubule 1 DNAH9
Peroxisome 1 FDPS
peroxisomal membrane 1 HMGCR
axoneme 1 DNAH9
nuclear speck 1 MAPK14
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
receptor complex 1 ADRB2
neuron projection 1 PTGS2
ciliary basal body 1 ALB
cilium 1 ACE2
chromatin 1 PPARA
phagocytic cup 1 TNF
centriole 1 ALB
brush border membrane 2 ACE, ACE2
spindle pole 2 ALB, MAPK14
blood microparticle 1 ALB
Cytoplasm, cytoskeleton, cilium axoneme 1 DNAH9
sperm midpiece 1 ACE
[Isoform 2]: Cell membrane 1 KCNA3
[Isoform 3]: Secreted 1 ATRN
endosome lumen 1 INS
Peroxisome membrane 1 HMGCR
basal plasma membrane 1 ACE
voltage-gated potassium channel complex 1 KCNA3
ficolin-1-rich granule lumen 1 MAPK14
secretory granule lumen 3 ARHGAP45, INS, MAPK14
Golgi lumen 1 INS
endoplasmic reticulum lumen 4 ACE2, ALB, INS, PTGS2
platelet alpha granule lumen 1 ALB
endocytic vesicle membrane 1 ACE2
transport vesicle 1 INS
azurophil granule lumen 1 ARHGAP45
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
neuronal dense core vesicle 1 ADRB2
9+2 motile cilium 1 DNAH9
dynein complex 1 DNAH9
calyx of Held 1 KCNA3
clathrin-coated endocytic vesicle membrane 1 ADRB2
ribonucleoprotein complex 1 RBMS3
basal dendrite 1 MAPK8
[Isoform 1]: Cell membrane 2 ATRN, KCNA3
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
[Angiotensin-converting enzyme, soluble form]: Secreted 1 ACE
[Isoform Testis-specific]: Cell membrane 1 ACE
[Isoform 3]: Cytoplasm, perinuclear region 1 KCNA3
ciliary transition fiber 1 ALB
outer dynein arm 1 DNAH9
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF
[Processed angiotensin-converting enzyme 2]: Secreted 1 ACE2
[Isoform 2]: Apical cell membrane 1 ACE2
distal portion of axoneme 1 DNAH9


文献列表

  • Jessica P Yactayo-Chang, Jorrel Mendoza, Steven D Willms, Caitlin C Rering, John J Beck, Anna K Block. Zea mays Volatiles that Influence Oviposition and Feeding Behaviors of Spodoptera frugiperda. Journal of chemical ecology. 2021 Sep; 47(8-9):799-809. doi: 10.1007/s10886-021-01302-w. [PMID: 34347233]
  • Dayna Filocreão Malheiros, Icaro Rodrigues Sarquis, Irlon Maciel Ferreira, Patrick Delgado Mathews, Omar Mertins, Marcos Tavares-Dias. Nanoemulsions with oleoresin of Copaifera reticulata (Leguminosae) improve anthelmintic efficacy in the control of monogenean parasites when compared to oleoresin without nanoformulation. Journal of fish diseases. 2020 Jun; 43(6):687-695. doi: 10.1111/jfd.13168. [PMID: 32315094]
  • Ekaterina Jeliazkova, Valtcho D Zheljazkov, Miroslava Kačániova, Tess Astatkie, Babu L Tekwani. Sequential Elution of Essential Oil Constituents during Steam Distillation of Hops (Humulus lupulus L.) and Influence on Oil Yield and Antimicrobial Activity. Journal of oleo science. 2018 Jul; 67(7):871-883. doi: 10.5650/jos.ess17216. [PMID: 29877222]
  • Babak Abdollahi Mandoulakani, Elham Eyvazpour, Morteza Ghadimzadeh. The effect of drought stress on the expression of key genes involved in the biosynthesis of phenylpropanoids and essential oil components in basil (Ocimum basilicum L.). Phytochemistry. 2017 Jul; 139(?):1-7. doi: 10.1016/j.phytochem.2017.03.006. [PMID: 28366608]
  • Jeffrey A Riffell. Plant Defense: Timing Is Everything. Current biology : CB. 2017 05; 27(9):R344-R346. doi: 10.1016/j.cub.2017.03.062. [PMID: 28486117]
  • Wenwu Zhou, Anke Kügler, Erica McGale, Alexander Haverkamp, Markus Knaden, Han Guo, Franziska Beran, Felipe Yon, Ran Li, Nathalie Lackus, Tobias G Köllner, Julia Bing, Meredith C Schuman, Bill S Hansson, Danny Kessler, Ian T Baldwin, Shuqing Xu. Tissue-Specific Emission of (E)-α-Bergamotene Helps Resolve the Dilemma When Pollinators Are Also Herbivores. Current biology : CB. 2017 May; 27(9):1336-1341. doi: 10.1016/j.cub.2017.03.017. [PMID: 28434859]
  • Danae Kala Rodríguez Bardají, Jonas Joaquim Mangabeira da Silva, Thamires Chiquini Bianchi, Daniele de Souza Eugênio, Pollyanna Francielli de Oliveira, Luís Fernando Leandro, Hervé Louis Ghislain Rogez, Rodrigo Cassio Sola Venezianni, Sergio Ricardo Ambrosio, Denise Crispim Tavares, Jairo Kenupp Bastos, Carlos Henrique G Martins. Copaifera reticulata oleoresin: Chemical characterization and antibacterial properties against oral pathogens. Anaerobe. 2016 Aug; 40(?):18-27. doi: 10.1016/j.anaerobe.2016.04.017. [PMID: 27118478]
  • Nurmi Pangesti, Berhane T Weldegergis, Benjamin Langendorf, Joop J A van Loon, Marcel Dicke, Ana Pineda. Rhizobacterial colonization of roots modulates plant volatile emission and enhances the attraction of a parasitoid wasp to host-infested plants. Oecologia. 2015 Aug; 178(4):1169-80. doi: 10.1007/s00442-015-3277-7. [PMID: 25783487]
  • Evan C Palmer-Young, Daniel Veit, Jonathan Gershenzon, Meredith C Schuman. The Sesquiterpenes(E)-ß-Farnesene and (E)-α-Bergamotene Quench Ozone but Fail to Protect the Wild Tobacco Nicotiana attenuata from Ozone, UVB, and Drought Stresses. PloS one. 2015; 10(6):e0127296. doi: 10.1371/journal.pone.0127296. [PMID: 26030663]
  • Sanja Ćavar Zeljković, Marija Edita Šolić, Milka Maksimović. Volatiles of Helichrysum italicum (Roth) G. Don from Croatia. Natural product research. 2015; 29(19):1874-7. doi: 10.1080/14786419.2015.1009458. [PMID: 25675145]
  • Yuechong Yue, Rangcai Yu, Yanping Fan. Characterization of two monoterpene synthases involved in floral scent formation in Hedychium coronarium. Planta. 2014 Oct; 240(4):745-62. doi: 10.1007/s00425-014-2127-x. [PMID: 25056927]
  • Xiaofeng Zhuang, Tobias G Köllner, Nan Zhao, Guanglin Li, Yifan Jiang, Liucun Zhu, Jianxin Ma, Jörg Degenhardt, Feng Chen. Dynamic evolution of herbivore-induced sesquiterpene biosynthesis in sorghum and related grass crops. The Plant journal : for cell and molecular biology. 2012 Jan; 69(1):70-80. doi: 10.1111/j.1365-313x.2011.04771.x. [PMID: 21880075]
  • F B C Okoye, P O Osadebe, C S Nworu, N N Okoye, E O Omeje, C O Esimone. Topical anti-inflammatory constituents of lipophilic leaf fractions of Alchornea floribunda and Alchornea cordifolia. Natural product research. 2011 Dec; 25(20):1941-9. doi: 10.1080/14786419.2010.512272. [PMID: 21707250]
  • Cristina Herrero-Jáuregui, Miguel A Casado, Maria das Graças Bichara Zoghbi, Regina Célia Martins-da-Silva. Chemical variability of Copaifera reticulata Ducke oleoresin. Chemistry & biodiversity. 2011 Apr; 8(4):674-85. doi: 10.1002/cbdv.201000258. [PMID: 21480513]
  • S Mabrouk, A Elaissi, H Ben Jannet, F Harzallah-Skhiri. Chemical composition of essential oils from leaves, stems, flower heads and roots of Conyza bonariensis L. from Tunisia. Natural product research. 2011 Jan; 25(1):77-84. doi: 10.1080/14786419.2010.513685. [PMID: 21240765]
  • Ping-Chuan Jiang, Jun Zhou, Bin Cao, Gui-Ning Wei, Kai-Jia He, Bu-Ming Liu. [Study on the volatile oil of Murraya exotica]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 2009 Aug; 32(8):1224-7. doi: . [PMID: 19960942]
  • Tobias G Köllner, Jonathan Gershenzon, Jörg Degenhardt. Molecular and biochemical evolution of maize terpene synthase 10, an enzyme of indirect defense. Phytochemistry. 2009 Jun; 70(9):1139-1145. doi: 10.1016/j.phytochem.2009.06.011. [PMID: 19646721]
  • Amy Roda, Rayko Halitschke, Anke Steppuhn, Ian T Baldwin. Individual variability in herbivore-specific elicitors from the plant's perspective. Molecular ecology. 2004 Aug; 13(8):2421-33. doi: 10.1111/j.1365-294x.2004.02260.x. [PMID: 15245414]
  • André Kessler, Rayko Halitschke, Ian T Baldwin. Silencing the jasmonate cascade: induced plant defenses and insect populations. Science (New York, N.Y.). 2004 Jul; 305(5684):665-8. doi: 10.1126/science.1096931. [PMID: 15232071]
  • Yonggen Lou, Ian T Baldwin. Nitrogen supply influences herbivore-induced direct and indirect defenses and transcriptional responses in Nicotiana attenuata. Plant physiology. 2004 May; 135(1):496-506. doi: 10.1104/pp.104.040360. [PMID: 15133153]
  • E A Schmelz, H T Alborn, J H Tumlinson. The influence of intact-plant and excised-leaf bioassay designs on volicitin- and jasmonic acid-induced sesquiterpene volatile release in Zea mays. Planta. 2001 Dec; 214(2):171-9. doi: 10.1007/s004250100603. [PMID: 11800380]
  • A Kessler, I T Baldwin. Defensive function of herbivore-induced plant volatile emissions in nature. Science (New York, N.Y.). 2001 Mar; 291(5511):2141-4. doi: 10.1126/science.291.5511.2141. [PMID: 11251117]
  • R Halitschke, U Schittko, G Pohnert, W Boland, I T Baldwin. Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata. III. Fatty acid-amino acid conjugates in herbivore oral secretions are necessary and sufficient for herbivore-specific plant responses. Plant physiology. 2001 Feb; 125(2):711-7. doi: 10.1104/pp.125.2.711. [PMID: 11161028]
  • . . . . doi: . [PMID: 16418295]