NCBI Taxonomy: 402568

Guatteria blepharophylla (ncbi_taxid: 402568)

found 70 associated metabolites at species taxonomy rank level.

Ancestor: Guatteria

Child Taxonomies: none taxonomy data.

Stigmasterol

(3S,8S,9S,10R,13R,14S,17R)-17-((2R,5S,E)-5-ethyl-6-methylhept-3-en-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H48O (412.3705)


Stigmasterol is a phytosterol, meaning it is steroid derived from plants. As a food additive, phytosterols have cholesterol-lowering properties (reducing cholesterol absorption in intestines), and may act in cancer prevention. Phytosterols naturally occur in small amount in vegetable oils, especially soybean oil. One such phytosterol complex, isolated from vegetable oil, is cholestatin, composed of campesterol, stigmasterol, and brassicasterol, and is marketed as a dietary supplement. Sterols can reduce cholesterol in human subjects by up to 15\\%. The mechanism behind phytosterols and the lowering of cholesterol occurs as follows : the incorporation of cholesterol into micelles in the gastrointestinal tract is inhibited, decreasing the overall amount of cholesterol absorbed. This may in turn help to control body total cholesterol levels, as well as modify HDL, LDL and TAG levels. Many margarines, butters, breakfast cereals and spreads are now enriched with phytosterols and marketed towards people with high cholesterol and a wish to lower it. Stigmasterol is found to be associated with phytosterolemia, which is an inborn error of metabolism. Stigmasterol is a 3beta-sterol that consists of 3beta-hydroxystigmastane having double bonds at the 5,6- and 22,23-positions. It has a role as a plant metabolite. It is a 3beta-sterol, a stigmastane sterol, a 3beta-hydroxy-Delta(5)-steroid and a member of phytosterols. It derives from a hydride of a stigmastane. Stigmasterol is a natural product found in Ficus auriculata, Xylopia aromatica, and other organisms with data available. Stigmasterol is a steroid derivative characterized by the hydroxyl group in position C-3 of the steroid skeleton, and unsaturated bonds in position 5-6 of the B ring, and position 22-23 in the alkyl substituent. Stigmasterol is found in the fats and oils of soybean, calabar bean and rape seed, as well as several other vegetables, legumes, nuts, seeds, and unpasteurized milk. See also: Comfrey Root (part of); Saw Palmetto (part of); Plantago ovata seed (part of). Stigmasterol is an unsaturated plant sterol occurring in the plant fats or oils of soybean, calabar bean, and rape seed, and in a number of medicinal herbs, including the Chinese herbs Ophiopogon japonicus (Mai men dong) and American Ginseng. Stigmasterol is also found in various vegetables, legumes, nuts, seeds, and unpasteurized milk. A 3beta-sterol that consists of 3beta-hydroxystigmastane having double bonds at the 5,6- and 22,23-positions. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol

   

beta-Sitosterol

(3S,8S,9S,10R,13R,14S,17R)-17-((2R,5R)-5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.3861)


beta-Sitosterol, a main dietary phytosterol found in plants, may have the potential for prevention and therapy for human cancer. Phytosterols are plant sterols found in foods such as oils, nuts, and vegetables. Phytosterols, in the same way as cholesterol, contain a double bond and are susceptible to oxidation, and are characterized by anti-carcinogenic and anti-atherogenic properties (PMID:13129445, 11432711). beta-Sitosterol is a phytopharmacological extract containing a mixture of phytosterols, with smaller amounts of other sterols, bonded with glucosides. These phytosterols are commonly derived from the South African star grass, Hypoxis rooperi, or from species of Pinus and Picea. The purported active constituent is termed beta-sitosterol. Additionally, the quantity of beta-sitosterol-beta-D-glucoside is often reported. Although the exact mechanism of action of beta-sitosterols is unknown, it may be related to cholesterol metabolism or anti-inflammatory effects (via interference with prostaglandin metabolism). Compared with placebo, beta-sitosterol improved urinary symptom scores and flow measures (PMID:10368239). A plant food-based diet modifies the serum beta-sitosterol concentration in hyperandrogenic postmenopausal women. This finding indicates that beta-sitosterol can be used as a biomarker of exposure in observational studies or as a compliance indicator in dietary intervention studies of cancer prevention (PMID:14652381). beta-Sitosterol induces apoptosis and activates key caspases in MDA-MB-231 human breast cancer cells (PMID:12579296). Sitosterol is a member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. It has a role as a sterol methyltransferase inhibitor, an anticholesteremic drug, an antioxidant, a plant metabolite and a mouse metabolite. It is a 3beta-sterol, a stigmastane sterol, a 3beta-hydroxy-Delta(5)-steroid, a C29-steroid and a member of phytosterols. It derives from a hydride of a stigmastane. Active fraction of Solanum trilobatum; reduces side-effects of radiation-induced toxicity. Beta-Sitosterol is a natural product found in Elodea canadensis, Ophiopogon intermedius, and other organisms with data available. beta-Sitosterol is one of several phytosterols (plant sterols) with chemical structures similar to that of cholesterol. Sitosterols are white, waxy powders with a characteristic odor. They are hydrophobic and soluble in alcohols. beta-Sitosterol is found in many foods, some of which are ginseng, globe artichoke, sesbania flower, and common oregano. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

beta-Elemene

(1S,2S,4R)-1-ethenyl-1-methyl-2,4-bis(prop-1-en-2-yl)cyclohexane

C15H24 (204.1878)


(-)-beta-elemene is the (-)-enantiomer of beta-elemene that has (1S,2S,4R)-configuration. It has a role as an antineoplastic agent. beta-Elemene is a natural product found in Xylopia sericea, Eupatorium cannabinum, and other organisms with data available. Beta-elemene is one of the isomers of elemene, a lipid soluble sesquiterpene and the active component isolated from the Chinese medicinal herb Rhizoma zedoariae with potential antineoplastic and chemopreventive activities. Although the exact mechanism of action through which beta-elemene exerts its effect has yet to be fully elucidated, this agent appears to induce apoptosis through different mechanisms of action and induces cell cycle arrest at different stages based on the tumor cell type involved. Beta-elemene may sensitize cancer cells to other chemotherapeutic agents. See also: Cannabis sativa subsp. indica top (part of). Beta-elemene, also known as B-elemen or 2,4-diisopropenyl-1-methyl-1-vinylcyclohexane, is a member of the class of compounds known as elemane sesquiterpenoids. Elemane sesquiterpenoids are sesquiterpenoids with a structure based on the elemane skeleton. Elemane is a monocyclic compound consisting of a cyclohexane ring substituted with a methyl group, an ethyl group, and two 1-methylethyl groups at the 1-, 1-, 2-, and 4-position, respectively. Beta-elemene is a fresh, herbal, and waxy tasting compound and can be found in a number of food items such as lovage, anise, spearmint, and orange mint, which makes beta-elemene a potential biomarker for the consumption of these food products. Beta-elemene can be found primarily in saliva. beta-Elemene belongs to the class of organic compounds known as elemane sesquiterpenoids. These are sesquiterpenoids with a structure based on the elemane skeleton. Elemane is a monocyclic compound consisting of a cyclohexane ring substituted with a methyl group, an ethyl group, and two 1-methylethyl groups at the 1-, 1-, 2-, and 4-position, respectively. beta-Elemene can be found in herbs, spices, and root vegetables, which makes beta-elemene a potential biomarker for the consumption of these food products. It is a constituent of sweet flag, juniper oils, and Mentha species. β-Elemene ((-)-β-Elemene; Levo-β-elemene) is isolated from natural plant Curcuma aromatica with an antitumor activity. β-Elemene can induce cell apoptosis. β-Elemene ((-)-β-Elemene; Levo-β-elemene) is isolated from natural plant Curcuma aromatica with an antitumor activity. β-Elemene can induce cell apoptosis.

   

Liriodenine

3,5-dioxa-11-azapentacyclo[10.7.1.0^{2,6.0^{8,20.0^{14,19]icosa-1(20),2(6),7,9,11,14,16,18-octaen-13-one

C17H9NO3 (275.0582)


Liriodenine is an oxoaporphine alkaloid that is 4,5,6,6a-tetradehydronoraporphin-7-one substituted by a methylenedioxy group across positions 1 and 2. It is isolated from Annona glabra and has been shown to exhibit antimicrobial and cytotoxic activities. It has a role as a metabolite, an antineoplastic agent, an antimicrobial agent, an EC 3.1.1.7 (acetylcholinesterase) inhibitor, an EC 3.2.1.20 (alpha-glucosidase) inhibitor and an antifungal agent. It is a cyclic ketone, an oxacycle, an organic heteropentacyclic compound, an alkaloid antibiotic and an oxoaporphine alkaloid. It is functionally related to an aporphine. Liriodenine is a natural product found in Magnolia mexicana, Annona purpurea, and other organisms with data available. Liriodenine, also known as oxoushinsunine or micheline b, is a member of the class of compounds known as aporphines. Aporphines are quinoline alkaloids containing the dibenzo[de,g]quinoline ring system or a dehydrogenated derivative thereof. Liriodenine is practically insoluble (in water) and a strong basic compound (based on its pKa). Liriodenine can be found in cherimoya and custard apple, which makes liriodenine a potential biomarker for the consumption of these food products. Liriodenine is a bio-active isolate of the Chinese medicinal herb Zanthoxylum nitidum .

   

Caryophyllene alpha-oxide

[1R-(1R*,4R*,6R*,10S*)]- Caryophylene oxide Caryophyllene epoxide Caryophyllene oxyde Epoxycaryophyllene [1R-(1R*,4R*,6R*,10S*)]-4,12,12-trimethyl-9-methylene-5-oxatricyclo[8.2.0.04,6]dodecane <>-Caryophyllene epoxide <>-Caryophyllene oxide

C15H24O (220.1827)


Caryophyllene oxide is an epoxide. It has a role as a metabolite. Caryophyllene oxide is a natural product found in Xylopia emarginata, Eupatorium altissimum, and other organisms with data available. See also: Cannabis sativa subsp. indica top (part of). Caryophyllene alpha-oxide is a minor produced of epoxidn. of KGV69-V. Minor production of epoxidn. of KGV69-V Caryophyllene oxide, isolated from from Hymenaea courbaril, possesses analgesic and anti-inflammatory activity[1]. Caryophyllene oxide, isolated from from Hymenaea courbaril, possesses analgesic and anti-inflammatory activity[1].

   

Copaene

TRICYCLO(4.4.0.02,7)DEC-3-ENE, 1,3-DIMETHYL-8-(1-METHYLETHYL)-, (1R,2S,6S,7S,8S)-

C15H24 (204.1878)


alpha-Copaene, also known as aglaiene, belongs to the class of organic compounds known as sesquiterpenoids. These are terpenes with three consecutive isoprene units. alpha-Copaene is possibly neutral. alpha-Copaene is a spice and woody tasting compound that can be found in several food items such as lime, mandarin orange (clementine, tangerine), safflower, and summer savoury, which makes alpha-copaene a potential biomarker for the consumption of these food products. alpha-Copaene can be found in feces and saliva. Alpha-copaene, also known as copaene, is a member of the class of compounds known as sesquiterpenoids. Sesquiterpenoids are terpenes with three consecutive isoprene units. Alpha-copaene is a spice and woody tasting compound and can be found in a number of food items such as lime, mandarin orange (clementine, tangerine), safflower, and summer savory, which makes alpha-copaene a potential biomarker for the consumption of these food products. Alpha-copaene can be found primarily in feces and saliva. 8-Isopropyl-1,3-dimethyltricyclo(4.4.0.02,7)dec-3-ene is a natural product found in Pinus sylvestris var. hamata, Asarum gusk, and other organisms with data available.

   

Epicubenol

4,7-dimethyl-1-(propan-2-yl)-1,2,3,4,4a,5,6,8a-octahydronaphthalen-4a-ol

C15H26O (222.1984)


1alpha-4-Cadinen-1-ol is found in cloves. 1alpha-4-Cadinen-1-ol is a constituent of oil of cubeb pepper (Piper cubeba). Constituent of cubeb pepper (Piper cubeba) oil. Epicubenol is found in herbs and spices.

   

beta-Caryophyllene

trans-(1R,9S)-4,11,11-Trimethyl-8-methylenebicyclo[7.2.0]undec-4-ene

C15H24 (204.1878)


beta-Caryophyllene, also known as caryophyllene or (−)-β-caryophyllene, is a natural bicyclic sesquiterpene that is a constituent of many essential oils including that of Syzygium aromaticum (cloves), Cannabis sativa, rosemary, and hops. It is usually found as a mixture with isocaryophyllene (the cis double bond isomer) and α-humulene (obsolete name: α-caryophyllene), a ring-opened isomer. beta-Caryophyllene is notable for having both a cyclobutane ring and a trans-double bond in a nine-membered ring, both rarities in nature (Wikipedia). beta-Caryophyllene is a sweet and dry tasting compound that can be found in a number of food items such as allspice, fig, pot marjoram, and roman camomile, which makes beta-caryophyllene a potential biomarker for the consumption of these food products. beta-Caryophyllene can be found in feces and saliva. (-)-Caryophyllene. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=87-44-5 (retrieved 2024-08-07) (CAS RN: 87-44-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). β-Caryophyllene is a CB2 receptor agonist. β-Caryophyllene is a CB2 receptor agonist.

   

beta-Selinene

(+)-beta-selinene;(4aR,7R,8aS)-7-isopropenyl-4a-methyl-1-methylenedecahydronaphthalene;[4aR-(4aalpha,7alpha,8abeta)]-decahydro-4a-methyl-1-methylene-7-(1-methylethenyl)-naphthalene

C15H24 (204.1878)


Constituent of celery oiland is) also from Cyperus rotundus (nutgrass) and Humulus lupulus (hops). beta-Selinene is found in many foods, some of which are safflower, star anise, chinese cinnamon, and allspice. beta-Selinene is found in alcoholic beverages. beta-Selinene is a constituent of celery oil. Also from Cyperus rotundus (nutgrass) and Humulus lupulus (hops)

   

Germacrene D

(1E,6E,8S)-1-methyl-8-(1-methylethyl)-5-methylidenecyclodeca-1,6-diene

C15H24 (204.1878)


Germacrene d, also known as germacrene d, (s-(e,e))-isomer, is a member of the class of compounds known as germacrane sesquiterpenoids. Germacrane sesquiterpenoids are sesquiterpenoids having the germacrane skeleton, with a structure characterized by a cyclodecane ring substituted with an isopropyl and two methyl groups. Germacrene d can be found in a number of food items such as peppermint, roman camomile, hyssop, and common walnut, which makes germacrene d a potential biomarker for the consumption of these food products.

   

beta-Bisabolene

(-)-beta-bisabolene;(S)-(-)-6-methyl-2-(4-methyl-3-cyclohexen-1-yl)-1,5-heptadiene;(S)-1-methyl-4-(5-methyl-1-methylene-4-hexenyl)cyclohexene

C15H24 (204.1878)


S-beta-Bisabolene is found in anise. S-beta-Bisabolene is a constituent of the essential oils of bergamot, lemon and wild carrot Flavouring ingredient used singly or as mixed isomers. Component of FEMA 3331. See also 2,7,10-Bisabolatriene JHG85-W β-Bisabolene is a?sesquiterpene isolated from?opoponax (Commiphora guidotti). β-Bisabolene, an anti-cancer agent, can be used for the study of breast cancer[1]. β-Bisabolene is a?sesquiterpene isolated from?opoponax (Commiphora guidotti). β-Bisabolene, an anti-cancer agent, can be used for the study of breast cancer[1].

   

alpha-Bergamotene

(1R,5R)-2,6-dimethyl-6-(4-methylpent-3-en-1-yl)bicyclo[3.1.1]hept-2-ene

C15H24 (204.1878)


Constituent of oils of carrot (Daucus carota), bergamot (Citrus bergamia), also lime (Citrus aurantifolia), citron (Citrus medica) and cottonseed oil (Gossypium hirsutum). alpha-Bergamotene is found in many foods, some of which are fats and oils, sweet basil, sweet orange, and lemon. alpha-Bergamotene is found in carrot. alpha-Bergamotene is a constituent of oils of carrot (Daucus carota), bergamot (Citrus bergamia), also lime (Citrus aurantifolia), citron (Citrus medica) and cottonseed oil (Gossypium hirsutum).

   

Cubebanol

(1R,4S,6R,7S,10R)-4,10-dimethyl-7-propan-2-yltricyclo[4.4.0.01,5]decan-4-ol

C15H26O (222.1984)


   

gamma-Curcumene

.delta.-bisabolene

C15H24 (204.1878)


A sesquiterpene that is cyclohexa-1,3-diene which is substituted by a methyl group at position 1 and a 6-methylhept-5-en-2-yl group at position 4 (the R enantiomer).

   

beta-Copaene

(1S,6S,7S,8S)-1-methyl-3-methylidene-8-(propan-2-yl)tricyclo[4.4.0.0²,⁷]decane

C15H24 (204.1878)


Beta-copaene, also known as beta-copaene, is a member of the class of compounds known as sesquiterpenoids. Sesquiterpenoids are terpenes with three consecutive isoprene units. Beta-copaene can be found in a number of food items such as peppermint, common sage, corn, and star anise, which makes beta-copaene a potential biomarker for the consumption of these food products. Copaene, or more precisely, alpha-copaene, is the common (or trivial) chemical name of an oily Liquid hydrocarbon that is found in a number of essential oil-producing plants. The name is derived from that of the resin-producing tropical copaiba tree, Copaifera langsdorfii, from which the compound was first isolated in 1914. Its structure, including the chirality, was determined in 1963. The double-bond isomer with an exocyclic-methylene group, beta-copaene, was first reported in 1967 . Beta-copaene, also known as β-copaene, is a member of the class of compounds known as sesquiterpenoids. Sesquiterpenoids are terpenes with three consecutive isoprene units. Beta-copaene can be found in a number of food items such as peppermint, common sage, corn, and star anise, which makes beta-copaene a potential biomarker for the consumption of these food products. Copaene, or more precisely, α-copaene, is the common (or trivial) chemical name of an oily liquid hydrocarbon that is found in a number of essential oil-producing plants. The name is derived from that of the resin-producing tropical copaiba tree, Copaifera langsdorfii, from which the compound was first isolated in 1914. Its structure, including the chirality, was determined in 1963. The double-bond isomer with an exocyclic-methylene group, β-copaene, was first reported in 1967 .

   

Spathulenol

1H-Cycloprop(e)azulen-7-ol, decahydro-1,1,7-trimethyl-4-methylene-, (1aR-(1aalpha,4aalpha,7beta,7abeta,7balpha))-

C15H24O (220.1827)


Spathulenol is a tricyclic sesquiterpenoid that is 4-methylidenedecahydro-1H-cyclopropa[e]azulene carrying three methyl substituents at positions 1, 1 and 7 as well as a hydroxy substituent at position 7. It has a role as a volatile oil component, a plant metabolite, an anaesthetic and a vasodilator agent. It is a sesquiterpenoid, a carbotricyclic compound, a tertiary alcohol and an olefinic compound. Spathulenol is a natural product found in Xylopia aromatica, Xylopia emarginata, and other organisms with data available. See also: Chamomile (part of). A tricyclic sesquiterpenoid that is 4-methylidenedecahydro-1H-cyclopropa[e]azulene carrying three methyl substituents at positions 1, 1 and 7 as well as a hydroxy substituent at position 7. Spathulenol is found in alcoholic beverages. Spathulenol is a constituent of Salvia sclarea (clary sage).

   

gamma-Muurolene

(1R,4aR,8aS)-7-methyl-4-methylidene-1-(propan-2-yl)-1,2,3,4,4a,5,6,8a-octahydronaphthalene

C15H24 (204.1878)


gamma-Muurolene is found in carrot. gamma-Muurolene is a constituent of Pinus sylvestris (Scotch pine).

   

beta-Bourbonene

Cyclobuta[1,2:3,4]dicyclopentene,decahydro-3a-methyl-6-methylene-1-(1-methylethyl)-, (1S,3aS,3bR,6aS,6bR)-

C15H24 (204.1878)


beta-Bourbonene is found in cloves. beta-Bourbonene is a flavouring agent.

   

delta-Amorphene

4,7-Dimethyl-1-(propan-2-yl)-1,2,3,5,6,8a-hexahydronaphthalene

C15H24 (204.1878)


1(10),4-Cadinadiene is a cadinene (FDB009046) of the delta-serie [FooDB]. A cadinene (FDB009046) of the delta-serie [FooDB]

   

Germacrene B

(1Z,5Z)-1,5-dimethyl-8-(propan-2-ylidene)cyclodeca-1,5-diene

C15H24 (204.1878)


Constituent of the peel oil of yuzu Citrus junos. Germacrene B is found in many foods, some of which are pepper (spice), lime, citrus, and common oregano. Germacrene B is found in citrus. Germacrene B is a constituent of the peel oil of yuzu Citrus junos.

   

(-)-Aromadendrene

1,1,2-trimethyl-5-methylidene-octahydro-1aH-cyclopropa[e]azulene

C15H24 (204.1878)


Constituent of essential oils of Eucalyptus globulus (Tasmanian blue gum). Alloaromadendrene is found in many foods, some of which are sweet marjoram, common sage, safflower, and spearmint. Alloaromadendrene is found in allspice. Alloaromadendrene is a constituent of essential oils of Eucalyptus globulus (Tasmanian blue gum).

   

Chamomillol

(1S,4R,4aS,8aR)-4,7-dimethyl-1-(propan-2-yl)-1,2,3,4,4a,5,6,8a-octahydronaphthalen-1-ol

C15H26O (222.1984)


Constituent of Matricaria chamomilla (German chamomile). Chamomillol is found in tea, german camomile, and herbs and spices. Chamomillol is found in german camomile. Chamomillol is a constituent of Matricaria chamomilla (German chamomile).

   

Bicyclo[7.2.0]undec-4-ene, 4,11,11-trimethyl-8-methylene-, (1R,4E,9S)-

4,11,11-trimethyl-8-methylidenebicyclo[7.2.0]undec-4-ene

C15H24 (204.1878)


   

N-Nornuciferine

15,16-dimethoxy-10-azatetracyclo[7.7.1.0²,⁷.0¹³,¹⁷]heptadeca-1(16),2,4,6,13(17),14-hexaene

C18H19NO2 (281.1416)


   

Nornuciferine

Nornuciferine

C18H19NO2 (281.1416)


   
   

Dielsiquinone

Dielsiquinone

C15H11NO4 (269.0688)


   
   

alpha-Bergamotene

alpha-Bergamotene

C15H24 (204.1878)


A sesquiterpene consisting of a bicyclo[3.1.1]hept-2-ene skeleton substituted at positions 2 and 6 by methyl groups and at position 6 by a 4-methylpent-3-en-1-yl group.

   

Lichexanthone

1-hydroxy-3,6-dimethoxy-8-methylxanthen-9-one

C16H14O5 (286.0841)


A member of the class of xanthones that is 9H-xanthen-9-one substituted by a hydroxy group at position 1, a methyl group at position 8 and methoxy groups at positions 3 and 6. It has been isolated from the bark of Cupania cinerea.

   

sitosterol

17-(5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.3861)


A member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

Stigmasterol

Stigmasterol

C29H48O (412.3705)


Disclaimer: While authors make an effort to ensure that the content of this record is accurate, the authors make no representations or warranties in relation to the accuracy or completeness of the record. This record do not reflect any viewpoints of the affiliation and organization to which the authors belong.

   

gamma-cadinene

gamma-cadinene

C15H24 (204.1878)


   

Spathulenol

Spathulenol

C15H24O (220.1827)


Constituent of Salvia sclarea (clary sage). Spathulenol is found in many foods, some of which are tarragon, spearmint, common sage, and tea.

   

Liriodenine

3,5-dioxa-11-azapentacyclo[10.7.1.0^{2,6.0^{8,20.0^{14,19]icosa-1(20),2(6),7,9,11,14,16,18-octaen-13-one

C17H9NO3 (275.0582)


Liriodenine is an oxoaporphine alkaloid that is 4,5,6,6a-tetradehydronoraporphin-7-one substituted by a methylenedioxy group across positions 1 and 2. It is isolated from Annona glabra and has been shown to exhibit antimicrobial and cytotoxic activities. It has a role as a metabolite, an antineoplastic agent, an antimicrobial agent, an EC 3.1.1.7 (acetylcholinesterase) inhibitor, an EC 3.2.1.20 (alpha-glucosidase) inhibitor and an antifungal agent. It is a cyclic ketone, an oxacycle, an organic heteropentacyclic compound, an alkaloid antibiotic and an oxoaporphine alkaloid. It is functionally related to an aporphine. Liriodenine is a natural product found in Magnolia mexicana, Annona purpurea, and other organisms with data available. An oxoaporphine alkaloid that is 4,5,6,6a-tetradehydronoraporphin-7-one substituted by a methylenedioxy group across positions 1 and 2. It is isolated from Annona glabra and has been shown to exhibit antimicrobial and cytotoxic activities.

   
   

Lysicamine

15,16-dimethoxy-10-azatetracyclo[7.7.1.02,7.013,17]heptadeca-1(17),2,4,6,9,11,13,15-octaen-8-one

C18H13NO3 (291.0895)


   

Puetogaline B

Puetogaline B

C35H32N2O6 (576.226)


   

Lysicamine

15,16-dimethoxy-10-azatetracyclo[7.7.1.0?,?.0??,??]heptadeca-1(16),2,4,6,9(17),10,12,14-octaen-8-one

C18H13NO3 (291.0895)


Lysicamine is an alkaloid antibiotic and an oxoaporphine alkaloid. It has a role as a metabolite. Lysicamine is a natural product found in Annona purpurea, Annona papilionella, and other organisms with data available. A natural product found in Annona glabra.

   

7-isopropenyl-4a-methyl-1-methylenedecahydronaphthalene

(5xi,7xi,10xi)-eudesma-4(14),11-diene 4a-methyl-1-methylidene-7-(prop-1-en-2-yl)decahydronaphthalene

C15H24 (204.1878)


   

epicubenol

4,7-dimethyl-1-(propan-2-yl)-1,2,3,4,4a,5,6,8a-octahydronaphthalen-4a-ol

C15H26O (222.1984)


   

Harzol

(3S,8S,9S,10R,13R,14S,17R)-17-[(2R,5R)-5-ethyl-6-methyl-heptan-2-yl]-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.3861)


C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

Stigmasterin

(3S,8S,9S,10R,13R,14S,17R)-17-[(E,2R,5S)-5-ethyl-6-methyl-hept-3-en-2-yl]-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H48O (412.3705)


C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol

   

Caryophyllene oxide

Caryophyllene alpha-oxide

C15H24O (220.1827)


Constituent of oil of cloves (Eugenia caryophyllata)and is) also in oils of Betula alba, Mentha piperita (peppermint) and others. Caryophyllene alpha-oxide is found in many foods, some of which are spearmint, cloves, ceylon cinnamon, and herbs and spices. Caryophyllene beta-oxide is a member of the class of compounds known as sesquiterpenoids. Sesquiterpenoids are terpenes with three consecutive isoprene units. Caryophyllene beta-oxide is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Within the cell, caryophyllene beta-oxide is primarily located in the membrane (predicted from logP). It can also be found in the extracellular space. Caryophyllene oxide, isolated from from Hymenaea courbaril, possesses analgesic and anti-inflammatory activity[1]. Caryophyllene oxide, isolated from from Hymenaea courbaril, possesses analgesic and anti-inflammatory activity[1].

   

epoxide

[1R-(1R*,4R*,6R*,10S*)]- Caryophylene oxide Caryophyllene epoxide Caryophyllene oxyde Epoxycaryophyllene [1R-(1R*,4R*,6R*,10S*)]-4,12,12-trimethyl-9-methylene-5-oxatricyclo[8.2.0.04,6]dodecane <>-Caryophyllene epoxide <>-Caryophyllene oxide

C15H24O (220.1827)


Caryophyllene oxide is an epoxide. It has a role as a metabolite. Caryophyllene oxide is a natural product found in Xylopia emarginata, Eupatorium altissimum, and other organisms with data available. See also: Cannabis sativa subsp. indica top (part of). A natural product found in Cupania cinerea. Caryophyllene oxide, isolated from from Hymenaea courbaril, possesses analgesic and anti-inflammatory activity[1]. Caryophyllene oxide, isolated from from Hymenaea courbaril, possesses analgesic and anti-inflammatory activity[1].

   

Aromadendrene

alloaromadendrene

C15H24 (204.1878)


   

Caryophyllene epoxide

Caryophyllene epoxide

C15H24O (220.1827)


   

Cadina-1(10),4-diene

Cadina-1(10),4-diene

C15H24 (204.1878)


   

(-)-beta-Bourbonene

Cyclobuta[1,2:3,4]dicyclopentene,decahydro-3a-methyl-6-methylene-1-(1-methylethyl)-, (1S,3aS,3bR,6aS,6bR)-

C15H24 (204.1878)


   

(1r,3s,3ar,5ar,7s,9as,11ar)-3a,6,6,9a,11a-pentamethyl-1-[(2r)-6-methylhept-5-en-2-yl]-1h,2h,3h,5h,5ah,7h,8h,9h,11h-cyclopenta[a]phenanthrene-3,7-diol

(1r,3s,3ar,5ar,7s,9as,11ar)-3a,6,6,9a,11a-pentamethyl-1-[(2r)-6-methylhept-5-en-2-yl]-1h,2h,3h,5h,5ah,7h,8h,9h,11h-cyclopenta[a]phenanthrene-3,7-diol

C30H48O2 (440.3654)


   

14-hydroxy-15,16-dimethoxy-10-azatetracyclo[7.7.1.0²,⁷.0¹³,¹⁷]heptadeca-1(16),2,4,6,9(17),10,12,14-octaen-8-one

14-hydroxy-15,16-dimethoxy-10-azatetracyclo[7.7.1.0²,⁷.0¹³,¹⁷]heptadeca-1(16),2,4,6,9(17),10,12,14-octaen-8-one

C18H13NO4 (307.0845)


   

2-hydroxy-4-methylindeno[1,2-b]pyridin-5-one

2-hydroxy-4-methylindeno[1,2-b]pyridin-5-one

C13H9NO2 (211.0633)


   

5-hydroxy-14,15,16-trimethoxy-10-azatetracyclo[7.7.1.0²,⁷.0¹³,¹⁷]heptadeca-1(16),2,4,6,9(17),10,12,14-octaen-8-one

5-hydroxy-14,15,16-trimethoxy-10-azatetracyclo[7.7.1.0²,⁷.0¹³,¹⁷]heptadeca-1(16),2,4,6,9(17),10,12,14-octaen-8-one

C19H15NO5 (337.095)


   

8-methoxy-4-methylindeno[1,2-b]pyridin-5-one

8-methoxy-4-methylindeno[1,2-b]pyridin-5-one

C14H11NO2 (225.079)


   

β-caryophyllene oxide

β-caryophyllene oxide

C15H24O (220.1827)


   

3a,6,6,9a,11a-pentamethyl-1-(6-methylhept-5-en-2-yl)-1h,2h,3h,5h,5ah,7h,8h,9h,11h-cyclopenta[a]phenanthrene-3,7-diol

3a,6,6,9a,11a-pentamethyl-1-(6-methylhept-5-en-2-yl)-1h,2h,3h,5h,5ah,7h,8h,9h,11h-cyclopenta[a]phenanthrene-3,7-diol

C30H48O2 (440.3654)


   

4-methylindeno[1,2-b]pyridin-5-one

4-methylindeno[1,2-b]pyridin-5-one

C13H9NO (195.0684)


   

2-hydroxy-4-(hydroxymethyl)indeno[2,1-b]pyridin-9-one

2-hydroxy-4-(hydroxymethyl)indeno[2,1-b]pyridin-9-one

C13H9NO3 (227.0582)


   

(3s,14s,22r)-27-hydroxy-16,26-dimethoxy-4,21-dimethyl-12,29,37-trioxa-4,21-diazaoctacyclo[28.2.2.1⁷,¹¹.1¹⁰,¹⁴.1¹⁴,¹⁸.1²⁴,²⁸.0³,⁸.0²²,³⁶]octatriaconta-1(32),7(38),8,10,16,18(36),24,26,28(35),30,33-undecaen-15-one

(3s,14s,22r)-27-hydroxy-16,26-dimethoxy-4,21-dimethyl-12,29,37-trioxa-4,21-diazaoctacyclo[28.2.2.1⁷,¹¹.1¹⁰,¹⁴.1¹⁴,¹⁸.1²⁴,²⁸.0³,⁸.0²²,³⁶]octatriaconta-1(32),7(38),8,10,16,18(36),24,26,28(35),30,33-undecaen-15-one

C37H38N2O7 (622.2679)


   

(9s)-15,16-dimethoxy-10-azatetracyclo[7.7.1.0²,⁷.0¹³,¹⁷]heptadeca-1(16),2,4,6,13(17),14-hexaene

(9s)-15,16-dimethoxy-10-azatetracyclo[7.7.1.0²,⁷.0¹³,¹⁷]heptadeca-1(16),2,4,6,13(17),14-hexaene

C18H19NO2 (281.1416)


   

(1r,3s,3ar,5ar,7s,9as,11ar)-3a,6,6,9a,11a-pentamethyl-1-[(2s)-6-methylhept-5-en-2-yl]-1h,2h,3h,5h,5ah,7h,8h,9h,11h-cyclopenta[a]phenanthrene-3,7-diol

(1r,3s,3ar,5ar,7s,9as,11ar)-3a,6,6,9a,11a-pentamethyl-1-[(2s)-6-methylhept-5-en-2-yl]-1h,2h,3h,5h,5ah,7h,8h,9h,11h-cyclopenta[a]phenanthrene-3,7-diol

C30H48O2 (440.3654)


   

2-hydroxy-4-(hydroxymethyl)indeno[1,2-b]pyridin-5-one

2-hydroxy-4-(hydroxymethyl)indeno[1,2-b]pyridin-5-one

C13H9NO3 (227.0582)


   

isocoreximine

isocoreximine

C19H21NO4 (327.1471)


   

(1r,7s,9as,11ar)-3a,6,6,9a,11a-pentamethyl-1-(6-methylhept-5-en-2-yl)-1h,2h,3h,5h,5ah,7h,8h,9h,11h-cyclopenta[a]phenanthrene-3,7-diol

(1r,7s,9as,11ar)-3a,6,6,9a,11a-pentamethyl-1-(6-methylhept-5-en-2-yl)-1h,2h,3h,5h,5ah,7h,8h,9h,11h-cyclopenta[a]phenanthrene-3,7-diol

C30H48O2 (440.3654)


   

stigmast-5-en-3-ol, (3β)-

stigmast-5-en-3-ol, (3β)-

C29H50O (414.3861)


   

2-hydroxy-3-methoxy-4-methylbenzo[g]quinoline-5,10-dione

2-hydroxy-3-methoxy-4-methylbenzo[g]quinoline-5,10-dione

C15H11NO4 (269.0688)


   

(12bs)-3,11-dimethoxy-7,8,12b,13-tetrahydro-5h-6-azatetraphene-2,10-diol

(12bs)-3,11-dimethoxy-7,8,12b,13-tetrahydro-5h-6-azatetraphene-2,10-diol

C19H21NO4 (327.1471)


   

2-hydroxy-4-methylindeno[2,1-b]pyridin-9-one

2-hydroxy-4-methylindeno[2,1-b]pyridin-9-one

C13H9NO2 (211.0633)


   

4-methylindeno[2,1-b]pyridin-9-one

4-methylindeno[2,1-b]pyridin-9-one

C13H9NO (195.0684)


   

6-methoxy-4-methylindeno[2,1-b]pyridin-9-one

6-methoxy-4-methylindeno[2,1-b]pyridin-9-one

C14H11NO2 (225.079)