Pipecolic acid (BioDeep_00000229634)

Main id: BioDeep_00000001407

 

human metabolite PANOMIX_OTCML-2023 BioNovoGene_Lab2019


代谢物信息卡片


L(-)-Pipecolinic acid

化学式: C6H11NO2 (129.079)
中文名称: DL-哌啶甲酸, L-高脯氨酸, L-2-哌啶酸
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: C1CCNC(C1)C(=O)O
InChI: InChI=1S/C6H11NO2/c8-6(9)5-3-1-2-4-7-5/h5,7H,1-4H2,(H,8,9)/t5-/m0/s1

描述信息

L-Pipecolic acid (H-HoPro-OH) is a breakdown product of lysine, accumulates in body fluids of infants with generalized genetic peroxisomal disorders, such as Zellweger syndrome, neonatal adrenoleukodystrophy.
L-Pipecolic acid (H-HoPro-OH) is a breakdown product of lysine, accumulates in body fluids of infants with generalized genetic peroxisomal disorders, such as Zellweger syndrome, neonatal adrenoleukodystrophy.

同义名列表

7 个代谢物同义名

L(-)-Pipecolinic acid; DL-Pipecolic acid; L-Pipecolic acid; Pipecolic acid; H-HoPro-OH; L-Pipecolate; L-Pipecolinic acid



数据库引用编号

18 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(1)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

2 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 10 AK2, AQP3, CAT, CRYM, DAO, DDO, DLK1, FTO, LDHA, RASSF5
Peripheral membrane protein 1 DAO
Endoplasmic reticulum membrane 1 GABBR1
Nucleus 5 ALDH7A1, CRYM, FTO, LDHA, RASSF5
cytosol 8 ALDH7A1, CAT, CRYM, DAO, DDO, FTO, LDHA, PIPOX
mitochondrial membrane 1 GABBR1
nucleoplasm 2 AQP3, FTO
Cell membrane 4 AQP3, DAO, GABBR1, SLC36A1
Multi-pass membrane protein 4 AQP3, GABBR1, SLC36A1, SLC6A7
Synapse 1 SLC6A7
dendritic shaft 1 GABBR1
glutamatergic synapse 2 GABBR1, ICAM5
Golgi apparatus 1 PROC
lysosomal membrane 1 SLC36A1
neuronal cell body 1 GABBR1
postsynapse 1 ICAM5
presynaptic membrane 1 GABBR1
synaptic vesicle 1 GABBR1
Cytoplasm, cytosol 2 DAO, DDO
plasma membrane 7 AQP3, DAO, FTO, GABBR1, ICAM5, SLC36A1, SLC6A7
presynaptic active zone 1 DAO
Membrane 8 AQP3, CAT, DLK1, GABBR1, ICAM5, LDHA, SLC36A1, SLC6A7
apical plasma membrane 1 SLC36A1
basolateral plasma membrane 1 AQP3
extracellular exosome 6 AK2, ALDH7A1, CAT, CRYM, DAO, LDHA
Lysosome membrane 1 SLC36A1
endoplasmic reticulum 2 PROC, SLC36A1
extracellular space 4 DAO, DLK1, GABBR1, PROC
Schaffer collateral - CA1 synapse 1 GABBR1
bicellular tight junction 1 DAO
mitochondrion 7 AK2, ALDH7A1, CAT, CRYM, GCDH, LDHA, PYCR1
protein-containing complex 1 CAT
intracellular membrane-bounded organelle 2 CAT, FTO
Single-pass type I membrane protein 1 ICAM5
Secreted 2 DAO, PROC
extracellular region 3 CAT, DAO, PROC
Single-pass membrane protein 1 DLK1
Mitochondrion matrix 1 GCDH
mitochondrial matrix 4 ALDH7A1, CAT, GCDH, PYCR1
Extracellular side 1 DAO
dendritic spine 1 GABBR1
cell-cell junction 1 AQP3
postsynaptic membrane 1 GABBR1
Apical cell membrane 1 SLC36A1
focal adhesion 1 CAT
microtubule 1 RASSF5
axolemma 1 GABBR1
G protein-coupled GABA receptor complex 1 GABBR1
GABA-ergic synapse 1 GABBR1
Peroxisome 4 CAT, DAO, DDO, PIPOX
Peroxisome matrix 3 CAT, DAO, DDO
peroxisomal matrix 5 CAT, CRYM, DAO, DDO, PIPOX
peroxisomal membrane 1 CAT
Mitochondrion intermembrane space 1 AK2
mitochondrial intermembrane space 1 AK2
nuclear speck 1 FTO
Postsynaptic cell membrane 1 GABBR1
cell projection 1 DAO
Secreted, extracellular space 1 DAO
[Isoform 1]: Mitochondrion 1 ALDH7A1
Basolateral cell membrane 1 AQP3
Cell projection, dendrite 1 GABBR1
[Isoform 2]: Cytoplasm, cytosol 1 ALDH7A1
Nucleus speckle 1 FTO
sperm mitochondrial sheath 1 AK2
Synaptic cell membrane 1 SLC6A7
synaptic membrane 1 SLC6A7
ficolin-1-rich granule lumen 1 CAT
secretory granule lumen 1 CAT
Golgi lumen 1 PROC
endoplasmic reticulum lumen 1 PROC
specific granule lumen 1 DAO
G protein-coupled receptor heterodimeric complex 1 GABBR1
oxidoreductase complex 1 LDHA
catalase complex 1 CAT
vacuolar membrane 1 SLC36A1
[Isoform DDO-1]: Peroxisome matrix 1 DDO
[Isoform 3]: Peroxisome matrix 1 DDO
[Isoform 1E]: Secreted 1 GABBR1


文献列表

  • Liying Luo, Yuying Cai, Yanyun Jiang, Yingying Gong, Chunyang Cai, Dongwei Lai, Xiao Jin, Zhiqiang Guan, Qinghua Qiu. Pipecolic acid mitigates ferroptosis in diabetic retinopathy by regulating GPX4-YAP signaling. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2023 Dec; 169(?):115895. doi: 10.1016/j.biopha.2023.115895. [PMID: 37984309]
  • Alessandro Brambilla, Miriam Lenk, Andrea Ghirardo, Laura Eccleston, Claudia Knappe, Baris Weber, Birgit Lange, Jafargholi Imani, Anton R Schäffner, Jörg-Peter Schnitzler, A Corina Vlot. Pipecolic acid synthesis is required for systemic acquired resistance and plant-to-plant-induced immunity in barley. Journal of experimental botany. 2023 Mar; ?(?):. doi: 10.1093/jxb/erad095. [PMID: 36905226]
  • Lennart Mohnike, Weijie Huang, Brigitte Worbs, Kirstin Feussner, Yuelin Zhang, Ivo Feussner. N-Hydroxy pipecolic acid methyl ester is involved in Arabidopsis immunity. Journal of experimental botany. 2023 01; 74(1):458-471. doi: 10.1093/jxb/erac422. [PMID: 36260503]
  • Feifei Luo, Guirong Tang, Song Hong, Tianyu Gong, Xiu-Fang Xin, Chengshu Wang. Promotion of Arabidopsis immune responses by a rhizosphere fungus via supply of pipecolic acid to plants and selective augment of phytoalexins. Science China. Life sciences. 2022 Nov; ?(?):. doi: 10.1007/s11427-022-2238-8. [PMID: 36449213]
  • Lei Liu, Jia Wu, Minxin Shi, Fengying Wang, Haimin Lu, Jibing Liu, Weiqin Chen, Guanzhen Yu, Dan Liu, Jing Yang, Qin Luo, Yan Ni, Xing Jin, Xiaoxia Jin, Wen-Lian Chen. New Metabolic Alterations and A Predictive Marker Pipecolic Acid in Sera for Esophageal Squamous Cell Carcinoma. Genomics, proteomics & bioinformatics. 2022 Aug; 20(4):670-687. doi: 10.1016/j.gpb.2021.08.016. [PMID: 35351627]
  • Tarun Keswani, Aisha Obeidallah, Edward Nieves, Simone Sidoli, Melissa Fazzari, Terrie Taylor, Karl Seydel, Johanna P Daily. Pipecolic Acid, a Putative Mediator of the Encephalopathy of Cerebral Malaria and the Experimental Model of Cerebral Malaria. The Journal of infectious diseases. 2022 02; 225(4):705-714. doi: 10.1093/infdis/jiab615. [PMID: 34932816]
  • Tamara Treleaven, Madeleine L M Hardy, Michelle Guttman-Jones, Michael B Morris, Margot L Day. In Vitro Fertilisation of Mouse Oocytes in L-Proline and L-Pipecolic Acid Improves Subsequent Development. Cells. 2021 05; 10(6):. doi: 10.3390/cells10061352. [PMID: 34072568]
  • Eric C Holmes, Yun-Chu Chen, Mary Beth Mudgett, Elizabeth S Sattely. Arabidopsis UGT76B1 glycosylates N-hydroxy-pipecolic acid and inactivates systemic acquired resistance in tomato. The Plant cell. 2021 05; 33(3):750-765. doi: 10.1093/plcell/koaa052. [PMID: 33955491]
  • Lennart Mohnike, Dmitrij Rekhter, Weijie Huang, Kirstin Feussner, Hainan Tian, Cornelia Herrfurth, Yuelin Zhang, Ivo Feussner. The glycosyltransferase UGT76B1 modulates N-hydroxy-pipecolic acid homeostasis and plant immunity. The Plant cell. 2021 05; 33(3):735-749. doi: 10.1093/plcell/koaa045. [PMID: 33955489]
  • Hanna Hõrak. How to achieve immune balance and harmony: glycosyltransferase UGT76B1 inactivates N-hydroxy-pipecolic acid to suppress defense responses. The Plant cell. 2021 05; 33(3):453-454. doi: 10.1093/plcell/koaa053. [PMID: 35234939]
  • S Pazarlar, U Sanver, N Cetinkaya. Exogenous pipecolic acid modulates plant defence responses against Podosphaera xanthii and Pseudomonas syringae pv. lachrymans in cucumber (Cucumis sativus L.). Plant biology (Stuttgart, Germany). 2021 May; 23(3):473-484. doi: 10.1111/plb.13243. [PMID: 33547740]
  • Marta Pastorczyk-Szlenkier, Paweł Bednarek. UGT76B1 controls the growth-immunity trade-off during systemic acquired resistance. Molecular plant. 2021 04; 14(4):544-546. doi: 10.1016/j.molp.2021.03.012. [PMID: 33753308]
  • A Corina Vlot. A quest for long-distance signals: the epidermis as central regulator of pipecolic acid-associated systemic acquired resistance. Journal of experimental botany. 2021 03; 72(7):2266-2268. doi: 10.1093/jxb/eraa606. [PMID: 33779751]
  • Jianghua Cai, Adam Jozwiak, Lara Holoidovsky, Michael M Meijler, Sagit Meir, Ilana Rogachev, Asaph Aharoni. Glycosylation of N-hydroxy-pipecolic acid equilibrates between systemic acquired resistance response and plant growth. Molecular plant. 2021 03; 14(3):440-455. doi: 10.1016/j.molp.2020.12.018. [PMID: 33387676]
  • Sandeep Sharma, Babita Choudhary, Sonam Yadav, Avinash Mishra, Vinod K Mishra, Ramesh Chand, Chen Chen, Shree P Pandey. Metabolite profiling identified pipecolic acid as an important component of peanut seed resistance against Aspergillus flavus infection. Journal of hazardous materials. 2021 02; 404(Pt A):124155. doi: 10.1016/j.jhazmat.2020.124155. [PMID: 33049626]
  • Tomiko Kuhara, Tomoyuki Akiyama, Morimasa Ohse, Takayoshi Koike, Jun Shibasaki, Katsumi Imai, ArthurJ L Cooper. Identification of new biomarkers of pyridoxine-dependent epilepsy by GC/MS-based urine metabolomics. Analytical biochemistry. 2020 09; 604(?):113739. doi: 10.1016/j.ab.2020.113739. [PMID: 32339489]
  • Déborah Mathis, Karin Beese, Carmen Rüegg, Barbara Plecko, Martin Hersberger. LC-MS/MS method for the differential diagnosis of treatable early onset inherited metabolic epilepsies. Journal of inherited metabolic disease. 2020 09; 43(5):1102-1111. doi: 10.1002/jimd.12244. [PMID: 32319100]
  • Mar Garcia-Aloy, Marynka Ulaszewska, Pietro Franceschi, Sheila Estruel-Amades, Christoph H Weinert, Alba Tor-Roca, Mireia Urpi-Sarda, Fulvio Mattivi, Cristina Andres-Lacueva. Discovery of Intake Biomarkers of Lentils, Chickpeas, and White Beans by Untargeted LC-MS Metabolomics in Serum and Urine. Molecular nutrition & food research. 2020 07; 64(13):e1901137. doi: 10.1002/mnfr.201901137. [PMID: 32420683]
  • Dan Li, Ruiying Liu, Deepjyoti Singh, Xinyu Yuan, Pradeep Kachroo, Ramesh Raina. JMJ14 encoded H3K4 demethylase modulates immune responses by regulating defence gene expression and pipecolic acid levels. The New phytologist. 2020 03; 225(5):2108-2121. doi: 10.1111/nph.16270. [PMID: 31622519]
  • Denis S Willett, Camila C Filgueiras, Nicole D Benda, Jing Zhang, Kevin E Kenworthy. Sting nematodes modify metabolomic profiles of host plants. Scientific reports. 2020 02; 10(1):2212. doi: 10.1038/s41598-020-59062-8. [PMID: 32042018]
  • Yongsig Kim, Sarah J Gilmour, Lumen Chao, Sunchung Park, Michael F Thomashow. Arabidopsis CAMTA Transcription Factors Regulate Pipecolic Acid Biosynthesis and Priming of Immunity Genes. Molecular plant. 2020 01; 13(1):157-168. doi: 10.1016/j.molp.2019.11.001. [PMID: 31733370]
  • Tiziana Guerra, Silke Schilling, Katharina Hake, Karin Gorzolka, Fabian-Philipp Sylvester, Benjamin Conrads, Bernhard Westermann, Tina Romeis. Calcium-dependent protein kinase 5 links calcium signaling with N-hydroxy-l-pipecolic acid- and SARD1-dependent immune memory in systemic acquired resistance. The New phytologist. 2020 01; 225(1):310-325. doi: 10.1111/nph.16147. [PMID: 31469917]
  • Francisco Oiram Filho, Ebenézer de Oliveira Silva, Mônica Maria de Almeida Lopes, Paulo Riceli Vasconselos Ribeiro, Andréia Hansen Oster, Jhonyson Arruda Carvalho Guedes, Dávila de Souza Zampieri, Patrícia do Nascimento Bordallo, Guilherme Julião Zocolo. Effect of pulsed light on postharvest disease control-related metabolomic variation in melon (Cucumis melo) artificially inoculated with Fusarium pallidoroseum. PloS one. 2020; 15(4):e0220097. doi: 10.1371/journal.pone.0220097. [PMID: 32310943]
  • Cristina Razquin, Miguel Ruiz-Canela, Clary B Clish, Jun Li, Estefania Toledo, Courtney Dennis, Liming Liang, Albert Salas-Huetos, Kerry A Pierce, Marta Guasch-Ferré, Dolores Corella, Emilio Ros, Ramon Estruch, Enrique Gómez-Gracia, Montse Fitó, Jose Lapetra, Dora Romaguera, Angel Alonso-Gómez, Lluis Serra-Majem, Jordi Salas-Salvadó, Frank B Hu, Miguel A Martínez-González. Lysine pathway metabolites and the risk of type 2 diabetes and cardiovascular disease in the PREDIMED study: results from two case-cohort studies. Cardiovascular diabetology. 2019 11; 18(1):151. doi: 10.1186/s12933-019-0958-2. [PMID: 31722714]
  • Marjo Tuomainen, Olli Kärkkäinen, Jukka Leppänen, Seppo Auriola, Marko Lehtonen, Markku J Savolainen, Kjeld Hermansen, Ulf Risérus, Björn Åkesson, Inga Thorsdottir, Marjukka Kolehmainen, Matti Uusitupa, Kaisa Poutanen, Ursula Schwab, Kati Hanhineva. Quantitative assessment of betainized compounds and associations with dietary and metabolic biomarkers in the randomized study of the healthy Nordic diet (SYSDIET). The American journal of clinical nutrition. 2019 11; 110(5):1108-1118. doi: 10.1093/ajcn/nqz179. [PMID: 31504116]
  • Marion Wenig, Andrea Ghirardo, Jennifer H Sales, Elisabeth S Pabst, Heiko H Breitenbach, Felix Antritter, Baris Weber, Birgit Lange, Miriam Lenk, Robin K Cameron, Joerg-Peter Schnitzler, A Corina Vlot. Systemic acquired resistance networks amplify airborne defense cues. Nature communications. 2019 08; 10(1):3813. doi: 10.1038/s41467-019-11798-2. [PMID: 31444353]
  • Jiao Xue, Junjuan Wang, Pan Gong, Minhang Wu, Wenshuang Yang, Shiju Jiang, Ye Wu, Yuwu Jiang, Yuehua Zhang, Tatiana Yuzyuk, Hong Li, Zhixian Yang. Simultaneous quantification of alpha-aminoadipic semialdehyde, piperideine-6-carboxylate, pipecolic acid and alpha-aminoadipic acid in pyridoxine-dependent epilepsy. Scientific reports. 2019 08; 9(1):11371. doi: 10.1038/s41598-019-47882-2. [PMID: 31388081]
  • Christian Dutton, Hanna Hõrak, Christopher Hepworth, Alice Mitchell, Jurriaan Ton, Lee Hunt, Julie E Gray. Bacterial infection systemically suppresses stomatal density. Plant, cell & environment. 2019 08; 42(8):2411-2421. doi: 10.1111/pce.13570. [PMID: 31042812]
  • Min-Zhi Peng, Yan-Na Cai, Yong-Xian Shao, Lu Zhao, Min-Yan Jiang, Yun-Ting Lin, Xi Yin, Hui-Ying Sheng, Li Liu. Simultaneous quantification of 48 plasma amino acids by liquid chromatography-tandem mass spectrometry to investigate urea cycle disorders. Clinica chimica acta; international journal of clinical chemistry. 2019 Aug; 495(?):406-416. doi: 10.1016/j.cca.2019.05.011. [PMID: 31095934]
  • Shu Wang, Kelei Han, Jiejun Peng, Jinping Zhao, Liangliang Jiang, Yuwen Lu, Hongying Zheng, Lin Lin, Jianping Chen, Fei Yan. NbALD1 mediates resistance to turnip mosaic virus by regulating the accumulation of salicylic acid and the ethylene pathway in Nicotiana benthamiana. Molecular plant pathology. 2019 07; 20(7):990-1004. doi: 10.1111/mpp.12808. [PMID: 31012537]
  • Christina Krönauer, Joachim Kilian, Tina Strauß, Mark Stahl, Thomas Lahaye. Cell Death Triggered by the YUCCA-like Bs3 Protein Coincides with Accumulation of Salicylic Acid and Pipecolic Acid But Not of Indole-3-Acetic Acid. Plant physiology. 2019 07; 180(3):1647-1659. doi: 10.1104/pp.18.01576. [PMID: 31068387]
  • Olli Kärkkäinen, Maria A Lankinen, Marilena Vitale, Jenna Jokkala, Jukka Leppänen, Ville Koistinen, Marko Lehtonen, Rosalba Giacco, Natalia Rosa-Sibakov, Valérie Micard, Angela A A Rivellese, Ursula Schwab, Hannu Mykkänen, Matti Uusitupa, Marjukka Kolehmainen, Gabriele Riccardi, Kaisa Poutanen, Seppo Auriola, Kati Hanhineva. Diets rich in whole grains increase betainized compounds associated with glucose metabolism. The American journal of clinical nutrition. 2018 11; 108(5):971-979. doi: 10.1093/ajcn/nqy169. [PMID: 30256894]
  • Yiming Wang, Stefan Schuck, Jingni Wu, Ping Yang, Anne-Christin Döring, Jürgen Zeier, Kenichi Tsuda. A MPK3/6-WRKY33-ALD1-Pipecolic Acid Regulatory Loop Contributes to Systemic Acquired Resistance. The Plant cell. 2018 10; 30(10):2480-2494. doi: 10.1105/tpc.18.00547. [PMID: 30228125]
  • Veronika Boczonadi, Martin S King, Anthony C Smith, Monika Olahova, Boglarka Bansagi, Andreas Roos, Filmon Eyassu, Christoph Borchers, Venkateswaran Ramesh, Hanns Lochmüller, Tuomo Polvikoski, Roger G Whittaker, Angela Pyle, Helen Griffin, Robert W Taylor, Patrick F Chinnery, Alan J Robinson, Edmund R S Kunji, Rita Horvath. Mitochondrial oxodicarboxylate carrier deficiency is associated with mitochondrial DNA depletion and spinal muscular atrophy-like disease. Genetics in medicine : official journal of the American College of Medical Genetics. 2018 10; 20(10):1224-1235. doi: 10.1038/gim.2017.251. [PMID: 29517768]
  • Nóra Gampe, András Darcsi, László Kursinszki, Szabolcs Béni. Separation and characterization of homopipecolic acid isoflavonoid ester derivatives isolated from Ononis spinosa L. root. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2018 Aug; 1091(?):21-28. doi: 10.1016/j.jchromb.2018.05.023. [PMID: 29803686]
  • Shachi Joglekar, Mohamed Suliman, Michael Bartsch, Vivek Halder, Jens Maintz, Jaqueline Bautor, Jürgen Zeier, Jane E Parker, Erich Kombrink. Chemical Activation of EDS1/PAD4 Signaling Leading to Pathogen Resistance in Arabidopsis. Plant & cell physiology. 2018 Aug; 59(8):1592-1607. doi: 10.1093/pcp/pcy106. [PMID: 29931201]
  • Yuan Yuan, Xuenan Li, Huangyou Liu, Yating Qu, Wantong Zhang, Huilin Yu, Jiaojiao Zhang, Hong Zhuang. Carnitine, A New Precursor in the Formation of the Plant Growth Regulator Mepiquat. Journal of agricultural and food chemistry. 2018 Jun; 66(23):5907-5912. doi: 10.1021/acs.jafc.8b01084. [PMID: 29783845]
  • Tongjun Sun, Lucas Busta, Qian Zhang, Pingtao Ding, Reinhard Jetter, Yuelin Zhang. TGACG-BINDING FACTOR 1 (TGA1) and TGA4 regulate salicylic acid and pipecolic acid biosynthesis by modulating the expression of SYSTEMIC ACQUIRED RESISTANCE DEFICIENT 1 (SARD1) and CALMODULIN-BINDING PROTEIN 60g (CBP60g). The New phytologist. 2018 Jan; 217(1):344-354. doi: 10.1111/nph.14780. [PMID: 28898429]
  • D Garcia-Seco, M Chiapello, M Bracale, C Pesce, P Bagnaresi, E Dubois, L Moulin, C Vannini, R Koebnik. Transcriptome and proteome analysis reveal new insight into proximal and distal responses of wheat to foliar infection by Xanthomonas translucens. Scientific reports. 2017 08; 7(1):10157. doi: 10.1038/s41598-017-10568-8. [PMID: 28860643]
  • Yuan Yuan, Adrienne Tarres, Thomas Bessaire, Wilhelm Rademacher, Richard H Stadler, Thierry Delatour. Heat-induced formation of mepiquat by decarboxylation of pipecolic acid and its betaine derivative. Part 2: Natural formation in cooked vegetables and selected food products. Food chemistry. 2017 Aug; 228(?):99-105. doi: 10.1016/j.foodchem.2017.01.122. [PMID: 28317783]
  • Teresa Donze-Reiner, Nathan A Palmer, Erin D Scully, Travis J Prochaska, Kyle G Koch, Tiffany Heng-Moss, Jeffrey D Bradshaw, Paul Twigg, Keenan Amundsen, Scott E Sattler, Gautam Sarath. Transcriptional analysis of defense mechanisms in upland tetraploid switchgrass to greenbugs. BMC plant biology. 2017 02; 17(1):46. doi: 10.1186/s12870-017-0998-2. [PMID: 28209137]
  • Frederic Tort, Olatz Ugarteburu, Maria Angeles Torres, Judit García-Villoria, Marisa Girós, Angeles Ruiz, Antonia Ribes. Lysine Restriction and Pyridoxal Phosphate Administration in a NADK2 Patient. Pediatrics. 2016 11; 138(5):. doi: 10.1542/peds.2015-4534. [PMID: 27940755]
  • J Xue, Z X Yang, H Li, P Qian, Y Wu, Y W Jiang, X Y Liu. [Clinical and genetic characteristics and detection of urinary pipecolic acid in pyridoxine dependent epilepsy]. Zhonghua er ke za zhi = Chinese journal of pediatrics. 2016 Aug; 54(8):592-6. doi: 10.3760/cma.j.issn.0578-1310.2016.08.007. [PMID: 27510871]
  • Eva-Maria Reimer-Michalski, Uwe Conrath. Innate immune memory in plants. Seminars in immunology. 2016 08; 28(4):319-27. doi: 10.1016/j.smim.2016.05.006. [PMID: 27264335]
  • Tatiana Yuzyuk, Amanda Thomas, Krista Viau, Aiping Liu, Irene De Biase, Lorenzo D Botto, Marzia Pasquali, Nicola Longo. Effect of dietary lysine restriction and arginine supplementation in two patients with pyridoxine-dependent epilepsy. Molecular genetics and metabolism. 2016 07; 118(3):167-172. doi: 10.1016/j.ymgme.2016.04.015. [PMID: 27324284]
  • Arthur Sorlin, Gilbert Briand, David Cheillan, Arnaud Wiedemann, Bettina Montaut-Verient, Emmanuelle Schmitt, François Feillet. Effect of l-Arginine in One Patient with Peroxisome Biogenesis Disorder due to PEX12 Deficiency. Neuropediatrics. 2016 Jun; 47(3):179-81. doi: 10.1055/s-0036-1578798. [PMID: 26947510]
  • Alejandro Leganés-Ramos, Elena Alba Álvaro-Alonso, Ana María Martín de Rosales-Cabrera, Montserrat Pérez-Encinas. Oral formulation of pyridoxine for the treatment of pyridoxinedependent epilepsy in a paediatric patient. Farmacia hospitalaria : organo oficial de expresion cientifica de la Sociedad Espanola de Farmacia Hospitalaria. 2016 Mar; 40(2):131-3. doi: 10.7399/fh.2016.40.2.9233. [PMID: 26980171]
  • Nilwala S Abeysekara, Sivakumar Swaminathan, Nalini Desai, Lining Guo, Madan K Bhattacharyya. The plant immunity inducer pipecolic acid accumulates in the xylem sap and leaves of soybean seedlings following Fusarium virguliforme infection. Plant science : an international journal of experimental plant biology. 2016 Feb; 243(?):105-14. doi: 10.1016/j.plantsci.2015.11.008. [PMID: 26795155]
  • Friederike Bernsdorff, Anne-Christin Döring, Katrin Gruner, Stefan Schuck, Andrea Bräutigam, Jürgen Zeier. Pipecolic Acid Orchestrates Plant Systemic Acquired Resistance and Defense Priming via Salicylic Acid-Dependent and -Independent Pathways. The Plant cell. 2016 Jan; 28(1):102-29. doi: 10.1105/tpc.15.00496. [PMID: 26672068]
  • Thushanthi Perera, Matthew R Young, Zhiying Zhang, Gwen Murphy, Nancy H Colburn, Elaine Lanza, Terryl J Hartman, Amanda J Cross, Gerd Bobe. Identification and monitoring of metabolite markers of dry bean consumption in parallel human and mouse studies. Molecular nutrition & food research. 2015 Apr; 59(4):795-806. doi: 10.1002/mnfr.201400847. [PMID: 25641932]
  • Genya Watanabe, Hiroyuki Kobayashi, Masahiro Shibata, Masatoshi Kubota, Motoni Kadowaki, Shinobu Fujimura. Regulation of free glutamate content in meat by dietary lysine in broilers. Animal science journal = Nihon chikusan Gakkaiho. 2015 Apr; 86(4):435-42. doi: 10.1111/asj.12321. [PMID: 25491790]
  • Nicolás M Cecchini, Ho Won Jung, Nancy L Engle, Timothy J Tschaplinski, Jean T Greenberg. ALD1 Regulates Basal Immune Components and Early Inducible Defense Responses in Arabidopsis. Molecular plant-microbe interactions : MPMI. 2015 Apr; 28(4):455-66. doi: 10.1094/mpmi-06-14-0187-r. [PMID: 25372120]
  • Michela Semeraro, Maurizio Muraca, Giulio Catesini, Rita Inglese, Francesca Iacovone, Gloria Maria Barraco, Melania Manco, Sara Boenzi, Carlo Dionisi-Vici, Cristiano Rizzo. Determination of plasma pipecolic acid by an easy and rapid liquid chromatography-tandem mass spectrometry method. Clinica chimica acta; international journal of clinical chemistry. 2015 Feb; 440(?):108-12. doi: 10.1016/j.cca.2014.11.014. [PMID: 25447702]
  • Olivier Hilfiker, Raphaël Groux, Friederike Bruessow, Karin Kiefer, Jürgen Zeier, Philippe Reymond. Insect eggs induce a systemic acquired resistance in Arabidopsis. The Plant journal : for cell and molecular biology. 2014 Dec; 80(6):1085-94. doi: 10.1111/tpj.12707. [PMID: 25329965]
  • Eduard A Struys, Erwin E W Jansen, Gajja S Salomons. Human pyrroline-5-carboxylate reductase (PYCR1) acts on Δ(1)-piperideine-6-carboxylate generating L-pipecolic acid. Journal of inherited metabolic disease. 2014 May; 37(3):327-32. doi: 10.1007/s10545-013-9673-4. [PMID: 24431009]
  • Giovana Reche Dalazen, Melaine Terra, Carlos Eduardo Diaz Jacques, Juliana G Coelho, Raylane Freitas, Priscila Nicolao Mazzola, Carlos Severo Dutra-Filho. Pipecolic acid induces oxidative stress in vitro in cerebral cortex of young rats and the protective role of lipoic acid. Metabolic brain disease. 2014 Mar; 29(1):175-83. doi: 10.1007/s11011-013-9466-3. [PMID: 24338030]
  • Huaiyu Yang, Uwe Ludewig. Lysine catabolism, amino acid transport, and systemic acquired resistance: what is the link?. Plant signaling & behavior. 2014; 9(7):e28933. doi: 10.4161/psb.28933. [PMID: 25763483]
  • Valerie Vranova, Lea Lojkova, Klement Rejsek, Pavel Formanek. Significance of the natural occurrence of L- versus D-pipecolic acid: a review. Chirality. 2013 Dec; 25(12):823-31. doi: 10.1002/chir.22237. [PMID: 24114978]
  • Drissia Vogel-Adghough, Elia Stahl, Hana Návarová, Juergen Zeier. Pipecolic acid enhances resistance to bacterial infection and primes salicylic acid and nicotine accumulation in tobacco. Plant signaling & behavior. 2013 Nov; 8(11):e26366. doi: 10.4161/psb.26366. [PMID: 24025239]
  • Saadet Mercimek-Mahmutoglu, Elizabeth J Donner, Komudi Siriwardena. Normal plasma pipecolic acid level in pyridoxine dependent epilepsy due to ALDH7A1 mutations. Molecular genetics and metabolism. 2013 Sep; 110(1-2):197. doi: 10.1016/j.ymgme.2013.04.018. [PMID: 23683770]
  • Raluca-Ioana Stefan-van Staden, Iuliana Moldoveanu, Daniel-Florin Sava, Constantina Kapnissi-Christodoulou, Jacobus Frederick van Staden. Enantioanalysis of pipecolic acid with stochastic and potentiometric microsensors. Chirality. 2013 Feb; 25(2):114-8. doi: 10.1002/chir.22119. [PMID: 23180678]
  • Hana Návarová, Friederike Bernsdorff, Anne-Christin Döring, Jürgen Zeier. Pipecolic acid, an endogenous mediator of defense amplification and priming, is a critical regulator of inducible plant immunity. The Plant cell. 2012 Dec; 24(12):5123-41. doi: 10.1105/tpc.112.103564. [PMID: 23221596]
  • Clara D M van Karnebeek, Hans Hartmann, Sravan Jaggumantri, Levinus A Bok, Barb Cheng, Mary Connolly, Curtis R Coughlin, Anibh M Das, Sidney M Gospe, Cornelis Jakobs, Johanna H van der Lee, Saadet Mercimek-Mahmutoglu, Uta Meyer, Eduard Struys, Graham Sinclair, Johan Van Hove, Jean-Paul Collet, Barbara R Plecko, Sylvia Stockler. Lysine restricted diet for pyridoxine-dependent epilepsy: first evidence and future trials. Molecular genetics and metabolism. 2012 Nov; 107(3):335-44. doi: 10.1016/j.ymgme.2012.09.006. [PMID: 23022070]
  • Luigi Servillo, Alfonso Giovane, Maria Luisa Balestrieri, Giovanna Ferrari, Domenico Cautela, Domenico Castaldo. Occurrence of pipecolic acid and pipecolic acid betaine (homostachydrine) in Citrus genus plants. Journal of agricultural and food chemistry. 2012 Jan; 60(1):315-21. doi: 10.1021/jf204286r. [PMID: 22208890]
  • Arjun Sengupta, Soumita Ghosh, Angika Basant, Suhas Malusare, Parul Johri, Sulabha Pathak, Shobhona Sharma, Haripalsingh M Sonawat. Global host metabolic response to Plasmodium vivax infection: a 1H NMR based urinary metabonomic study. Malaria journal. 2011 Dec; 10(?):384. doi: 10.1186/1475-2875-10-384. [PMID: 22196439]
  • Andrew D Patterson, Jessica A Bonzo, Fei Li, Kristopher W Krausz, Gabriel S Eichler, Sadaf Aslam, Xenia Tigno, John N Weinstein, Barbara C Hansen, Jeffrey R Idle, Frank J Gonzalez. Metabolomics reveals attenuation of the SLC6A20 kidney transporter in nonhuman primate and mouse models of type 2 diabetes mellitus. The Journal of biological chemistry. 2011 Jun; 286(22):19511-22. doi: 10.1074/jbc.m111.221739. [PMID: 21487016]
  • Hye-Ran Yoon, Yong-Wun An. Determination of pipecolic acid following trimethylsilyl and trifluoroacyl derivatisation on plasma filter paper by stable isotope GC-MS for peroxisomal disorders. Archives of pharmacal research. 2010 Feb; 33(2):317-23. doi: 10.1007/s12272-010-0218-1. [PMID: 20195834]
  • Katerina Sadilkova, Sidney M Gospe, Si Houn Hahn. Simultaneous determination of alpha-aminoadipic semialdehyde, piperideine-6-carboxylate and pipecolic acid by LC-MS/MS for pyridoxine-dependent seizures and folinic acid-responsive seizures. Journal of neuroscience methods. 2009 Oct; 184(1):136-41. doi: 10.1016/j.jneumeth.2009.07.019. [PMID: 19631689]
  • Renata C Gallagher, Johan L K Van Hove, Gunter Scharer, Keith Hyland, Barbara Plecko, Paula J Waters, Saadet Mercimek-Mahmutoglu, Sylvia Stockler-Ipsiroglu, Gajja S Salomons, Efraim H Rosenberg, Eduard A Struys, Cornelis Jakobs. Folinic acid-responsive seizures are identical to pyridoxine-dependent epilepsy. Annals of neurology. 2009 May; 65(5):550-6. doi: 10.1002/ana.21568. [PMID: 19142996]
  • Craig L Bennett, Yingzhang Chen, Sihoun Hahn, Ian A Glass, Sidney M Gospe. Prevalence of ALDH7A1 mutations in 18 North American pyridoxine-dependent seizure (PDS) patients. Epilepsia. 2009 May; 50(5):1167-75. doi: 10.1111/j.1528-1167.2008.01816.x. [PMID: 19128417]
  • Stephen Hanessian, Luciana Auzzas. The practice of ring constraint in peptidomimetics using bicyclic and polycyclic amino acids. Accounts of chemical research. 2008 Oct; 41(10):1241-51. doi: 10.1021/ar8000052. [PMID: 18646869]
  • Steven Steinberg, Richard Jones, Carol Tiffany, Ann Moser. Investigational methods for peroxisomal disorders. Current protocols in human genetics. 2008 Jul; Chapter 17(?):Unit 17.6. doi: 10.1002/0471142905.hg1706s58. [PMID: 18633975]
  • Steven J Steinberg, Gabriele Dodt, Gerald V Raymond, Nancy E Braverman, Ann B Moser, Hugo W Moser. Peroxisome biogenesis disorders. Biochimica et biophysica acta. 2006 Dec; 1763(12):1733-48. doi: 10.1016/j.bbamcr.2006.09.010. [PMID: 17055079]
  • M Moulin, C Deleu, F Larher, A Bouchereau. The lysine-ketoglutarate reductase-saccharopine dehydrogenase is involved in the osmo-induced synthesis of pipecolic acid in rapeseed leaf tissues. Plant physiology and biochemistry : PPB. 2006 Jul; 44(7-9):474-82. doi: 10.1016/j.plaphy.2006.08.005. [PMID: 17023168]
  • B Plecko, C Hikel, G-C Korenke, B Schmitt, M Baumgartner, F Baumeister, C Jakobs, E Struys, W Erwa, S Stöckler-Ipsiroglu. Pipecolic acid as a diagnostic marker of pyridoxine-dependent epilepsy. Neuropediatrics. 2005 Jun; 36(3):200-5. doi: 10.1055/s-2005-865727. [PMID: 15944906]
  • B Plecko, H Hoeger, C Jakobs, E Struys, C Stromberger, M Leschnik, A Muehl, S Stoeckler-Ipsiroglu. Pipecolic acid concentrations in brain tissue of nutritionally pyridoxine-deficient rats. Journal of inherited metabolic disease. 2005; 28(5):689-93. doi: 10.1007/s10545-005-0071-4. [PMID: 16151899]
  • Raluca-Ioana Stefan, R'afat Mahmoud Nejem, Jacobus F van Staden, Hassan Y Aboul-Enein. New amperometric biosensors based on diamond paste for the assay of L- and D-pipecolic acids in serum samples. Preparative biochemistry & biotechnology. 2004 May; 34(2):135-43. doi: 10.1081/pb-120030872. [PMID: 15195708]
  • Toru Fujita, Manabu Fujita, Taku Kodama, Toshikazu Hada, Kazuya Higashino. Determination of D- and L-pipecolic acid in food samples including processed foods. Annals of nutrition & metabolism. 2003; 47(3-4):165-9. doi: 10.1159/000070040. [PMID: 12743469]
  • J C M Baas, R van de Laar, L Dorland, M Duran, R Berger, B T Poll-The, T J de Koning. Plasma pipecolic acid is frequently elevated in non-peroxisomal disease. Journal of inherited metabolic disease. 2002 Dec; 25(8):699-701. doi: 10.1023/a:1022889400302. [PMID: 12705501]
  • I Knerr, J Zschocke, U Trautmann, L Dorland, T J de Koning, P Müller, E Christensen, F K Trefz, G F Wündisch, W Rascher, G F Hoffmann. Glutaric aciduria type III: a distinctive non-disease?. Journal of inherited metabolic disease. 2002 Oct; 25(6):483-90. doi: 10.1023/a:1021207419125. [PMID: 12555941]
  • M S Rashed, L Y Al-Ahaidib, H Y Aboul-Enein, M Al-Amoudi, M Jacob. Determination of L-pipecolic acid in plasma using chiral liquid chromatography-electrospray tandem mass spectrometry. Clinical chemistry. 2001 Dec; 47(12):2124-30. doi: . [PMID: 11719476]
  • B Plecko, S Stöckler-Ipsiroglu, E Paschke, W Erwa, E A Struys, C Jakobs. Pipecolic acid elevation in plasma and cerebrospinal fluid of two patients with pyridoxine-dependent epilepsy. Annals of neurology. 2000 Jul; 48(1):121-5. doi: 10.1002/1531-8249(200007)48:1<121::aid-ana20>3.0.co;2-v. [PMID: 10894227]
  • H Hussain-Yusuf, R Onodera, M E Nasser, H Sato. Simple method for the simultaneous analysis of pipecolic acid and lysine by high-performance liquid chromatography and its application to rumen liquor and plasma of ruminants. Journal of chromatography. B, Biomedical sciences and applications. 1999 Nov; 735(1):63-72. doi: 10.1016/s0378-4347(99)00399-0. [PMID: 10630891]
  • M A Al-Essa, E Chaves-Carballo, P T Ozand. Hyperpipecolic acidemia: clinical, biochemical, and radiologic observations. Pediatric neurology. 1999 Nov; 21(5):826-9. doi: 10.1016/s0887-8994(99)00085-5. [PMID: 10593675]
  • T Fujita, T Hada, K Higashino. Origin of D- and L-pipecolic acid in human physiological fluids: a study of the catabolic mechanism to pipecolic acid using the lysine loading test. Clinica chimica acta; international journal of clinical chemistry. 1999 Sep; 287(1-2):145-56. doi: 10.1016/s0009-8981(99)00129-1. [PMID: 10509903]
  • T Fujita, Y Amuro, T Hada, K Higashino. Plasma levels of pipecolic acid, both L- and D-enantiomers, in patients with chronic liver diseases, especially hepatic encephalopathy. Clinica chimica acta; international journal of clinical chemistry. 1999 Sep; 287(1-2):99-109. doi: 10.1016/s0009-8981(99)00123-0. [PMID: 10509899]
  • A Galli, L D Jayanthi, I S Ramsey, J W Miller, R T Fremeau, L J DeFelice. L-proline and L-pipecolate induce enkephalin-sensitive currents in human embryonic kidney 293 cells transfected with the high-affinity mammalian brain L-proline transporter. The Journal of neuroscience : the official journal of the Society for Neuroscience. 1999 Aug; 19(15):6290-7. doi: . [PMID: 10414958]
  • M R Baumgartner, N M Verhoeven, C Jakobs, F Roels, M Espeel, M Martinez, D Rabier, R J Wanders, J M Saudubray. Defective peroxisome biogenesis with a neuromuscular disorder resembling Werdnig-Hoffmann disease. Neurology. 1998 Nov; 51(5):1427-32. doi: 10.1212/wnl.51.5.1427. [PMID: 9818873]
  • B E Reuber, C Karl, S A Reimann, S J Mihalik, G Dodt. Cloning and functional expression of a mammalian gene for a peroxisomal sarcosine oxidase. The Journal of biological chemistry. 1997 Mar; 272(10):6766-76. doi: 10.1074/jbc.272.10.6766. [PMID: 9045710]
  • C Vallat, S Denis, H Bellet, C Jakobs, R J Wanders, H Mion. Major hyperpipecolataemia in a normal adult. Journal of inherited metabolic disease. 1996; 19(5):624-6. doi: 10.1007/bf01799837. [PMID: 8892018]
  • N M Verhoeven, W Kulik, C M van den Heuvel, C Jakobs. Pre- and postnatal diagnosis of peroxisomal disorders using stable-isotope dilution gas chromatography--mass spectrometry. Journal of inherited metabolic disease. 1995; 18 Suppl 1(?):45-60. doi: 10.1007/bf00711428. [PMID: 9053555]
  • C Tranchant, P Aubourg, M Mohr, F Rocchiccioli, C Zaenker, J M Warter. A new peroxisomal disease with impaired phytanic and pipecolic acid oxidation. Neurology. 1993 Oct; 43(10):2044-8. doi: 10.1212/wnl.43.10.2044. [PMID: 8413964]
  • D W Armstrong, J Zukowski, N Ercal, M Gasper. Stereochemistry of pipecolic acid found in the urine and plasma of subjects with peroxisomal deficiencies. Journal of pharmaceutical and biomedical analysis. 1993 Oct; 11(10):881-6. doi: 10.1016/0731-7085(93)80044-2. [PMID: 8305590]
  • T Zee, F Stellaard, C Jakobs. Analysis of pipecolic acid in biological fluids using capillary gas chromatography with electron-capture detection and [2H11]pipecolic acid as internal standard. Journal of chromatography. 1992 Feb; 574(2):335-9. doi: 10.1016/0378-4347(92)80048-u. [PMID: 1618968]
  • K D Setchell, P Bragetti, L Zimmer-Nechemias, C Daugherty, M A Pelli, R Vaccaro, G Gentili, E Distrutti, G Dozzini, A Morelli. Oral bile acid treatment and the patient with Zellweger syndrome. Hepatology (Baltimore, Md.). 1992 Feb; 15(2):198-207. doi: 10.1002/hep.1840150206. [PMID: 1735522]
  • R A Roesel, J E Carroll, W B Rizzo, T van der Zalm, D A Hahn. Dyggve-Melchior-Clausen syndrome with increased pipecolic acid in plasma and urine. Journal of inherited metabolic disease. 1991; 14(6):876-80. doi: 10.1007/bf01800466. [PMID: 1779646]
  • S J Mihalik, W J Rhead. Species variation in organellar location and activity of L-pipecolic acid oxidation in mammals. Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology. 1991; 160(6):671-6. doi: 10.1007/bf00571266. [PMID: 2045546]
  • S J Mihalik, W J Rhead. L-pipecolic acid oxidation in the rabbit and cynomolgus monkey. Evidence for differing organellar locations and cofactor requirements in each species. The Journal of biological chemistry. 1989 Feb; 264(5):2509-17. doi: . [PMID: 2914918]
  • R J Wanders, H S Heymans, R B Schutgens, B T Poll-Thé, J M Saudubray, J M Tager, G Schrakamp, H van den Bosch. Peroxisomal functions in classical Refsum's disease: comparison with the infantile form of Refsum's disease. Journal of the neurological sciences. 1988 Apr; 84(2-3):147-55. doi: 10.1016/0022-510x(88)90120-7. [PMID: 2454298]