(2S,4R,5S)-Muscarine (BioDeep_00000006507)

 

Secondary id: BioDeep_00001868749

human metabolite Endogenous


代谢物信息卡片


Trimethyl(tetrahydro-4-hydroxy-5-methylfurfuryl)-ammonium

化学式: C9H20NO2+ (174.1494)
中文名称: (+)-毒蕈碱阳离子
谱图信息: 最多检出来源 Homo sapiens(not specific) 2.54%

分子结构信息

SMILES: CC1C(CC(O1)C[N+](C)(C)C)O
InChI: InChI=1S/C9H20NO2/c1-7-9(11)5-8(12-7)6-10(2,3)4/h7-9,11H,5-6H2,1-4H3/q+1

描述信息

D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010277 - Parasympathomimetics
D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018679 - Cholinergic Agonists
Main toxic constituent of the fly fungus Amanita muscaria and various Inocybe specie

同义名列表

15 个代谢物同义名

Trimethyl(tetrahydro-4-hydroxy-5-methylfurfuryl)-ammonium; [(4-hydroxy-5-methyloxolan-2-yl)methyl]trimethylazanium; (+)-(2S,4R,5S)-Muscarine; Muscarine (the alkaloid); (2S,4R,5S)-Muscarine; Muscarine (alkaloid); Muscarine chloride; L-(+)-Muscarine; (+)-Muscarine; Muscarine II; Muscarine; Muscarin; Muskarin; Muscarine; (+)-Muscarine cation



数据库引用编号

21 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

4 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 6 CA1, CHAT, GTPBP4, ITPR3, PRKX, TH
Peripheral membrane protein 1 ACHE
Endoplasmic reticulum membrane 2 CHRM3, ITPR3
Nucleus 6 ACHE, CHAT, GTPBP4, PLCZ1, PRKX, TH
cytosol 7 CA1, CHAT, GTPBP4, PLCZ1, PRKCQ, SST, TH
dendrite 3 CHRM3, DRD2, TH
nucleoplasm 5 CD2, GTPBP4, ITPR3, PLCZ1, PRKX
Cell membrane 5 ACHE, CD2, CHRM3, DRD2, KCNK3
Cell projection, axon 1 TH
Multi-pass membrane protein 6 CACNA1I, CHRM3, DRD2, ITPR3, KCNA3, KCNK3
Golgi apparatus membrane 1 DRD2
Synapse 6 ACHE, CHAT, CHRM3, DRD2, KCNK3, TAC1
cell surface 2 ACHE, CD2
glutamatergic synapse 2 DRD2, KCNA3
Golgi apparatus 2 ACHE, CD2
Golgi membrane 1 DRD2
neuromuscular junction 1 ACHE
neuronal cell body 3 ITPR3, SST, TAC1
presynaptic membrane 2 DRD2, KCNA3
smooth endoplasmic reticulum 1 TH
synaptic vesicle 1 TH
acrosomal vesicle 1 DRD2
plasma membrane 11 ACHE, BCHE, CACNA1I, CD2, CHRM3, DRD2, ITPR3, KCNA3, KCNK3, KNG1, PRKCQ
synaptic vesicle membrane 1 DRD2
terminal bouton 1 TH
Membrane 6 ACHE, CACNA1I, GTPBP4, ITPR3, KCNA3, KCNK3
axon 4 DRD2, KCNA3, TAC1, TH
basolateral plasma membrane 1 CHRM3
brush border 1 ITPR3
extracellular exosome 2 CA1, KNG1
endoplasmic reticulum 1 ITPR3
extracellular space 6 ACHE, BCHE, GNRH1, KNG1, SST, TAC1
perinuclear region of cytoplasm 5 ACHE, GTPBP4, KCNA3, PLCZ1, TH
mitochondrion 1 TH
protein-containing complex 1 CD2
pronucleus 1 PLCZ1
Single-pass type I membrane protein 1 CD2
Secreted 3 ACHE, BCHE, SST
extracellular region 7 ACHE, BCHE, CD2, GNRH1, KNG1, SST, TAC1
cytoplasmic side of plasma membrane 2 CD2, TH
Extracellular side 1 ACHE
centriolar satellite 1 PRKCQ
ciliary membrane 1 DRD2
nuclear membrane 1 GTPBP4
external side of plasma membrane 1 CD2
dendritic spine 1 DRD2
perikaryon 2 DRD2, TH
cytoplasmic vesicle 1 TH
nucleolus 3 GTPBP4, ITPR3, PLCZ1
Melanosome membrane 1 TH
apical part of cell 1 ITPR3
cell-cell junction 1 CD2
postsynaptic membrane 3 CHRM3, DRD2, KCNA3
Cytoplasm, perinuclear region 2 PLCZ1, TH
Membrane raft 1 KCNA3
GABA-ergic synapse 2 DRD2, SST
basement membrane 1 ACHE
sarcoplasmic reticulum 1 ITPR3
collagen-containing extracellular matrix 1 KNG1
lateral plasma membrane 2 CHRM3, DRD2
nuclear outer membrane 1 ITPR3
Postsynaptic cell membrane 1 CHRM3
receptor complex 1 ITPR3
neuron projection 2 CHAT, TH
cilium 1 DRD2
Secreted, extracellular space 1 KNG1
Nucleus, nucleolus 1 GTPBP4
blood microparticle 2 BCHE, KNG1
non-motile cilium 1 DRD2
Basolateral cell membrane 1 CHRM3
Lipid-anchor, GPI-anchor 1 ACHE
[Isoform 2]: Cell membrane 1 KCNA3
sperm flagellum 1 DRD2
side of membrane 1 ACHE
basal plasma membrane 1 CHRM3
voltage-gated potassium channel complex 1 KCNA3
secretory granule membrane 1 ITPR3
endoplasmic reticulum lumen 2 BCHE, KNG1
platelet alpha granule lumen 1 KNG1
axon terminus 1 DRD2
voltage-gated calcium channel complex 1 CACNA1I
endocytic vesicle 1 DRD2
immunological synapse 1 PRKCQ
neuronal dense core vesicle 1 SST
aggresome 1 PRKCQ
nuclear envelope lumen 1 BCHE
calyx of Held 1 KCNA3
platelet dense tubular network membrane 1 ITPR3
synaptic cleft 1 ACHE
[Isoform 1]: Cell membrane 1 KCNA3
dopaminergic synapse 1 DRD2
Cytoplasmic vesicle, secretory vesicle membrane 1 ITPR3
transport vesicle membrane 1 ITPR3
sperm head 1 PLCZ1
Cytoplasmic vesicle, secretory vesicle, synaptic vesicle 1 TH
G protein-coupled receptor complex 1 DRD2
cytoplasmic side of endoplasmic reticulum membrane 1 ITPR3
[Isoform 3]: Cytoplasm, perinuclear region 1 KCNA3
[Isoform H]: Cell membrane 1 ACHE


文献列表

  • HaoSen Zhang, Jing Wang, Chaozhan Wang. Multi-target bioactive compound screening from the infructescence of Platycarya strobilacea Sieb. et Zucc. by affinity chromatography using immobilized β2 -adrenoceptor and muscarinic-3 acetylcholine receptor as the stationary phase. Journal of separation science. 2023 Jun; ?(?):e2300129. doi: 10.1002/jssc.202300129. [PMID: 37339788]
  • Mark J Henderson, Kathleen A Trychta, Shyh-Ming Yang, Susanne Bäck, Adam Yasgar, Emily S Wires, Carina Danchik, Xiaokang Yan, Hideaki Yano, Lei Shi, Kuo-Jen Wu, Amy Q Wang, Dingyin Tao, Gergely Zahoránszky-Kőhalmi, Xin Hu, Xin Xu, David Maloney, Alexey V Zakharov, Ganesha Rai, Fumihiko Urano, Mikko Airavaara, Oksana Gavrilova, Ajit Jadhav, Yun Wang, Anton Simeonov, Brandon K Harvey. A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome. Cell reports. 2021 04; 35(4):109040. doi: 10.1016/j.celrep.2021.109040. [PMID: 33910017]
  • Fei Xu, Yi-Zhe Zhang, Yin-Hao Zhang, Guang-Yu Guan, Kai-Ping Zhang, Hai-Jiao Li, Jun-Jie Wang. Mushroom poisoning from Inocybe serotina: A case report from Ningxia, northwest China with exact species identification and muscarine detection. Toxicon : official journal of the International Society on Toxinology. 2020 May; 179(?):72-75. doi: 10.1016/j.toxicon.2020.03.003. [PMID: 32345453]
  • Andrei N Tsentsevitsky, Guzalia F Zakyrjanova, Alexey M Petrov, Irina V Kovyazina. Breakdown of phospholipids and the elevated nitric oxide are involved in M3 muscarinic regulation of acetylcholine secretion in the frog motor synapse. Biochemical and biophysical research communications. 2020 04; 524(3):589-594. doi: 10.1016/j.bbrc.2020.01.112. [PMID: 32029276]
  • Mao-Xian Ji, Meng-Wei Guo, Yu-Shan Gao, Ying Lan, Shan Wang, Yi-Fan Wang, Ying Qin, Hong-Lin Zhang, Xiao-Xuan Ren. [Comparison of effects of electroacupuncture at 'Tianshu' (ST25) and 'Dachangshu' (BL25) on intestinal sensitivity and expression of muscarinic M3R and 5-HT3AR in irritable bowel syndrome rats]. Zhen ci yan jiu = Acupuncture research. 2019 Apr; 44(4):264-9. doi: 10.13702/j.1000-0607.180764. [PMID: 31056879]
  • M Keshavarz, M Skill, M I Hollenhorst, S Maxeiner, M Walecki, U Pfeil, W Kummer, G Krasteva-Christ. Caveolin-3 differentially orchestrates cholinergic and serotonergic constriction of murine airways. Scientific reports. 2018 05; 8(1):7508. doi: 10.1038/s41598-018-25445-1. [PMID: 29760450]
  • Roger G Lentle, Gordon W Reynolds, Patrick W M Janssen, Corrin M Hulls, Quinten M King, John Paul Chambers. Characterisation of the contractile dynamics of the resting ex vivo urinary bladder of the pig. BJU international. 2015 Dec; 116(6):973-83. doi: 10.1111/bju.13132. [PMID: 25808089]
  • Jana Tomková, Peter Ondra, Ivo Válka. Simultaneous determination of mushroom toxins α-amanitin, β-amanitin and muscarine in human urine by solid-phase extraction and ultra-high-performance liquid chromatography coupled with ultra-high-resolution TOF mass spectrometry. Forensic science international. 2015 Jun; 251(?):209-13. doi: 10.1016/j.forsciint.2015.04.007. [PMID: 25916793]
  • Pavlína Ginterová, Barbora Sokolová, Peter Ondra, Joanna Znaleziona, Jan Petr, Juraj Ševčík, Vítězslav Maier. Determination of mushroom toxins ibotenic acid, muscimol and muscarine by capillary electrophoresis coupled with electrospray tandem mass spectrometry. Talanta. 2014 Jul; 125(?):242-7. doi: 10.1016/j.talanta.2014.03.019. [PMID: 24840440]
  • Alexander Paulke, Christian Kremer, Cora Wunder, Janosch Achenbach, Bardya Djahanschiri, Anderson Elias, J Stefan Schwed, Harald Hübner, Peter Gmeiner, Ewgenij Proschak, Stefan W Toennes, Holger Stark. Argyreia nervosa (Burm. f.): receptor profiling of lysergic acid amide and other potential psychedelic LSD-like compounds by computational and binding assay approaches. Journal of ethnopharmacology. 2013 Jul; 148(2):492-7. doi: 10.1016/j.jep.2013.04.044. [PMID: 23665164]
  • Ismaila Raji, Pierre Mugabo, Kenechukwu Obikeze. The contributions of muscarinic receptors and changes in plasma aldosterone levels to the anti-hypertensive effect of Tulbaghia violacea. BMC complementary and alternative medicine. 2013 Jan; 13(?):13. doi: 10.1186/1472-6882-13-13. [PMID: 23311308]
  • Barbara C das Neves, Mey Lyn Bacilio, Lisbeth Berrueta, Siham Salmen, Darrell L Peterson, Jose H Donis, Tulio J Nuñez, Diego F Davila. Muscarinic antibodies and heart rate responses to dynamic exercise and to the Valsalva maneuver in chronic chagasic patients. Revista do Instituto de Medicina Tropical de Sao Paulo. 2013 Jan; 55(1):31-7. doi: 10.1590/s0036-46652013000100006. [PMID: 23328723]
  • Jason P Chan, Zhitao Hu, Derek Sieburth. Recruitment of sphingosine kinase to presynaptic terminals by a conserved muscarinic signaling pathway promotes neurotransmitter release. Genes & development. 2012 May; 26(10):1070-85. doi: 10.1101/gad.188003.112. [PMID: 22588719]
  • Barbora Merová, Peter Ondra, Marie Staňková, Miroslav Soural, Jan Stříbrný, Lenka Hebká, Karel Lemr. Determination of muscarine in human urine by electrospray liquid chromatographic-mass spectrometric. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2011 Sep; 879(25):2549-53. doi: 10.1016/j.jchromb.2011.07.009. [PMID: 21803666]
  • Susan Oldfield, Jane Hancock, Angharad Mason, Sally A Hobson, David Wynick, Eamonn Kelly, Andrew D Randall, Neil V Marrion. Receptor-mediated suppression of potassium currents requires colocalization within lipid rafts. Molecular pharmacology. 2009 Dec; 76(6):1279-89. doi: 10.1124/mol.109.058008. [PMID: 19726551]
  • Barbora Merova, Peter Ondra, Marie Stankova, Ivo Valka. Isolation and identification of the Amanita muscaria and Amanita pantherina toxins in human urine. Neuro endocrinology letters. 2008 Oct; 29(5):744-8. doi: NULL. [PMID: 18987593]
  • María E Cruz, Angélica Flores, María T Palafox, Griselda Meléndez, Jorge O Rodríguez, Roberto Chavira, Roberto Domínguez. The role of the muscarinic system in regulating estradiol secretion varies during the estrous cycle: the hemiovariectomized rat model. Reproductive biology and endocrinology : RB&E. 2006 Aug; 4(?):43. doi: 10.1186/1477-7827-4-43. [PMID: 16923184]
  • James H Diaz. The epidemiology, toxidromic classification, general management, and prevention of mushroom poisoning in the United States. The Journal of the Louisiana State Medical Society : official organ of the Louisiana State Medical Society. 2005 Nov; 157(6):330-6. doi: NULL. [PMID: 16579346]
  • Xiao-Ke Chen, Lie-Cheng Wang, Yang Zhou, Qian Cai, Murali Prakriya, Kai-Lai Duan, Zu-Hang Sheng, Christopher Lingle, Zhuan Zhou. Activation of GPCRs modulates quantal size in chromaffin cells through G(betagamma) and PKC. Nature neuroscience. 2005 Sep; 8(9):1160-8. doi: 10.1038/nn1529. [PMID: 16116443]
  • Carla Distasi, Alessandra Gilardino, Jessica Erriquez, Pollyanna Zamburlin, Davide Lovisolo. A K(+) channel activated by cholinergic muscarinic receptors in chick ciliary ganglion neurons at early developmental stage. Brain research. 2003 Nov; 991(1-2):262-6. doi: 10.1016/j.brainres.2003.08.012. [PMID: 14575902]
  • Carla Distasi, Federico Di Gregorio, Alessandra Gilardino, Davide Lovisolo. A calcium-permeable channel activated by muscarinic acetylcholine receptors and InsP3 in developing chick ciliary ganglion neurons. Biochimica et biophysica acta. 2002 Jun; 1590(1-3):109-22. doi: 10.1016/s0167-4889(02)00206-9. [PMID: 12063174]
  • J W Daly, T H Gupta, W L Padgett, X F Pei. 6beta-Acyloxy(nor)tropanes: affinities for antagonist/agonist binding sites on transfected and native muscarinic receptors. Journal of medicinal chemistry. 2000 Jun; 43(13):2514-22. doi: 10.1021/jm9904001. [PMID: 10891110]
  • F Lebrun, A Francois, M Vergnet, L Lebaron-Jacobs, P Gourmelon, N M Griffiths. Ionizing radiation stimulates muscarinic regulation of rat intestinal mucosal function. The American journal of physiology. 1998 12; 275(6):G1333-40. doi: 10.1152/ajpgi.1998.275.6.g1333. [PMID: 9843770]
  • L C Fung, G R Greenberg. Somatostatin-14 modulates acid-dependent inhibition of meal-stimulated gastrin via muscarinic pathways in dogs. Regulatory peptides. 1998 Jun; 74(2-3):159-66. doi: 10.1016/s0167-0115(98)00036-6. [PMID: 9712177]
  • X F Pei, T H Gupta, B Badio, W L Padgett, J W Daly. 6beta-Acetoxynortropane: a potent muscarinic agonist with apparent selectivity toward M2-receptors. Journal of medicinal chemistry. 1998 Jun; 41(12):2047-55. doi: 10.1021/jm9705115. [PMID: 9622546]
  • P I Ivonnet, E L Chambers. Nicotinic acetylcholine receptors of the neuronal type occur in the plasma membrane of sea urchin eggs. Zygote (Cambridge, England). 1997 Aug; 5(3):277-87. doi: 10.1017/s0967199400003737. [PMID: 9460914]
  • B Gfell, W Kloas, W Hanke. Neuroendocrine effects on adrenal hormone secretion in carp (Cyprinus carpio). General and comparative endocrinology. 1997 Jun; 106(3):310-9. doi: 10.1006/gcen.1996.6870. [PMID: 9204364]
  • F Stümpel, T Kucera, A Gardemann, K Jungermann. Acute increase by portal insulin in intestinal glucose absorption via hepatoenteral nerves in the rat. Gastroenterology. 1996 Jun; 110(6):1863-9. doi: 10.1053/gast.1996.v110.pm8964412. [PMID: 8964412]
  • S Hatanaka, T Hosokami, K Kawarabayashi, M Iseri, K Tsubokura, K Furuhama. Pharmacological characteristics of DQ-2511 as a prokinetic agent. Archives internationales de pharmacodynamie et de therapie. 1995 Nov; 330(3):332-44. doi: . [PMID: 8836452]
  • C S Tsai, F Guede-Guina, M O Smith, M Vangah-Manda, R F Ochillo. Isolation of cholinergic active ingredients in aqueous extracts of Mareya micrantha using the longitudinal muscle of isolated guinea-pig ileum as a pharmacological activity marker. Journal of ethnopharmacology. 1995 Mar; 45(3):215-22. doi: 10.1016/0378-8741(94)01219-p. [PMID: 7623487]
  • L E Heasley, S I Senkfor, S Winitz, A Strasheim, I Teitelbaum, T Berl. Hormonal regulation of MAP kinase in cultured rat inner medullary collecting tubule cells. The American journal of physiology. 1994 Sep; 267(3 Pt 2):F366-73. doi: 10.1152/ajprenal.1994.267.3.f366. [PMID: 8092250]
  • M Toselli, V Taglietti. Muscarinic inhibition of high-voltage-activated calcium channels in excised membranes of rat hippocampal neurons. European biophysics journal : EBJ. 1994; 22(6):391-8. doi: 10.1007/bf00180160. [PMID: 7512023]
  • J G Contrera, S W Mcleskey, I Holopainen, J Xu, W J Wojcik. Muscarinic m2 receptors in cerebellar granule cell cultures from rat: mechanism of short-term desensitization. The Journal of pharmacology and experimental therapeutics. 1993 Apr; 265(1):433-40. doi: NULL. [PMID: 8474025]
  • J Ramos-Franco, C F Lo, G E Breitwieser. Platelet-activating factor receptor-dependent activation of the muscarinic K+ current in bullfrog atrial myocytes. Circulation research. 1993 Apr; 72(4):786-94. doi: 10.1161/01.res.72.4.786. [PMID: 8383014]
  • D Mohuczy-Dominiak, L C Garg. Muscarinic receptors in MDCK cells are coupled to multiple messenger systems. The American journal of physiology. 1992 Dec; 263(6 Pt 1):C1289-94. doi: 10.1152/ajpcell.1992.263.6.c1289. [PMID: 1335690]
  • J S Aguilar, J J Ballesta, J A Reig, M Palmero, S Viniegra, M Criado. Muscarinic receptor subtypes in bovine adrenal medulla. Neurochemical research. 1992 Dec; 17(12):1235-9. doi: 10.1007/bf00968406. [PMID: 1461370]
  • I D Forsythe, D G Lambert, S R Nahorski, P Lindsdell. Elevation of cytosolic calcium by cholinoceptor agonists in SH-SY5Y human neuroblastoma cells: estimation of the contribution of voltage-dependent currents. British journal of pharmacology. 1992 Sep; 107(1):207-14. doi: 10.1111/j.1476-5381.1992.tb14488.x. [PMID: 1422573]
  • K Yamagami, S Nishimura, M Sorimachi. Internal Ca2+ mobilization by muscarinic stimulation increases secretion from adrenal chromaffin cells only in the presence of Ca2+ influx. Journal of neurochemistry. 1991 Nov; 57(5):1681-9. doi: 10.1111/j.1471-4159.1991.tb06368.x. [PMID: 1717654]
  • M L Vitale, A Rodríguez Del Castillo, L Tchakarov, J M Trifaró. Cortical filamentous actin disassembly and scinderin redistribution during chromaffin cell stimulation precede exocytosis, a phenomenon not exhibited by gelsolin. The Journal of cell biology. 1991 Jun; 113(5):1057-67. doi: 10.1083/jcb.113.5.1057. [PMID: 1645735]
  • Z Qian, L R Drewes. Cross-talk between receptor-regulated phospholipase D and phospholipase C in brain. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 1991 Mar; 5(3):315-9. doi: 10.1096/fasebj.5.3.2001791. [PMID: 2001791]
  • D G Lambert, S R Nahorski. Muscarinic-receptor-mediated changes in intracellular Ca2+ and inositol 1,4,5-trisphosphate mass in a human neuroblastoma cell line, SH-SY5Y. The Biochemical journal. 1990 Jan; 265(2):555-62. doi: 10.1042/bj2650555. [PMID: 2302186]
  • K T Kim, E W Westhead. Cellular responses to Ca2+ from extracellular and intracellular sources are different as shown by simultaneous measurements of cytosolic Ca2+ and secretion from bovine chromaffin cells. Proceedings of the National Academy of Sciences of the United States of America. 1989 Dec; 86(24):9881-5. doi: 10.1073/pnas.86.24.9881. [PMID: 2602380]
  • C J Pirola, A L Alvarez, M S Balda, S Finkielman, V E Nahmod. Evidence for cholinergic innervation in dog renal tissue. The American journal of physiology. 1989 Nov; 257(5 Pt 2):F746-54. doi: 10.1152/ajprenal.1989.257.5.f746. [PMID: 2589481]
  • V E Sutliff, S Rattan, J D Gardner, R T Jensen. Characterization of cholinergic receptors mediating pepsinogen secretion from chief cells. The American journal of physiology. 1989 Aug; 257(2 Pt 1):G226-34. doi: 10.1152/ajpgi.1989.257.2.g226. [PMID: 2569831]
  • R M Santos, E Rojas. Muscarinic receptor modulation of glucose-induced electrical activity in mouse pancreatic B-cells. FEBS letters. 1989 Jun; 249(2):411-7. doi: 10.1016/0014-5793(89)80669-6. [PMID: 2567680]
  • R O Messing, A M Stevens, E Kiyasu, A B Sneade. Nicotinic and muscarinic agonists stimulate rapid protein kinase C translocation in PC12 cells. The Journal of neuroscience : the official journal of the Society for Neuroscience. 1989 Feb; 9(2):507-12. doi: 10.1523/jneurosci.09-02-00507.1989. [PMID: 2493078]
  • R W Behling, T Yamane, G Navon, M J Sammon, L W Jelinski. Measuring relative acetylcholine receptor agonist binding by selective proton nuclear magnetic resonance relaxation experiments. Biophysical journal. 1988 Jun; 53(6):947-54. doi: 10.1016/s0006-3495(88)83175-8. [PMID: 3395661]
  • J Belmin, J P Pangrazzi, R Salvatore, N Raynal, D Deslandes, R Moulias. [Muscarinic poisoning induced by bethanechol in renal insufficiency]. Presse medicale (Paris, France : 1983). 1988 Feb; 17(5):213. doi: NULL. [PMID: 2895466]
  • R Brehm, R Lindmar, K Löffelholz. Muscarinic mobilization of choline in rat brain in vivo as shown by the cerebral arterio-venous difference of choline. Journal of neurochemistry. 1987 May; 48(5):1480-5. doi: 10.1111/j.1471-4159.1987.tb05689.x. [PMID: 3559562]
  • K H Baratz, A D Proia, G K Klintworth, E G Lapetina. Cholinergic stimulation of phosphatidylinositol hydrolysis by rat corneal epithelium in vitro. Current eye research. 1987 May; 6(5):691-701. doi: 10.3109/02713688709034832. [PMID: 3109810]
  • I G Scott, K E Akerman, J E Heikkilä, K Kaila, L C Andersson. Development of a neural phenotype in differentiating ganglion cell-derived human neuroblastoma cells. Journal of cellular physiology. 1986 Aug; 128(2):285-92. doi: 10.1002/jcp.1041280221. [PMID: 3090056]
  • S Batra. Identification and characterization of muscarinic cholinergic receptors in the isolated plasma membranes and intact tissue of the urinary bladder. Journal of receptor research. 1986; 6(3-4):227-46. doi: 10.3109/10799898609074812. [PMID: 3806496]
  • B G Kasson, A J Hsueh. Nicotinic cholinergic agonists inhibit androgen biosynthesis by cultured rat testicular cells. Endocrinology. 1985 Nov; 117(5):1874-80. doi: 10.1210/endo-117-5-1874. [PMID: 2864237]
  • E A Bone, R H Michell. Accumulation of inositol phosphates in sympathetic ganglia. Effects of depolarization and of amine and peptide neurotransmitters. The Biochemical journal. 1985 Apr; 227(1):263-9. doi: 10.1042/bj2270263. [PMID: 2859852]