6-Ketoprostaglandin E1 (BioDeep_00000006019)

 

Secondary id: BioDeep_00001868655

human metabolite Endogenous


代谢物信息卡片


7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]-6-oxoheptanoic acid

化学式: C20H32O6 (368.2199)
中文名称:
谱图信息: 最多检出来源 Viridiplantae(plant) 9.58%

分子结构信息

SMILES: CCCCCC(C=CC1C(CC(=O)C1CC(=O)CCCCC(=O)O)O)O
InChI: InChI=1S/C20H32O6/c1-2-3-4-7-14(21)10-11-16-17(19(24)13-18(16)23)12-15(22)8-5-6-9-20(25)26/h10-11,14,16-18,21,23H,2-9,12-13H2,1H3,(H,25,26)/b11-10+/t14-,16+,17+,18+/m0/s1

描述信息

6-Ketoprostaglandin E1 (6-keto PGE1) is a biologically active and stable prostacyclin (PGI2) metabolite and a substrate for Adenylate cyclase type III. 6-keto PGE1 is a potent coronary vasodilator. 6-keto PGE1 could be elevated in plasma of patients with primary thrombocythaemia. 6-keto-PGE1 has approximately four times less potent antiplatelet activity than PGI2 on a molar basis in man. The cardiovascular and plasma renin activity (PRA) changes are less prominent for 6-keto-PGE1 than PGI2. Salt loading slightly increases urinary 6-keto PGE1. 6-keto-PGE1 elicits the same biological effects as PGI2 in human platelets and in rabbit aorta and mesenteric artery, being, however, less potent. 6-keto-PGE1 dose-dependently stimulates adenylate cyclase activity in membranes of human platelets and cultured myocytes from rabbit aorta and mesenteric artery. The extent of stimulation of the enzyme by 6-keto-PGE1 is the same as elicited by PGI2, while the apparent affinity is lower than that of prostacyclin, both in platelets and in vascular smooth muscle cells. At the level of platelet membranes, 6-keto-PGE1 interacts with the binding sites labelled by PGI2. However, in platelets as well as in mesenteric artery myocytes, 6-keto-PGE1 interacts with only one class of sites as demonstrated either by binding or by adenylate cyclase studies, whereas PGI2 in the same conditions recognizes two different classes. (PMID: 3186779, 3075239, 3472253, 3912001, 3881881, 6391491)Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways.
6-Ketoprostaglandin E1(6-keto PGE1) is a biologically active and stable prostacyclin (PGI2) metabolite and a substrate for Adenylate cyclase type III. 6-keto PGE1 is a potent coronary vasodilator. 6-keto PGE1 could be elevated in plasma of patients with primary thrombocythaemia. 6-keto-PGE1 has approximately four times less potent antiplatelet activity than PGI2 on a molar basis in man. The cardiovascular and plasma renin activity (PRA) changes are less prominent for 6-keto-PGE1 than PGI2. Salt loading slightly increases urinary 6-keto PGE1.
D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents

同义名列表

14 个代谢物同义名

7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]-6-oxoheptanoic acid; 7-[(1R,2R,3R)-3-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-5-oxocyclopentyl]-6-oxoheptanoic acid; 6,9-dioxo-11R,15S-dihydroxy-13E-prostenoic acid; 6,9-dioxo-11R,15S-Dihydroxy-13E-prostenoate; 6-Keto-prostaglandin e1; 6-keto Prostaglandin E1; 6-Ketoprostaglandin E1; 6-oxo-Prostaglandin e1; 6-Oxoprostaglandin e1; 6-keto PGE1; 6-Keto-pge1; 6-oxo-PGE1; 6-KPGE1; 6-Keto-prostaglandin E1



数据库引用编号

16 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

47 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(1)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(46)

PharmGKB(0)

1 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 3 CALCA, HPGD, PRKX
Peripheral membrane protein 1 AP1S2
Endosome membrane 1 CTSD
Endoplasmic reticulum membrane 3 EDA, HSP90B1, PTGES
Nucleus 2 HSP90B1, PRKX
cytosol 5 AP1S2, AVP, HPGD, HSP90B1, PRKCQ
dendrite 1 AVP
nucleoplasm 2 HPGD, PRKX
Cell membrane 2 CYSLTR2, EDA
Cytoplasmic side 1 AP1S2
Multi-pass membrane protein 2 CYSLTR2, PTGES
cell surface 2 CD40, EPO
Golgi apparatus 1 AP1S2
Golgi membrane 2 AP1S2, INS
lysosomal membrane 2 AP1S2, CTSD
neuronal cell body 2 CALCA, CD40
smooth endoplasmic reticulum 1 HSP90B1
Lysosome 1 CTSD
plasma membrane 9 CD40, CD83, CSF2, CYSLTR2, EDA, F2, KNG1, PRKCQ, REN
terminal bouton 1 CALCA
Membrane 6 CD40, CD83, EDA, HSP90B1, PTGES, REN
basolateral plasma membrane 1 HPGD
extracellular exosome 7 CD40, CTSD, EPO, F2, HPGD, HSP90B1, KNG1
endoplasmic reticulum 1 HSP90B1
extracellular space 12 AVP, CALCA, CD40, CSF2, CTSD, EDA, EPO, F2, INS, KNG1, PTH, REN
lysosomal lumen 1 CTSD
perinuclear region of cytoplasm 2 HSP90B1, PTGES
protein-containing complex 1 HSP90B1
intracellular membrane-bounded organelle 4 AP1S2, CD40, CSF2, EDA
Single-pass type I membrane protein 1 CD40
Secreted 8 AVP, CALCA, CSF2, EDA, EPO, F2, INS, REN
extracellular region 12 AVP, CALCA, CSF2, CTSD, EDA, EPO, F2, HSP90B1, INS, KNG1, PTH, REN
hippocampal mossy fiber to CA3 synapse 1 CALCA
centriolar satellite 1 PRKCQ
CD40 receptor complex 1 CD40
external side of plasma membrane 2 CD40, CD83
varicosity 1 CD40
midbody 1 HSP90B1
Early endosome 1 AP1S2
Membrane, clathrin-coated pit 1 AP1S2
apical part of cell 2 EDA, REN
clathrin-coated pit 1 AP1S2
Single-pass type II membrane protein 1 EDA
Cytoplasm, perinuclear region 1 PTGES
Membrane raft 1 CTSD
focal adhesion 1 HSP90B1
collagen trimer 1 EDA
collagen-containing extracellular matrix 4 CTSD, F2, HSP90B1, KNG1
secretory granule 1 AVP
cytoskeleton 1 EDA
Secreted, extracellular space 1 KNG1
blood microparticle 2 F2, KNG1
Endomembrane system 1 AP1S2
endosome lumen 2 CTSD, INS
Lipid droplet 1 EDA
Cytoplasmic vesicle membrane 1 AP1S2
Melanosome 2 CTSD, HSP90B1
cell body 1 EPO
sperm plasma membrane 1 HSP90B1
trans-Golgi network membrane 1 AP1S2
ficolin-1-rich granule lumen 1 CTSD
secretory granule lumen 2 EPO, INS
Golgi lumen 2 F2, INS
endoplasmic reticulum lumen 4 F2, HSP90B1, INS, KNG1
platelet alpha granule lumen 1 KNG1
specific granule lumen 1 CTSD
tertiary granule lumen 1 CTSD
transport vesicle 1 INS
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
immunological synapse 1 PRKCQ
neuronal dense core vesicle 2 AVP, CALCA
aggresome 1 PRKCQ
nuclear envelope lumen 1 PTGES
clathrin-coated endocytic vesicle membrane 1 AVP
Sarcoplasmic reticulum lumen 1 HSP90B1
AP-type membrane coat adaptor complex 1 AP1S2
membrane coat 1 AP1S2
AP-1 adaptor complex 1 AP1S2
granulocyte macrophage colony-stimulating factor receptor complex 1 CSF2
endocytic vesicle lumen 1 HSP90B1
endoplasmic reticulum chaperone complex 1 HSP90B1
[Ectodysplasin-A, secreted form]: Secreted 1 EDA


文献列表

  • Lili Cui, Meimei Xing, Lanting Xu, Junya Wang, Xiaofeng Zhang, Changyang Ma, Wenyi Kang. Antithrombotic components of Malus halliana Koehne flowers. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2018 Sep; 119(?):326-333. doi: 10.1016/j.fct.2018.02.049. [PMID: 29496530]
  • Gabriel Mayoral-Andrade, Laura Pérez-Campos-Mayoral, Abraham Majluf-Cruz, Eduardo Perez-Campos Mayoral, Carlos Perez Campos Mayoral, Ana Rocha-Núñez, Margarito Martinez, Edgar Zenteno, Leticia Hernandez-Gonzalez, María Guadalupe López Juan, Alma Dolores Pérez-Santiago, Eduardo Pérez-Campos. Reduced platelet aggregation in women after intercourse: a possible role for the cyclooxygenase pathway. Clinical and experimental pharmacology & physiology. 2017 Aug; 44(8):847-853. doi: 10.1111/1440-1681.12783. [PMID: 28502103]
  • Wei Wang, Einath Zolty, Sandor Falk, Veena Basava, Leonid Reznikov, Robert Schrier. Pentoxifylline protects against endotoxin-induced acute renal failure in mice. American journal of physiology. Renal physiology. 2006 Nov; 291(5):F1090-5. doi: 10.1152/ajprenal.00517.2005. [PMID: 16985210]
  • L H Zhang, C B Yao, H Q Li. Effects of extract F of red-rooted Salvia on mucosal lesions of gastric corpus and antrum induced by hemorrhagic shock-reperfusion in rats. World journal of gastroenterology. 2001 Oct; 7(5):672-7. doi: 10.3748/wjg.v7.i5.672. [PMID: 11819852]
  • D M Clive, J S Stoff, M Cardi, D E MacIntyre, R S Brown, E W Salzman. Evidence that circulating 6keto prostaglandin E1 causes the platelet defect of Bartter's syndrome. Prostaglandins, leukotrienes, and essential fatty acids. 1990 Dec; 41(4):251-8. doi: 10.1016/0952-3278(90)90138-b. [PMID: 2077538]
  • S Ito, O A Carretero, K Abe, W H Beierwaltes, K Yoshinaga. Effect of prostanoids on renin release from rabbit afferent arterioles with and without macula densa. Kidney international. 1989 May; 35(5):1138-44. doi: 10.1038/ki.1989.102. [PMID: 2504984]
  • J P Pieroni, F Dray, C R Pace-Asciak, J C McGiff. Identification of 6-keto-prostaglandin E1 obtained from isolated perfused kidney of the rabbit. The Journal of pharmacology and experimental therapeutics. 1988 Oct; 247(1):63-8. doi: . [PMID: 3139870]
  • M C Auclair, C Vernimmen, P Lechat. Influence of prostacyclin and two metabolites on the contractility of cultured rat heart cells. Prostaglandins, leukotrienes, and essential fatty acids. 1988 Apr; 32(1):33-8. doi: 10.1016/0952-3278(88)90091-9. [PMID: 3290904]
  • V I Tseluĭko, V I Volkov, L L Simirenko, N L Volodos'. [Prostaglandins and thromboxane in coronary arteriosclerosis]. Kardiologiia. 1987 Oct; 27(10):36-9. doi: NULL. [PMID: 3480387]
  • B E Gibson, M R Buchanan, R D Barr, J G White. Primary thrombocythaemia in childhood: symptomatic episodes and their relationship to thromboxane A2, 6-keto-PGE1 and 12-hydroxy-eicosatetraenoic acid production: a case report. Prostaglandins, leukotrienes, and medicine. 1987 Mar; 26(3):221-31. doi: 10.1016/0262-1746(87)90032-1. [PMID: 3472253]
  • D M Olson, S J Lye, J R Challis. Prostaglandin concentrations in ovine maternal and fetal tissues at late gestation. Pediatric research. 1986 Jan; 20(1):83-6. doi: 10.1203/00006450-198601000-00023. [PMID: 3456149]
  • I Miyamori, T Morise, S Yasuhara, Y Takeda, H Koshida, R Takeda. Single-blind study of epoprostenol and 6-keto-prostaglandin E1 in man: effects of platelet aggregation and plasma renin. British journal of clinical pharmacology. 1985 Dec; 20(6):681-3. doi: 10.1111/j.1365-2125.1985.tb05128.x. [PMID: 3912001]
  • H Inao. [Effects of sex steroid hormones on vascular reactivity to angiotensin II in castrated rat]. Nihon Sanka Fujinka Gakkai zasshi. 1985 Dec; 37(12):2806-12. doi: . [PMID: 4086908]
  • V Bertelé, M Stemerman, A Schafer, B Adelman, M Smith, R Fuhro, E Salzman. Refractoriness of platelets to prostaglandins after infusion in rabbits. The Journal of laboratory and clinical medicine. 1985 Nov; 106(5):551-61. doi: NULL. [PMID: 2997353]
  • P S Wilsoncroft, F J Lofts, R J Griffiths, P K Moore. The effect of 6-oxo-prostaglandin E1 on human platelet aggregation in whole blood in-vitro. The Journal of pharmacy and pharmacology. 1985 Feb; 37(2):139-41. doi: 10.1111/j.2042-7158.1985.tb05026.x. [PMID: 2858551]
  • R J Griffiths, C N Berry, J R Hoult, P K Moore. Age-dependent changes in the synthesis and catabolism of 6 oxo PGE1 and other prostanoids by the rat kidney in vitro. Biochemical pharmacology. 1985 Jan; 34(2):223-8. doi: 10.1016/0006-2952(85)90128-5. [PMID: 3881101]
  • T Ogihara, S Gotoh, Y Tabuchi, Y Kumahara. Involvement of endogenous prostaglandins in salt-induced hypertension. Acta endocrinologica. 1985 Jan; 108(1):114-8. doi: 10.1530/acta.0.1080114. [PMID: 3881881]
  • C N Berry, J R Hoult, R J Griffiths, P K Moore. Enzymatic inactivation of 6-keto-prostaglandin E1 in vitro: comparison with prostaglandin E1. Biochemical pharmacology. 1984 Apr; 33(8):1277-84. doi: 10.1016/0006-2952(84)90181-3. [PMID: 6549614]
  • J W Fisher, P K Nelson, M Belegu, M Hagiwara, B Beckman. Prostanoid activation of erythropoiesis. Haematologia. 1984; 17(2):137-49. doi: . [PMID: 6543529]
  • D P Hajjar. Prostaglandins modulate arterial cholesteryl ester metabolism. Enzyme. 1984; 32(4):218-27. doi: 10.1159/000469481. [PMID: 6098442]
  • R N Weinreb, M D Mitchell, J R Polansky. Prostaglandin production by human trabecular cells: in vitro inhibition by dexamethasone. Investigative ophthalmology & visual science. 1983 Dec; 24(12):1541-5. doi: NULL. [PMID: 6581147]
  • U Förstermann, B Neufang. Elimination from the circulation of cats of 6-keto-prostaglandin E1 compared with prostaglandins E2 and I2. The Journal of pharmacy and pharmacology. 1983 Nov; 35(11):724-8. doi: 10.1111/j.2042-7158.1983.tb02878.x. [PMID: 6139453]
  • S J Lye, P Carnevale, D M Olson, J R Challis. Stimulation of ovine myometrial activity by 6-keto prostaglandin E1. Prostaglandins. 1983 Nov; 26(5):731-43. doi: 10.1016/0090-6980(83)90058-8. [PMID: 6366917]
  • R J Griffiths, P K Moore. Conversion of prostacyclin to 6 oxo prostaglandin E1 by rat, rabbit, guinea-pig and human platelets. British journal of pharmacology. 1983 Oct; 80(2):395-402. doi: 10.1111/j.1476-5381.1983.tb10046.x. [PMID: 6360281]
  • P K Moore, R J Griffiths, F J Lofts. The effect of some flavone drugs on the conversion of prostacyclin to 6-oxoprostaglandin E1. Biochemical pharmacology. 1983 Sep; 32(18):2813-7. doi: 10.1016/0006-2952(83)90097-7. [PMID: 6414481]
  • T Morise, I Miyamori, M Ikeda, Y Takeda, H Koshida, S Yasuhara, R Takeda. [Effects of 6-oxo-PGE1 on the renin-angiotensin-aldosterone system, blood pressure and platelet aggregability in man]. Nihon Naibunpi Gakkai zasshi. 1983 Aug; 59(8):1138-44. doi: 10.1507/endocrine1927.59.8_1138. [PMID: 6686560]
  • P K Moore, R J Griffiths, Z A Gaffen. Catabolism of 6 keto PGE1: biological activation by the rat kidney in vitro. European journal of pharmacology. 1983 Jul; 91(2-3):311-5. doi: 10.1016/0014-2999(83)90485-5. [PMID: 6684573]
  • J W Fisher. Control of erythropoietin production. Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.). 1983 Jul; 173(3):289-305. doi: 10.3181/00379727-173-41646. [PMID: 6346325]
  • R J Griffiths, P K Moore. Formation of 6-keto prostaglandin E1 in mammalian kidneys. British journal of pharmacology. 1983 May; 79(1):149-55. doi: 10.1111/j.1476-5381.1983.tb10507.x. [PMID: 6347300]
  • D B Schwartz, T M Phernetton, M K Stock, J H Rankin. Placental vascular responses to 6-keto-prostaglandin E1 in the near-term sheep. American journal of obstetrics and gynecology. 1983 Feb; 145(4):406-10. doi: 10.1016/0002-9378(83)90308-3. [PMID: 6337494]
  • F J Lofts, P K Moore. Release of a 6-oxoprostaglandin E1-like substance from human platelets. Clinical science (London, England : 1979). 1983 Jan; 64(1):63-8. doi: 10.1042/cs0640063. [PMID: 6681597]
  • C N Berry, J R Hoult. 6-Keto-prostaglandin E1: its formation by platelets from prostacyclin and resistance to pulmonary degradation. Pharmacology. 1983; 26(6):324-30. doi: 10.1159/000137818. [PMID: 6348806]
  • H Wey, L Gallon, M T Subbiah. Prostaglandin synthesis in aorta and platelets of fawn-hooded rats with platelet storage pool disease and its response to cholesterol feeding. Thrombosis and haemostasis. 1982 Aug; 48(1):94-7. doi: 10.1055/s-0038-1657225. [PMID: 6890244]
  • E K Jackson, H T Heidemann, R A Branch, J F Gerkens. Low dose intrarenal infusions of PGE2, PGI2, and 6-keto-PGE1 vasodilate the in vivo rat kidney. Circulation research. 1982 Jul; 51(1):67-72. doi: 10.1161/01.res.51.1.67. [PMID: 7044603]
  • E G Spokas, P Y Wong, J C McGiff. Prostaglandin-related renin release from rabbit renal cortical slices. Hypertension (Dallas, Tex. : 1979). 1982 May; 4(3 Pt 2):96-100. doi: NULL. [PMID: 7040243]
  • E K Jackson, R P Goodman, G A Fitzgerald, J A Oates, R A Branch. Assessment of the extent to exogenous prostaglandin I2 is converted to 6-keto-prostaglandin E1 in human subjects. The Journal of pharmacology and experimental therapeutics. 1982 Apr; 221(1):183-7. doi: NULL. [PMID: 7038095]
  • D P Mikhailidis, A M Mikhailidis, M L Woollard, P Dandona. Protection of prostacyclin-like activity in human plasma-a non-enzymatic mechanism?. Clinical science (London, England : 1979). 1982 Feb; 62(2):177-81. doi: 10.1042/cs0620177. [PMID: 7032807]
  • S Tsunoda, E K Jackson, R A Branch, J F Gerkens. Comparison of the pulmonary, hepatic and renal extraction of PGI2 and 6-keto-PGE1. European journal of pharmacology. 1982 Jan; 77(2-3):147-51. doi: 10.1016/0014-2999(82)90010-3. [PMID: 7037431]
  • D G Chang, H H Tai. A radioimmunoassay for 6-ketoprostaglandin E1. Prostaglandins, leukotrienes, and medicine. 1982 Jan; 8(1):11-9. doi: 10.1016/0262-1746(82)90120-2. [PMID: 6952274]
  • J C McGiff, E G Spokas, P Y Wong. Stimulation of renin release by 6-oxo-prostaglandin E1 and prostacyclin. British journal of pharmacology. 1982 Jan; 75(1):137-44. doi: 10.1111/j.1476-5381.1982.tb08766.x. [PMID: 7042021]
  • U Schwertschlag, T Stahl, E Hackenthal. A comparison of the effects of prostacyclin and 6-keto-prostaglandin E1 on renin release in the isolated rat and rabbit kidney. Prostaglandins. 1982 Jan; 23(1):129-38. doi: 10.1016/0090-6980(82)90028-4. [PMID: 7038776]
  • P Y Wong, W H Lee, C P Quilley, J C McGiff. Metabolism of prostacyclin: formation of an active metabolite in the liver. Federation proceedings. 1981 May; 40(7):2001-4. doi: NULL. [PMID: 7014260]
  • E G Pontecorvo, C B Myers, H L Lippton, P J Kadowitz. Inhibition of platelet aggregation by 6-keto-PGE1; lack of an effect on cyclic GMP levels. Prostaglandins and medicine. 1981 May; 6(5):473-83. doi: 10.1016/0161-4630(81)90106-3. [PMID: 6267636]
  • N S Rapp, T V Zenser, B B Davis. 6-Ketoprostaglandin E1 stimulation of rat and rabbit renal adenylate cyclase-cyclic AMP systems. Biochimica et biophysica acta. 1981 Mar; 673(2):163-9. doi: . [PMID: 6260231]
  • D D Pifer, L M Cagen, C M Chesney. Stability of prostaglandin I2 in human blood. Prostaglandins. 1981 Feb; 21(2):165-75. doi: 10.1016/0090-6980(81)90135-0. [PMID: 7012932]
  • E K Jackson, W A Herzer, J B Zimmerman, R A Branch, J A Oates, J F Gerkens. 6-Keto-prostaglandin E1 is more potent than prostaglandin I2 as a renal vasodilator and renin secretagogue. The Journal of pharmacology and experimental therapeutics. 1981 Jan; 216(1):24-7. doi: . [PMID: 7005428]
  • L P Feigen, B M Chapnick, A L Hyman, L King, B Marascalco, P J Kadowitz. Peripheral vasodilator effects of prostaglandins: comparison of 6-keto-prostaglandin E1 with prostacyclin and escape from prostaglandin E2 in the mesenteric vascular bed. The Journal of pharmacology and experimental therapeutics. 1980 Sep; 214(3):528-34. doi: NULL. [PMID: 6995573]
  • H Araki, A M Lefer. Protective action of 6-keto-prostaglandin E1 in traumatic shock. Prostaglandins and medicine. 1979 Apr; 2(4):277-84. doi: 10.1016/0161-4630(79)90061-2. [PMID: 575862]