Coproporphyrin III (BioDeep_00000005944)

 

Secondary id: BioDeep_00000399614

human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite


代谢物信息卡片


3-[9,15,19-tris(2-carboxyethyl)-5,10,14,20-tetramethyl-21,22,23,24-tetraazapentacyclo[16.2.1.1^{3,6}.1^{8,11}.1^{13,16}]tetracosa-1(20),2,4,6(24),7,9,11,13(22),14,16,18-undecaen-4-yl]propanoic acid

化学式: C36H38N4O8 (654.269)
中文名称: 粪卟啉III二盐酸盐
谱图信息: 最多检出来源 Chinese Herbal Medicine(otcml) 7.94%

分子结构信息

SMILES: CC1=C(C2=CC3=C(C(=C(N3)C=C4C(=C(C(=N4)C=C5C(=C(C(=N5)C=C1N2)C)CCC(=O)O)C)CCC(=O)O)C)CCC(=O)O)CCC(=O)O
InChI: InChI=1S/C36H38N4O8/c1-17-21(5-9-33(41)42)29-14-27-19(3)22(6-10-34(43)44)30(39-27)15-28-20(4)24(8-12-36(47)48)32(40-28)16-31-23(7-11-35(45)46)18(2)26(38-31)13-25(17)37-29/h13-16,38,40H,5-12H2,1-4H3,(H,41,42)(H,43,44)(H,45,46)(H,47,48)

描述信息

Coproporphyrin III is a porphyrin metabolite arising from heme synthesis. Porphyrins are pigments found in both animal and plant life. Coproporphyrin III is a tetrapyrrole dead-end product from the spontaneous oxidation of the methylene bridges of coproporphynogen, arising from heme synthesis and secreted in feces and urine. Increased levels of coproporphyrins can indicate congenital erythropoietic porphyria or sideroblastic anaemia, which are inherited disorders. Porphyria is a pathological state characterised by abnormalities of porphyrin metabolism and results in the excretion of large quantities of porphyrins in the urine and in extreme sensitivity to light. A large number of factors are capable of increasing porphyrin excretion, owing to different and multiple causes and etiologies: 1) the main site of the chronic hepatic porphyria disease process concentrates on the liver, 2) a functional and morphologic liver injury is almost regularly associated with this chronic porphyria, 3) the toxic form due to occupational and environmental exposure takes mainly a subclinical course. Hepatic factors includes disturbance in coproporphyrinogen metabolism, which results from inhibition of coproporphyrinogen oxidase as well as from the rapid loss from, and diminished utilization of coproporphyrinogen in the hepatocytes, which may also explain why coproporphyrin, its autoxidation product, predominates physiologically in the urine; decreased biliary excretion of coproporphyrin leading to a compensatory urinary excretion, so that the coproporphyrin ring isomer ratio (1:III) becomes a sensitive index for impaired liver function and intrahepatic cholestasis; and disturbed activity of hepatic uroporphyrinogen decarboxylase. In itself, secondary coproporphyrinuria is not associated with porphyria symptoms of a hepatologic-gastroenterologic, neurologic, or dermatologic order, even though coproporphyrinuria can occur with such symptoms. (PMID: 3327428).
Excreted in small amounts in urine and faeces, found in blood, yeast, microorganisms etc. By-product of Haem formation in vivo, due to oxidation of the porphyrinogen (CCD)
Coproporphyrin III (Zincphyrin) is a naturally occurring porphyrin derivative that is mainly found in urine[1][2].

同义名列表

7 个代谢物同义名

3-[9,15,19-tris(2-carboxyethyl)-5,10,14,20-tetramethyl-21,22,23,24-tetraazapentacyclo[16.2.1.1^{3,6}.1^{8,11}.1^{13,16}]tetracosa-1(20),2,4,6(24),7,9,11,13(22),14,16,18-undecaen-4-yl]propanoic acid; 3-[9,15,19-tris(2-carboxyethyl)-5,10,14,20-tetramethyl-21,22,23,24-tetraazapentacyclo[16.2.1.1^{3,6}.1^{8,11}.1^{13,16}]tetracosa-1,3(24),4,6,8,10,12,14,16(22),17,19-undecaen-4-yl]propanoic acid; 3,8,13,17-Tetramethylporphyrin-2,7,12,18-tetrapropanoic acid; 3,8,13,17-Tetramethylporphyrin-2,7,12,18-tetrapropanoate; Coproporphyrin III; Zincphyrin; Coproporphyrin III



数据库引用编号

16 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

2 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 3 CAT, COPA, CPOX
Golgi apparatus, trans-Golgi network membrane 1 VPS13B
Peripheral membrane protein 4 ALAS1, AZU1, COPA, VPS13B
Endosome membrane 1 ABCB6
Endoplasmic reticulum membrane 2 ABCB6, COPA
Mitochondrion membrane 1 ABCG2
cytosol 6 ABCB6, ALAS1, CAT, COPA, CPOX, UROD
mitochondrial membrane 1 ABCG2
nucleoplasm 5 ABCB6, ABCG2, ALAS1, ATP2B1, UROD
Cell membrane 6 ABCB6, ABCG2, ATP2B1, SLCO1A2, SLCO1B1, SLCO1B3
Cytoplasmic side 2 AZU1, COPA
Early endosome membrane 2 ABCB6, VPS13B
Multi-pass membrane protein 7 ABCB6, ABCG2, ATP2B1, FLVCR1, SLCO1A2, SLCO1B1, SLCO1B3
Golgi apparatus membrane 2 ABCB6, COPA
Synapse 1 ATP2B1
cell surface 1 EPO
glutamatergic synapse 1 ATP2B1
Golgi apparatus 1 ABCB6
Golgi membrane 4 ABCB6, COPA, INS, VPS13B
growth cone 1 COPA
lysosomal membrane 2 ABCB6, VPS13B
mitochondrial inner membrane 3 ALAS1, FECH, FLVCR1
presynaptic membrane 1 ATP2B1
endosome 1 ABCB6
plasma membrane 9 ABCB6, ABCG2, ATP2B1, CSF2, FLVCR1, GCG, SLCO1A2, SLCO1B1, SLCO1B3
synaptic vesicle membrane 1 ATP2B1
Membrane 11 ABCB6, ABCG2, ATP2B1, AZU1, CAT, COPA, CPOX, FLVCR1, SLCO1A2, SLCO1B1, SLCO1B3
apical plasma membrane 2 ABCG2, SLCO1A2
basolateral plasma membrane 4 ATP2B1, SLCO1A2, SLCO1B1, SLCO1B3
extracellular exosome 6 ABCB6, ATP2B1, AZU1, CAT, COPA, EPO
Lysosome membrane 2 ABCB6, VPS13B
endoplasmic reticulum 1 ABCB6
extracellular space 7 AZU1, COPA, CSF2, CXCL8, EPO, GCG, INS
mitochondrion 6 ABCB6, ALAS1, CAT, CPOX, FECH, FLVCR1
protein-containing complex 1 CAT
intracellular membrane-bounded organelle 4 ATP2B1, AZU1, CAT, CSF2
Secreted 5 CSF2, CXCL8, EPO, GCG, INS
extracellular region 7 AZU1, CAT, CSF2, CXCL8, EPO, GCG, INS
Mitochondrion outer membrane 1 ABCB6
mitochondrial outer membrane 1 ABCB6
mitochondrial matrix 3 ALAS1, CAT, FECH
Cytoplasmic vesicle, secretory vesicle, synaptic vesicle membrane 1 ATP2B1
Melanosome membrane 1 ABCB6
Apical cell membrane 1 ABCG2
Mitochondrion inner membrane 2 ALAS1, FECH
Membrane raft 1 ABCG2
focal adhesion 1 CAT
Peroxisome 1 CAT
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 1 CAT
mitochondrial intermembrane space 1 CPOX
lateral plasma membrane 1 ATP2B1
Late endosome membrane 1 ABCB6
cell projection 1 ATP2B1
brush border membrane 1 ABCG2
Basolateral cell membrane 3 ATP2B1, SLCO1B1, SLCO1B3
Recycling endosome membrane 1 VPS13B
endosome lumen 1 INS
cytoplasmic stress granule 1 AZU1
Presynaptic cell membrane 1 ATP2B1
cell body 1 EPO
basal plasma membrane 3 SLCO1A2, SLCO1B1, SLCO1B3
azurophil granule 1 AZU1
trans-Golgi network membrane 1 VPS13B
multivesicular body membrane 1 ABCB6
ficolin-1-rich granule lumen 1 CAT
secretory granule lumen 4 CAT, EPO, GCG, INS
Golgi lumen 1 INS
endoplasmic reticulum lumen 2 GCG, INS
transport vesicle 2 COPA, INS
azurophil granule membrane 1 AZU1
Secreted, extracellular exosome 1 ABCB6
azurophil granule lumen 1 AZU1
Endoplasmic reticulum-Golgi intermediate compartment membrane 2 INS, VPS13B
mitochondrial envelope 1 ABCB6
immunological synapse 1 ATP2B1
Cytoplasmic vesicle, COPI-coated vesicle membrane 1 COPA
COPI vesicle coat 1 COPA
Golgi apparatus, cis-Golgi network membrane 1 VPS13B
ATP-binding cassette (ABC) transporter complex 1 ABCB6
Endosome, multivesicular body membrane 1 ABCB6
Basal cell membrane 3 SLCO1A2, SLCO1B1, SLCO1B3
external side of apical plasma membrane 1 ABCG2
endolysosome membrane 1 ABCB6
[Isoform 1]: Cell membrane 1 FLVCR1
membrane coat 1 COPA
cis-Golgi network membrane 1 VPS13B
COPI-coated vesicle membrane 1 COPA
acrosomal membrane 1 VPS13B
Cytoplasmic vesicle, secretory vesicle, acrosome membrane 1 VPS13B
granulocyte macrophage colony-stimulating factor receptor complex 1 CSF2
[Glucagon-like peptide 1]: Secreted 1 GCG
catalase complex 1 CAT
vacuolar membrane 1 ABCB6
photoreceptor ribbon synapse 1 ATP2B1
Cytoplasmic granule membrane 1 AZU1
[Xenin]: Secreted 1 COPA
[Isoform 2]: Mitochondrion membrane 1 FLVCR1


文献列表

  • Mikko Neuvonen, Aleksi Tornio, Päivi Hirvensalo, Janne T Backman, Mikko Niemi. Performance of Plasma Coproporphyrin I and III as OATP1B1 Biomarkers in Humans. Clinical pharmacology and therapeutics. 2021 12; 110(6):1622-1632. doi: 10.1002/cpt.2429. [PMID: 34580865]
  • Sagnik Chatterjee, Sambuddho Mukherjee, L V J Sankara Sivaprasad, Tanvi Naik, Shashyendra Singh Gautam, Bokka Venkata Murali, Avinash Annasao Hadambar, Gowtham Raj Gunti, Vijaykumar Kuchibhotla, Avisek Deyati, Sushma Basavanthappa, Manjunath Ramarao, T Thanga Mariappan, Bradley A Zinker, Yueping Zhang, Michael Sinz, Hong Shen. Transporter Activity Changes in Nonalcoholic Steatohepatitis: Assessment with Plasma Coproporphyrin I and III. The Journal of pharmacology and experimental therapeutics. 2021 01; 376(1):29-39. doi: 10.1124/jpet.120.000291. [PMID: 33127749]
  • Hari V Kalluri, Ryota Kikuchi, Sheryl Coppola, Jeffrey Schmidt, Mohamed-Eslam F Mohamed, Daniel A J Bow, Ahmed H Salem. Coproporphyrin I Can Serve as an Endogenous Biomarker for OATP1B1 Inhibition: Assessment Using a Glecaprevir/Pibrentasvir Clinical Study. Clinical and translational science. 2021 01; 14(1):373-381. doi: 10.1111/cts.12888. [PMID: 33048456]
  • Yueping Zhang, Vinay K Holenarsipur, Hamza Kandoussi, Jianing Zeng, T Thanga Mariappan, Michael Sinz, Hong Shen. Detection of Weak Organic Anion-Transporting Polypeptide 1B Inhibition by Probenecid with Plasma-Based Coproporphyrin in Humans. Drug metabolism and disposition: the biological fate of chemicals. 2020 10; 48(10):841-848. doi: 10.1124/dmd.120.000076. [PMID: 32723847]
  • Yueping Zhang, Cliff Chen, Shen-Jue Chen, Xue-Qing Chen, David J Shuster, Pawel D Puszczalo, R Marcus Fancher, Zheng Yang, Michael Sinz, Hong Shen. Absence of OATP1B (Organic Anion-Transporting Polypeptide) Induction by Rifampin in Cynomolgus Monkeys: Determination Using the Endogenous OATP1B Marker Coproporphyrin and Tissue Gene Expression. The Journal of pharmacology and experimental therapeutics. 2020 10; 375(1):139-151. doi: 10.1124/jpet.120.000139. [PMID: 32719071]
  • Xiaomei Gu, Lifei Wang, Jinping Gan, R Marcus Fancher, Yuan Tian, Yang Hong, Yurong Lai, Michael Sinz, Hong Shen. Absorption and Disposition of Coproporphyrin I (CPI) in Cynomolgus Monkeys and Mice: Pharmacokinetic Evidence to Support the Use of CPI to Inform the Potential for Organic Anion-Transporting Polypeptide Inhibition. Drug metabolism and disposition: the biological fate of chemicals. 2020 08; 48(8):724-734. doi: 10.1124/dmd.120.090670. [PMID: 32482623]
  • Takayuki Wakimoto, Shiori Nakagishi, Nao Matsukawa, Shuji Tani, Kenji Kai. A Unique Combination of Two Different Quorum Sensing Systems in the β-Rhizobium Cupriavidus taiwanensis. Journal of natural products. 2020 06; 83(6):1876-1884. doi: 10.1021/acs.jnatprod.0c00054. [PMID: 32484353]
  • Yusei Nakata, Hitoshi Okada, Susumu Itoh, Takashi Kusaka. Developmental changes in urinary coproporphyrin ratio in premature infants. Pediatrics international : official journal of the Japan Pediatric Society. 2020 Jan; 62(1):65-69. doi: 10.1111/ped.14024. [PMID: 31628881]
  • Sook Wah Yee, Marilyn M Giacomini, Hong Shen, W Griffith Humphreys, Howard Horng, William Brian, Yurong Lai, Deanna L Kroetz, Kathleen M Giacomini. Organic Anion Transporter Polypeptide 1B1 Polymorphism Modulates the Extent of Drug-Drug Interaction and Associated Biomarker Levels in Healthy Volunteers. Clinical and translational science. 2019 07; 12(4):388-399. doi: 10.1111/cts.12625. [PMID: 30982223]
  • Annett Kunze, Emmanuel Njumbe Ediage, Lieve Dillen, Mario Monshouwer, Jan Snoeys. Clinical Investigation of Coproporphyrins as Sensitive Biomarkers to Predict Mild to Strong OATP1B-Mediated Drug-Drug Interactions. Clinical pharmacokinetics. 2018 12; 57(12):1559-1570. doi: 10.1007/s40262-018-0648-3. [PMID: 29663259]
  • Hong Shen, Lisa Christopher, Yurong Lai, Jiachang Gong, Hamza Kandoussi, Samira Garonzik, Vidya Perera, Tushar Garimella, W Griffith Humphreys. Further Studies to Support the Use of Coproporphyrin I and III as Novel Clinical Biomarkers for Evaluating the Potential for Organic Anion Transporting Polypeptide 1B1 and OATP1B3 Inhibition. Drug metabolism and disposition: the biological fate of chemicals. 2018 08; 46(8):1075-1082. doi: 10.1124/dmd.118.081125. [PMID: 29777022]
  • Hamza Kandoussi, Jianing Zeng, Kumar Shah, Patricia Paterson, Rasa Santockyte, Pathanjali Kadiyala, Hong Shen, Petia Shipkova, Robert Langish, Richard Burrrell, John Easter, Thomas Mariannino, Punit Marathe, Yurong Lai, Yan Zhang, Renuka Pillutla. UHPLC-MS/MS bioanalysis of human plasma coproporphyrins as potential biomarkers for organic anion-transporting polypeptide-mediated drug interactions. Bioanalysis. 2018 May; 10(9):633-644. doi: 10.4155/bio-2017-0246. [PMID: 29749254]
  • Amanda King-Ahmad, Sara Clemens, Ragu Ramanathan, Yanhua Zhang, Nancy Raha, Yizhong Zhang, Christopher Holliman, A David Rodrigues, Fumin Li. A fully automated and validated human plasma LC-MS/MS assay for endogenous OATP biomarkers coproporphyrin-I and coproporphyrin-III. Bioanalysis. 2018 May; 10(9):691-701. doi: 10.4155/bio-2017-0270. [PMID: 29747517]
  • Emmanuel Njumbe Ediage, Lieve Dillen, Ann Vroman, Luc Diels, Annett Kunze, Jan Snoeys, Tom Verhaeghe. Development of an LC-MS method to quantify coproporphyrin I and III as endogenous biomarkers for drug transporter-mediated drug-drug interactions. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2018 Jan; 1073(?):80-89. doi: 10.1016/j.jchromb.2017.12.008. [PMID: 29241088]
  • Ragu Ramanathan, Amanda J King-Ahmad, Christopher L Holliman, A David Rodrigues. A highly selective and sensitive LC-MS/HRMS assay for quantifying coproporphyrins as organic anion-transporting peptide biomarkers. Bioanalysis. 2017 Nov; 9(22):1787-1806. doi: 10.4155/bio-2017-0181. [PMID: 28978230]
  • Jun Kunikata, Hitoshi Okada, Susumu Itoh, Takashi Kusaka. Developmental characteristics of urinary coproporphyrin I/(I + III) ratio. Pediatrics international : official journal of the Japan Pediatric Society. 2016 Oct; 58(10):974-978. doi: 10.1111/ped.12965. [PMID: 26920082]
  • Yurong Lai, Sandhya Mandlekar, Hong Shen, Vinay K Holenarsipur, Robert Langish, Prabhakar Rajanna, Senthilkumar Murugesan, Nilesh Gaud, Sabariya Selvam, Onkar Date, Yaofeng Cheng, Petia Shipkova, Jun Dai, William G Humphreys, Punit Marathe. Coproporphyrins in Plasma and Urine Can Be Appropriate Clinical Biomarkers to Recapitulate Drug-Drug Interactions Mediated by Organic Anion Transporting Polypeptide Inhibition. The Journal of pharmacology and experimental therapeutics. 2016 Sep; 358(3):397-404. doi: 10.1124/jpet.116.234914. [PMID: 27317801]
  • Hong Shen, Jun Dai, Tongtong Liu, Yaofeng Cheng, Weiqi Chen, Chris Freeden, Yingru Zhang, W Griffith Humphreys, Punit Marathe, Yurong Lai. Coproporphyrins I and III as Functional Markers of OATP1B Activity: In Vitro and In Vivo Evaluation in Preclinical Species. The Journal of pharmacology and experimental therapeutics. 2016 May; 357(2):382-93. doi: 10.1124/jpet.116.232066. [PMID: 26907622]
  • Dallas Bednarczyk, Carri Boiselle. Organic anion transporting polypeptide (OATP)-mediated transport of coproporphyrins I and III. Xenobiotica; the fate of foreign compounds in biological systems. 2016; 46(5):457-66. doi: 10.3109/00498254.2015.1085111. [PMID: 26383540]
  • Kentaro Matsumoto, Yuichiro Hagiya, Yoshio Endo, Motowo Nakajima, Masahiro Ishizuka, Tohru Tanaka, Shun-ichiro Ogura. Effects of plasma membrane ABCB6 on 5-aminolevulinic acid (ALA)-induced porphyrin accumulation in vitro: tumor cell response to hypoxia. Photodiagnosis and photodynamic therapy. 2015 Mar; 12(1):45-51. doi: 10.1016/j.pdpdt.2014.12.008. [PMID: 25573285]
  • Isabelle Benz-de Bretagne, Noël Zahr, Amélie Le Gouge, Jean-Sébastien Hulot, Caroline Houillier, Khe Hoang-Xuan, Emmanuel Gyan, Séverine Lissandre, Sylvain Choquet, Chantal Le Guellec. Urinary coproporphyrin I/(I + III) ratio as a surrogate for MRP2 or other transporter activities involved in methotrexate clearance. British journal of clinical pharmacology. 2014 Aug; 78(2):329-42. doi: 10.1111/bcp.12326. [PMID: 24433481]
  • Michael S Wollenberg, Jan Claesen, Isabel F Escapa, Kelly L Aldridge, Michael A Fischbach, Katherine P Lemon. Propionibacterium-produced coproporphyrin III induces Staphylococcus aureus aggregation and biofilm formation. mBio. 2014 Jul; 5(4):e01286-14. doi: 10.1128/mbio.01286-14. [PMID: 25053784]
  • Jani Anttila, Petri Heinonen, Timo Nenonen, Andrea Pino, Hideo Iwaï, Eeva Kauppi, Rabah Soliymani, Marc Baumann, Jani Saksi, Niina Suni, Tuomas Haltia. Is coproporphyrin III a copper-acquisition compound in Paracoccus denitrificans?. Biochimica et biophysica acta. 2011 Mar; 1807(3):311-8. doi: 10.1016/j.bbabio.2010.12.014. [PMID: 21216223]
  • Wei Huang, Qian Liu, Er-Yi Zhu, Ali Abbas Falih Shindi, Yao-Qun Li. Rapid simultaneous determination of protoporphyrin IX, uroporphyrin III and coproporphyrin III in human whole blood by non-linear variable-angle synchronous fluorescence technique coupled with partial least squares. Talanta. 2010 Sep; 82(4):1516-20. doi: 10.1016/j.talanta.2010.07.034. [PMID: 20801366]
  • Leena Chularojanamontri, Chanisada Tuchinda, Chatchawan Srisawat, Neelobol Neungton, Sarawut Junnu, Surin Kanyok. Utility of plasma fluorometric emission scanning for diagnosis of the first 2 cases reports of variegate porphyria: a very rare type of porphyrias in Thai. Journal of the Medical Association of Thailand = Chotmaihet thangphaet. 2008 Dec; 91(12):1915-9. doi: . [PMID: 19133530]
  • Manonmanii Krishnamohan, Lixia Qi, Paul K S Lam, Michael R Moore, Jack C Ng. Urinary arsenic and porphyrin profile in C57BL/6J mice chronically exposed to monomethylarsonous acid (MMAIII) for two years. Toxicology and applied pharmacology. 2007 Oct; 224(1):89-97. doi: 10.1016/j.taap.2007.04.020. [PMID: 17707874]
  • Guo-dong Deng, Bao-shan Zheng, Cheng Zhai, Jian-ping Wang, Jack C Ng. [Porphyrins as the early biomarkers for arsenic exposure of human]. Huan jing ke xue= Huanjing kexue. 2007 May; 28(5):1147-52. doi: NULL. [PMID: 17633194]
  • Peter Bozek, Milan Hutta, Barbora Hrivnáková. Rapid analysis of porphyrins at low ng/l and microg/l levels in human urine by a gradient liquid chromatography method using octadecylsilica monolithic columns. Journal of chromatography. A. 2005 Aug; 1084(1-2):24-32. doi: 10.1016/j.chroma.2005.06.007. [PMID: 16114232]
  • Jordi To-Figueras, Dolores Ozalla, Carmen Herrero Mateu. Long-standing changes in the urinary profile of porphyrin isomers after clinical remission of porphyria cutanea tarda. Annals of clinical and laboratory science. 2003; 33(3):251-6. doi: . [PMID: 12956438]
  • U Gross, R Gerlach, A Kühnel, V Seifert, M O Doss. A description of an HPLC assay of coproporphyrinogen III oxidase activity in mononuclear cells. Journal of inherited metabolic disease. 2003; 26(6):565-70. doi: 10.1023/a:1025952031660. [PMID: 14605502]
  • J P Wang, L Qi, B Zheng, F Liu, M R Moore, J C Ng. Porphyrins as early biomarkers for arsenic exposure in animals and humans. Cellular and molecular biology (Noisy-le-Grand, France). 2002 Dec; 48(8):835-43. doi: . [PMID: 12699241]
  • Floris M J Zuijderhoudt, Johannes S Kamphuis, Willem E Kluitenberg, Jenneke Dorresteijn-de Bok. Precision and accuracy of a HPLC method for measurement of fecal porphyrin concentrations. Clinical chemistry and laboratory medicine. 2002 Oct; 40(10):1036-9. doi: 10.1515/cclm.2002.181. [PMID: 12476945]
  • U Gross, H Puy, A Kühnel, U Meissauer, J C Deybach, K Jacob, P Martasek, Y Nordmann, M O Doss. Molecular, immunological, enzymatic and biochemical studies of coproporphyrinogen oxidase deficiency in a family with hereditary coproporphyria. Cellular and molecular biology (Noisy-le-Grand, France). 2002 Feb; 48(1):49-55. doi: . [PMID: 11929047]
  • H Takeuchi, M Kondo, M Daimon, S Susa, K Ueoka, O Uemura, H Togari. Neonatal-onset hereditary coproporphyria with male pseudohermaphrodism. Blood. 2001 Dec; 98(13):3871-3. doi: 10.1182/blood.v98.13.3871. [PMID: 11739202]
  • T S So, L Jia, C W Huie. Stacking and separation of coproporphyrin isomers by acetonitrile-salt mixtures in micellar electrokinetic chromatography. Electrophoresis. 2001 Jul; 22(11):2159-66. doi: 10.1002/1522-2683(20017)22:11<2159::aid-elps2159>3.0.co;2-d. [PMID: 11504047]
  • M Toriya, M Yamamoto, K Saeki, Y Fujii, K Matsumoto. Antitumor effect of photodynamic therapy with zincphyrin, zinc-coproporphyrin III, in mice. Bioscience, biotechnology, and biochemistry. 2001 Feb; 65(2):363-70. doi: 10.1271/bbb.65.363. [PMID: 11302170]
  • F M Zuijderhoudt, S G Koehorst, W E Kluitenberg, J Dorresteijn-de Bok. On accuracy and precision of a HPLC method for measurement of urine porphyrin concentrations. Clinical chemistry and laboratory medicine. 2000 Mar; 38(3):227-30. doi: 10.1515/cclm.2000.033. [PMID: 10905759]
  • K Jacob, E Egeler, U Gross, M O Doss. Investigations on the formation of urinary coproporphyrin isomers I-IV in 5-aminolevulinic acid dehydratase deficiency porphyria, acute lead intoxication and after oral 5-aminolevulinic acid loading. Clinical biochemistry. 1999 Mar; 32(2):119-23. doi: 10.1016/s0009-9120(98)00104-0. [PMID: 10211628]
  • L L de Zwart, N P Vermeulen, R C Hermanns, J N Commandeur, P J Salemink, J H Meerman. Urinary excretion of biomarkers for radical-induced damage in rats treated with NDMA or diquat and the effects of calcium carbimide co-administration. Chemico-biological interactions. 1999 Jan; 117(2):151-72. doi: 10.1016/s0009-2797(98)00106-9. [PMID: 10190574]
  • S J Asirvatham, T W Johnson, M P Oberoi, W M Jackman. Prolonged loss of consciousness and elevated porphyrins following propofol administrations. Anesthesiology. 1998 Oct; 89(4):1029-31. doi: 10.1097/00000542-199810000-00031. [PMID: 9778024]
  • R C Hermanns, L L de Zwart, P J Salemink, J N Commandeur, N P Vermeulen, J H Meerman. Urinary excretion of biomarkers of oxidative kidney damage induced by ferric nitrilotriacetate. Toxicological sciences : an official journal of the Society of Toxicology. 1998 Jun; 43(2):241-9. doi: 10.1006/toxs.1998.2429. [PMID: 9710965]
  • L L de Zwart, R C Hermanns, J H Meerman, J N Commandeur, P J Salemink, N P Vermeulen. Evaluation of urinary biomarkers for radical-induced liver damage in rats treated with carbon tetrachloride. Toxicology and applied pharmacology. 1998 Jan; 148(1):71-82. doi: 10.1006/taap.1997.8310. [PMID: 9465266]
  • S Susa, M Daimon, I Yamamori, M Kondo, K Yamatani, H Sasaki, T Kato. A novel mutation of coproporphyrinogen oxidase (CPO) gene in a Japanese family. Journal of human genetics. 1998; 43(3):182-4. doi: 10.1007/s100380050065. [PMID: 9747031]
  • N G Egger, M Motamedi, M Pow-Sang, E Orihuela, K E Anderson. Accumulation of porphyrins in plasma and tissues of dogs after delta-aminolevulinic acid administration: implications for photodynamic therapy. Pharmacology. 1996 Jun; 52(6):362-70. doi: 10.1159/000139403. [PMID: 8844786]
  • E I Minder, X Schneider-Yin. Age-dependent reference values of urinary porphyrins in children. European journal of clinical chemistry and clinical biochemistry : journal of the Forum of European Clinical Chemistry Societies. 1996 May; 34(5):439-43. doi: 10.1515/cclm.1996.34.5.439. [PMID: 8790980]
  • N R Badcock, D A Szep, G D Zoanetti, B D Lewis. Fecal coproporphyrin isomers in sporadic and familial porphyria cutanea tarda. Clinical chemistry. 1995 Sep; 41(9):1315-7. doi: 10.1093/clinchem/41.9.1315. [PMID: 7656445]
  • Y Kudo. [Screening program with urinary porphyrins--application to clinical finding in latent porphyrias]. Nihon rinsho. Japanese journal of clinical medicine. 1995 Jun; 53(6):1503-6. doi: . [PMID: 7616669]
  • Y Horie, S Kitaoka, H Tajima, T Kawatani, H Kawasaki. [Secondary porphyrinuria]. Nihon rinsho. Japanese journal of clinical medicine. 1995 Jun; 53(6):1513-7. doi: NULL. [PMID: 7616671]
  • G G García-Vargas, L M Del Razo, M E Cebrián, A Albores, P Ostrosky-Wegman, R Montero, M E Gonsebatt, C K Lim, F De Matteis. Altered urinary porphyrin excretion in a human population chronically exposed to arsenic in Mexico. Human & experimental toxicology. 1994 Dec; 13(12):839-47. doi: 10.1177/096032719401301204. [PMID: 7718303]
  • M F Tutunji, Q M al-Mahasneh. Disappearance of heme metabolites following chelation therapy with meso 2,3-dimercaptosuccinic acid (DMSA). Journal of toxicology. Clinical toxicology. 1994; 32(3):267-76. doi: 10.3109/15563659409017959. [PMID: 8007034]
  • P Telolahy, B Javelaud, J Cluet, J de Ceaurriz, C Boudene. Urinary excretion of porphyrins by smelter workers chronically exposed to arsenic dust. Toxicology letters. 1993 Jan; 66(1):89-95. doi: 10.1016/0378-4274(93)90083-a. [PMID: 8427025]
  • E I Minder, J P Vuilleumier, D J Vonderschmitt. Prototype application of a robot in the clinical laboratory enabling fully automated quantification of fecal porphyrins. Clinical chemistry. 1992 Apr; 38(4):516-21. doi: . [PMID: 1568316]
  • M Frank, M O Doss. Relevance of urinary coproporphyrin isomers in hereditary hyperbilirubinemias. Clinical biochemistry. 1989 Jun; 22(3):221-2. doi: 10.1016/s0009-9120(89)80080-3. [PMID: 2736773]
  • H Kellner, W G Zoller, K Jacob, H S Füessl. [Renal and enteral elimination of coproporphyrin isomers in Rotor's syndrome. A family study]. Klinische Wochenschrift. 1988 Oct; 66(19):953-6. doi: 10.1007/bf01738109. [PMID: 3184766]
  • P Both, M Frank, H G Merkel, M Doss. [Rotor syndrome: relevance of the determination of coproporphyrin isomers in the urine in comparison with intrahepatic (alcohol-induced) cholestasis]. Zeitschrift fur Gastroenterologie. 1988 Aug; 26(8):416-20. doi: NULL. [PMID: 3218284]
  • V R Reddy, W R Christenson, W N Piper. Extraction and isolation by high performance liquid chromatography of uroporphyrin and coproporphyrin isomers from biological tissues. Journal of pharmacological methods. 1987 Mar; 17(1):51-7. doi: 10.1016/0160-5402(87)90036-2. [PMID: 3560985]
  • K Tomokuni, T Hasegawa. [Relationship between coproporphyrin I and III excreted in the urine of lead workers]. Sangyo igaku. Japanese journal of industrial health. 1986 May; 28(3):206-7. doi: 10.1539/joh1959.28.206. [PMID: 3773302]
  • G L Rapaccini, G C Topi, M Anti, L D'Alessandro Gandolfo, D Griso, A Amantea, I de Vitis, G Fedeli. Porphyrins in Rotor's syndrome: a study on an Italian family. Hepato-gastroenterology. 1986 Feb; 33(1):11-3. doi: NULL. [PMID: 3957223]
  • T Sakai, Y Niinuma, S Yanagihara, K Ushio. Liquid-chromatographic separation and determination of coproporphyrins I and III in urine. Clinical chemistry. 1983 Feb; 29(2):350-3. doi: 10.1093/clinchem/29.2.350. [PMID: 6821943]
  • D Stiel, M Lunzer, V Poulos. Urinary coproporphyrin excretion in Rotor's syndrome: a family study. Australian and New Zealand journal of medicine. 1982 Dec; 12(6):594-7. doi: 10.1111/j.1445-5994.1982.tb02644.x. [PMID: 6962707]
  • Y Shimizu, H Naruto, S Ida, M Kohakura. Urinary coproporphyrin isomers in Rotor's syndrome: a study in eight families. Hepatology (Baltimore, Md.). 1981 Mar; 1(2):173-8. doi: 10.1002/hep.1840010214. [PMID: 7286897]
  • H J Castro-Mendoza. Xanthine-coproporphyrin III. Advances in experimental medicine and biology. 1980; 122A(?):251-5. doi: 10.1007/978-1-4615-9140-5_41. [PMID: 7424644]
  • V HOLECEK. [Urinary excretion of coproporphyrins. III. Comparison of total urinary coproporphyrin excretion in lead poisoning with other pathological conditions]. Pracovni lekarstvi. 1957 Dec; 9(6):513-5. doi: NULL. [PMID: 13567227]
  • J RUTTINK. The value of the determination of the urine coproporphyrin III content as a screening method in lead poisoning. Acta physiologica et pharmacologica Neerlandica. 1956 Dec; 5(2):236-7. doi: . [PMID: 13402512]