Phenylacetyl-CoA (BioDeep_00000004452)
Secondary id: BioDeep_00001869016
human metabolite Endogenous
代谢物信息卡片
化学式: C29H42N7O17P3S (885.1571)
中文名称:
谱图信息:
最多检出来源 Homo sapiens(otcml) 15.77%
分子结构信息
SMILES: CC(C)(COP(=O)(O)OP(=O)(O)OCC1C(C(C(O1)N2C=NC3=C(N=CN=C32)N)O)OP(=O)(O)O)C(C(=O)NCCC(=O)NCCSC(=O)CC4=CC=CC=C4)O
InChI: InChI=1S/C29H42N7O17P3S/c1-29(2,24(40)27(41)32-9-8-19(37)31-10-11-57-20(38)12-17-6-4-3-5-7-17)14-50-56(47,48)53-55(45,46)49-13-18-23(52-54(42,43)44)22(39)28(51-18)36-16-35-21-25(30)33-15-34-26(21)36/h3-7,15-16,18,22-24,28,39-40H,8-14H2,1-2H3,(H,31,37)(H,32,41)(H,45,46)(H,47,48)(H2,30,33,34)(H2,42,43,44)/t18-,22-,23-,24+,28-/m1/s1
描述信息
Phenylacetyl-CoA was found to be a very potent inhibitor of choline acetyltransferase, competitive for acetyl-CoA with Ki of 3.1 X 10(-7)M. Phenylacetate exerts its neurotoxic action through its metabolic product, phenylacetyl-CoA, which could severely decrease the availability of acetyl-CoA. (PMID: 6142928) [HMDB]
Phenylacetyl-CoA was found to be a very potent inhibitor of choline acetyltransferase, competitive for acetyl-CoA with Ki of 3.1 X 10(-7)M. Phenylacetate exerts its neurotoxic action through its metabolic product, phenylacetyl-CoA, which could severely decrease the availability of acetyl-CoA (PMID: 6142928).
同义名列表
8 个代谢物同义名
{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({hydroxy[(3R)-3-hydroxy-2,2-dimethyl-3-{[2-({2-[(2-phenylacetyl)sulfanyl]ethyl}carbamoyl)ethyl]carbamoyl}propoxy]phosphoryl}oxy)phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid; coenzyme A, S-(Benzeneacetic acid); coenzyme A, S-(Benzeneacetate); coenzyme A, Phenylacetyl; Phenylacetyl-coenzyme A; Phenylacetyl coenzyme A; Phenylacetyl CoA; Phenylacetyl-CoA
数据库引用编号
18 个数据库交叉引用编号
- ChEBI: CHEBI:15537
- KEGG: C00582
- PubChem: 165620
- PubChem: 387
- HMDB: HMDB0006503
- Metlin: METLIN58433
- Wikipedia: Phenylacetyl-CoA
- MetaCyc: 34-DIHYDROXYPHENYLACETYL-COA
- KNApSAcK: C00007536
- foodb: FDB023945
- chemspider: 145148
- CAS: 7532-39-0
- PMhub: MS000016910
- PubChem: 3861
- PDB-CCD: FAQ
- 3DMET: B04702
- NIKKAJI: J363.723I
- RefMet: Phenylacetyl-CoA
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
19 个相关的代谢反应过程信息。
Reactome(12)
- Amino Acid conjugation:
ATP + CoA + ST ⟶ AMP + PPi + ST-CoA
- Conjugation of carboxylic acids:
ATP + CoA + ST ⟶ AMP + PPi + ST-CoA
- Conjugation of phenylacetate with glutamine:
ATP + CoA + phenylacetate ⟶ AMP + PPi + phenylacetyl-CoA
- Amino Acid conjugation:
ATP + BENZA + CoA ⟶ AMP + BEZ-CoA + PPi
- Conjugation of carboxylic acids:
ATP + BENZA + CoA ⟶ AMP + BEZ-CoA + PPi
- Conjugation of phenylacetate with glutamine:
ATP + CoA + phenylacetate ⟶ AMP + PPi + phenylacetyl-CoA
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Amino Acid conjugation:
ATP + BENZA + CoA ⟶ AMP + BEZ-CoA + PPi
- Conjugation of carboxylic acids:
ATP + BENZA + CoA ⟶ AMP + BEZ-CoA + PPi
- Conjugation of phenylacetate with glutamine:
ATP + CoA + phenylacetate ⟶ AMP + PPi + phenylacetyl-CoA
BioCyc(2)
- phenylacetate degradation I (aerobic):
ATP + coenzyme A + phenylacetate ⟶ AMP + H+ + diphosphate + phenylacetyl-CoA
- phenylacetate degradation II (anaerobic):
ATP + coenzyme A + phenylacetate ⟶ AMP + H+ + diphosphate + phenylacetyl-CoA
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(5)
- Phenylacetate Metabolism:
Adenosine triphosphate + Coenzyme A + Phenylacetic acid ⟶ Adenosine monophosphate + Phenylacetyl-CoA + Pyrophosphate
- Phenylethylamine Metabolism:
Adenosine triphosphate + Coenzyme A + Phenylacetic acid ⟶ Adenosine monophosphate + Phenylacetyl-CoA + Pyrophosphate
- Phenylacetate Metabolism:
Adenosine triphosphate + Coenzyme A + Phenylacetic acid ⟶ Adenosine monophosphate + Phenylacetyl-CoA + Pyrophosphate
- Phenylacetate Metabolism:
Adenosine triphosphate + Coenzyme A + Phenylacetic acid ⟶ Adenosine monophosphate + Phenylacetyl-CoA + Pyrophosphate
- Phenylacetate Metabolism:
Adenosine triphosphate + Coenzyme A + Phenylacetic acid ⟶ Adenosine monophosphate + Phenylacetyl-CoA + Pyrophosphate
PharmGKB(0)
2 个相关的物种来源信息
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1007/S11306-016-1051-4
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Yawei Zhao, Rongrong Feng, Guosong Zheng, Jinzhong Tian, Lijun Ruan, Mei Ge, Weihong Jiang, Yinhua Lu. Involvement of the TetR-Type Regulator PaaR in the Regulation of Pristinamycin I Biosynthesis through an Effect on Precursor Supply in Streptomyces pristinaespiralis.
Journal of bacteriology.
2015 Jun; 197(12):2062-71. doi:
10.1128/jb.00045-15
. [PMID: 25868645] - Moe Matsuo, Kensuke Terai, Noriaki Kameda, Aya Matsumoto, Yumiko Kurokawa, Yuichi Funase, Kazuko Nishikawa, Naoki Sugaya, Nobuyuki Hiruta, Toshihiko Kishimoto. Designation of enzyme activity of glycine-N-acyltransferase family genes and depression of glycine-N-acyltransferase in human hepatocellular carcinoma.
Biochemical and biophysical research communications.
2012 Apr; 420(4):901-6. doi:
10.1016/j.bbrc.2012.03.099
. [PMID: 22475485] - Marianna A Patrauchan, J Jacob Parnell, Michael P McLeod, Christine Florizone, James M Tiedje, Lindsay D Eltis. Genomic analysis of the phenylacetyl-CoA pathway in Burkholderia xenovorans LB400.
Archives of microbiology.
2011 Sep; 193(9):641-50. doi:
10.1007/s00203-011-0705-x
. [PMID: 21519854] - Ikuro Abe. Engineered biosynthesis of plant polyketides: structure-based and precursor-directed approach.
Topics in current chemistry.
2010; 297(?):45-66. doi:
10.1007/128_2009_22
. [PMID: 21495256] - Jayne E Rattray, Marc Strous, Huub J M Op den Camp, Stefan Schouten, Mike Sm Jetten, Jaap S Sinninghe Damsté. A comparative genomics study of genetic products potentially encoding ladderane lipid biosynthesis.
Biology direct.
2009 Feb; 4(?):8. doi:
10.1186/1745-6150-4-8
. [PMID: 19220888] - Miguel A Matilla, Manuel Espinosa-Urgel, José J Rodríguez-Herva, Juan L Ramos, María Isabel Ramos-González. Genomic analysis reveals the major driving forces of bacterial life in the rhizosphere.
Genome biology.
2007; 8(9):R179. doi:
10.1186/gb-2007-8-9-r179
. [PMID: 17784941] - M Kelley, D A Vessey. Isolation and characterization of mitochondrial acyl-CoA: glycine N-acyltransferases from kidney.
Journal of biochemical toxicology.
1993 Jun; 8(2):63-9. doi:
10.1002/jbt.2570080203
. [PMID: 8355261] - A Puigvert, D Ruano. [Etiopathogenesis of so-called congenital hydronephrosis].
Journal d'urologie et de nephrologie.
1979 Jan; 85(1-2):1-12. doi:
NULL
. [PMID: 439196] - U Burchardt, R J Haschen, H Krosch. Clinical usefulness of enzyme determinations in urine.
Current problems in clinical biochemistry.
1979; ?(9):106-12. doi:
NULL
. [PMID: 446066] - . .
.
. doi:
. [PMID: 11432743]