Gene Association: ACSF3

UniProt Search: ACSF3 (PROTEIN_CODING)
Function Description: acyl-CoA synthetase family member 3

found 27 associated metabolites with current gene based on the text mining result from the pubmed database.

Pipecolic acid

Pipecolic acid, 14C-labeled CPD, (+,-)-isomer

C6H11NO2 (129.079)


Pipecolic acid is a metabolite of lysine found in human physiological fluids such as urine, plasma and CSF. However, it is uncertain if pipecolic acid originates directly from food intake or from mammalian or intestinal bacterial enzyme metabolism. Recent studies suggest that plasma pipecolic acid, particularly the D-isomer, originates mainly from the catabolism of dietary lysine by intestinal bacteria rather than by direct food intake. In classic Zellweger syndrome (a cerebro-hepato-renal genetic disorder, OMIM 214100) pipecolic acid accumulate in the plasma of the patients. It is known that plasma pipecolic acid levels are also elevated in patients with chronic liver diseases. Pipecolic acid is moderately elevated in patients with pyridoxine-dependent seizures and might therefore be a possible biochemical marker for selecting candidates for pyridoxine therapy (Plecko et al 2000). Pipecolic acid was also elevated in CSF in these vitamin B6-responsive patients (PMID 12705501). Pipecolic acid is found to be associated with adrenoleukodystrophy, infantile Refsum disease, and peroxisomal biogenesis defect, which are also inborn errors of metabolism. Pipecolic acid is a biomarker for the consumption of dried and cooked beans. Pipecolic acid is a metabolite of lysine found in human physiological fluids such as urine, plasma and CSF. However, it is uncertain if pipecolic acid originates directly from food intake or from mammalian or intestinal bacterial enzyme metabolism. Recent studies suggest that plasma pipecolic acid, particularly the D-isomer, originates mainly from the catabolism of dietary lysine by intestinal bacteria rather than by direct food intake. In classic Zellweger syndrome (a cerebro-hepato-renal genetic disorder, OMIM 214100) pipecolic acid accumulate in the plasma of the patients. It is known that plasma pipecolic acid levels are also elevated in patients with chronic liver diseases. Pipecolic acid is moderately elevated in patients with pyridoxine-dependent seizures and might therefore be a possible biochemical marker for selecting candidates for pyridoxine therapy (Plecko et al 2000). Pipecolic acid was also elevated in CSF in these vitamin B6-responsive patients. (PMID 12705501) [HMDB]. Pipecolic acid is a biomarker for the consumption of dried and cooked beans. Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID P048 L-Pipecolic acid (H-HoPro-OH) is a breakdown product of lysine, accumulates in body fluids of infants with generalized genetic peroxisomal disorders, such as Zellweger syndrome, neonatal adrenoleukodystrophy. L-Pipecolic acid (H-HoPro-OH) is a breakdown product of lysine, accumulates in body fluids of infants with generalized genetic peroxisomal disorders, such as Zellweger syndrome, neonatal adrenoleukodystrophy. Pipecolic acid, a metabolite of Lysine, is an important precursor of many useful microbial secondary metabolites. Pipecolic acid can be used as a diagnostic marker of Pyridoxine-dependent epilepsy[1][2]. Pipecolic acid, a metabolite of Lysine, is an important precursor of many useful microbial secondary metabolites. Pipecolic acid can be used as a diagnostic marker of Pyridoxine-dependent epilepsy[1][2].

   

Malonyl-CoA

3-[(2-{3-[(2R)-3-[({[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)methyl]-2-hydroxy-3-methylbutanamido]propanamido}ethyl)sulfanyl]-3-oxopropanoic acid

C24H38N7O19P3S (853.1156)


Malonyl-CoA belongs to the class of organic compounds known as acyl-CoAs. These are organic compounds containing a coenzyme A substructure linked to an acyl chain. Thus, malonyl-CoA is considered to be a fatty ester lipid molecule. Malonyl-CoA is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Within humans, malonyl-CoA participates in a number of enzymatic reactions. In particular, malonyl-CoA can be biosynthesized from acetyl-CoA; which is mediated by the enzyme acetyl-CoA carboxylase 1. In addition, malonyl-CoA can be converted into malonic acid and coenzyme A; which is catalyzed by the enzyme fatty acid synthase. Outside of the human body, malonyl-CoA has been detected, but not quantified in, several different foods, such as rapes, mamey sapotes, jews ears, pepper (C. chinense), and Alaska wild rhubarbs. This could make malonyl-CoA a potential biomarker for the consumption of these foods. Malonyl-CoA is a coenzyme A derivative that plays a key role in fatty acid synthesis in the cytoplasmic and microsomal systems. Malonyl-coa, also known as malonyl coenzyme a or coenzyme a, s-(hydrogen propanedioate), is a member of the class of compounds known as acyl coas. Acyl coas are organic compounds containing a coenzyme A substructure linked to an acyl chain. Thus, malonyl-coa is considered to be a fatty ester lipid molecule. Malonyl-coa is slightly soluble (in water) and an extremely strong acidic compound (based on its pKa). Malonyl-coa can be found in a number of food items such as root vegetables, sourdock, ceylon cinnamon, and buffalo currant, which makes malonyl-coa a potential biomarker for the consumption of these food products. Malonyl-coa exists in E.coli (prokaryote) and yeast (eukaryote).

   

Methylmalonyl-CoA

(2S)-3-{[2-(3-{3-[({[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)methyl]-2-hydroxy-3-methylbutanamido}propanamido)ethyl]sulfanyl}-2-methyl-3-oxopropanoic acid

C25H40N7O19P3S (867.1312)


Methylmalonyl-CoA is an intermediate in the metabolism of Propanoate. It is a substrate for Malonyl-CoA decarboxylase (mitochondrial), Methylmalonyl-CoA mutase (mitochondrial) and Methylmalonyl-CoA epimerase (mitochondrial). [HMDB] Methylmalonyl-CoA is an intermediate in the metabolism of Propanoate. It is a substrate for Malonyl-CoA decarboxylase (mitochondrial), Methylmalonyl-CoA mutase (mitochondrial) and Methylmalonyl-CoA epimerase (mitochondrial).

   

Methylmalonic acid

1,1-Ethanedicarboxylic acid

C4H6O4 (118.0266)


Methylmalonic acid is a malonic acid derivative, which is a vital intermediate in the metabolism of fat and protein. In particular, the coenzyme A-linked form of methylmalonic acid, methylmalonyl-CoA, is converted into succinyl-CoA by methylmalonyl-CoA mutase in a reaction that requires vitamin B12 as a cofactor. In this way, methylmalonic acid enters the Krebs cycle and is thus part of one of the anaplerotic reactions. Abnormalities in methylmalonic acid metabolism lead to methylmalonic aciduria. This inborn error of metabolism is attributed to a block in the enzymatic conversion of methylmalonyl CoA to succinyl CoA. Methylmalonic acid is also found to be associated with other inborn errors of metabolism, including cobalamin deficiency, cobalamin malabsorption, malonyl-CoA decarboxylase deficiency, and transcobalamin II deficiency. When present in sufficiently high levels, methylmalonic acid can act as an acidogen and a metabotoxin. An acidogen is an acidic compound that induces acidosis, which has multiple adverse effects on many organ systems. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of methylmalonic acid are associated with at least 5 inborn errors of metabolism, including Malonyl CoA decarboxylase deficiency, Malonic Aciduria, Methylmalonate Semialdehyde Dehydrogenase Deficiency, Methylmalonic Aciduria and Methylmalonic Aciduria Due to Cobalamin-Related Disorders. Methylmalonic acid is an organic acid and abnormally high levels of organic acids in the blood (organic acidemia), urine (organic aciduria), the brain, and other tissues lead to general metabolic acidosis. Acidosis typically occurs when arterial pH falls below 7.35. In infants with acidosis, the initial symptoms include poor feeding, vomiting, loss of appetite, weak muscle tone (hypotonia), and lack of energy (lethargy). These can progress to heart abnormalities, kidney abnormalities, liver damage, seizures, coma, and possibly death. These are also the characteristic symptoms of the untreated IEMs mentioned above. Many affected children with organic acidemias experience intellectual disability or delayed development. In adults, acidosis or acidemia is characterized by headaches, confusion, feeling tired, tremors, sleepiness, and seizures. A malonic acid derivative which is a vital intermediate in the metabolism of fat and protein. Abnormalities in methylmalonic acid metabolism lead to methylmalonic aciduria. This metabolic disease is attributed to a block in the enzymatic conversion of methylmalonyl CoA to succinyl CoA. [HMDB] KEIO_ID M014 Methylmalonic acid (Methylmalonate) is an indicator of Vitamin B-12 deficiency in cancer. Methylmalonic acid (Methylmalonate) is an indicator of Vitamin B-12 deficiency in cancer.

   

Cyclohexanecarboxylic acid

Cyclohexanecarboxylic acid, sodium salt, 11C-labeled

C7H12O2 (128.0837)


Cyclohexanecarboxylic acid is a flavouring ingredien Flavouring ingredient KEIO_ID C180 Cyclohexanecarboxylic acid is a Valproate structural analogue with anticonvulsant action[1].

   

Malonate

Malonic acid, disodium salt, 1-(14)C-labeled

C3H4O4 (104.011)


Malonic acid (IUPAC systematic name: propanedioic acid) is a dicarboxylic acid with structure CH2(COOH)2. The ionised form of malonic acid, as well as its esters and salts, are known as malonates. For example, diethyl malonate is malonic acids ethyl ester. The name originates from Latin malum, meaning apple. Malonic acid is the archetypal example of a competitive inhibitor: it acts against succinate dehydrogenase (complex II) in the respiratory electron transport chain.; Malonic acid (IUPAC systematic name: propanedioic acid) is a dicarboxylic acid with structure CH2(COOH)2. The ionised form of malonic acid, as well as its esters and salts, are known as malonates. For example, diethyl malonate is malonic acids ethyl ester. The name originates from the Greek word ????? (malon) meaning apple. Propanedioic acid is found in many foods, some of which are green bell pepper, red bell pepper, common beet, and sweet orange. Malonic acid (IUPAC systematic name: propanedioic acid) is a dicarboxylic acid with structure CH2(COOH)2. The ionised form of malonic acid, as well as its esters and salts, are known as malonates. For example, diethyl malonate is malonic acids ethyl ester. The name originates from Latin malum, meaning apple. Malonic acid is the archetypal example of a competitive inhibitor: it acts against succinate dehydrogenase (complex II) in the respiratory electron transport chain. Malonic acid is found to be associated with malonyl-CoA decarboxylase deficiency, which is an inborn error of metabolism. Malonic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=141-82-2 (retrieved 2024-07-02) (CAS RN: 141-82-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

N-Acetylimidazole

1-(1H-imidazol-1-yl)ethan-1-one

C5H6N2O (110.048)


   

Benzoyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-2-({[({[(3R)-3-[(2-{[2-(benzoylsulfanyl)ethyl]carbamoyl}ethyl)carbamoyl]-3-hydroxy-2,2-dimethylpropoxy](hydroxy)phosphoryl}oxy)(hydroxy)phosphoryl]oxy}methyl)-4-hydroxyoxolan-3-yl]oxy}phosphonic acid

C28H40N7O17P3S (871.1414)


Benzoyl-CoA is an intermediate in phenylalanine (as well as benzoate and salicylate) metabolism. In bacteria and gut microflora, benzoyl-CoA is a compound that is formed as a central intermediate in the degradation of a large number of aromatic growth substrates. Benzoyl CoA can be synthesized from hippuric acid and vice versa. [HMDB]. Benzoyl-CoA is found in many foods, some of which are malabar plum, barley, vanilla, and banana. Benzoyl-CoA is an intermediate in phenylalanine (as well as benzoate and salicylate) metabolism. In bacteria and gut microflora, benzoyl-CoA is a compound that is formed as a central intermediate in the degradation of a large number of aromatic growth substrates. Benzoyl CoA can be synthesized from hippuric acid and vice versa. Benzoyl-CoA is a microbial metabolite that can be found in Streptomyces (PMID: 12511484).

   

Phenylacetyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({hydroxy[(3R)-3-hydroxy-2,2-dimethyl-3-{[2-({2-[(2-phenylacetyl)sulfanyl]ethyl}carbamoyl)ethyl]carbamoyl}propoxy]phosphoryl}oxy)phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C29H42N7O17P3S (885.1571)


Phenylacetyl-CoA was found to be a very potent inhibitor of choline acetyltransferase, competitive for acetyl-CoA with Ki of 3.1 X 10(-7)M. Phenylacetate exerts its neurotoxic action through its metabolic product, phenylacetyl-CoA, which could severely decrease the availability of acetyl-CoA. (PMID: 6142928) [HMDB] Phenylacetyl-CoA was found to be a very potent inhibitor of choline acetyltransferase, competitive for acetyl-CoA with Ki of 3.1 X 10(-7)M. Phenylacetate exerts its neurotoxic action through its metabolic product, phenylacetyl-CoA, which could severely decrease the availability of acetyl-CoA (PMID: 6142928).

   

6-deoxyerythronolide B

6-deoxyerythronolide B

C21H38O6 (386.2668)


   

Gramicidin S

NCGC00095992-01

C60H92N12O10 (1140.7059)


C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents Origin: Microbe; SubCategory_DNP: Peptides, Cyclic peptides, Tyrothricins Gramicidin S (Gramicidin soviet) is a cationic cyclic peptide antibiotic. Gramicidin S is active against Gram-negative and Gram-positive bacteria by perturbing integrity of the bacterial membranes. Gramicidin S also inhibits cytochrome bd quinol oxidase[1].

   

5-(Carboxymethyl)proline

(2S,5S)-trans-Carboxymethylproline

C7H11NO4 (173.0688)


   

CoA 4:1;O2

5-O-[hydroxy({hydroxy[(15-hydroxy-16,16-dimethyl-3,5,10,14-tetraoxo-2-oxa-6-thia-9,13-diazaheptadecan-17-yl)oxy]phosphoryl}oxy)phosphoryl]adenosine 3-(dihydrogen phosphate);malonyl-coenzyme A methyl ester

C25H40N7O19P3S (867.1312)


The (R)-enantiomer of methylmalonyl-CoA.

   

S-Methylmalonyl-CoA

(2S)-3-[(2-{3-[(2R)-3-[({[({[(3S,4R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)methyl]-2-hydroxy-3-methylbutanamido]propanamido}ethyl)sulfanyl]-2-methyl-3-oxopropanoic acid

C25H40N7O19P3S (867.1312)


Methylmalonyl-CoA is an intermediate in the metabolism of Propanoate. It is a substrate for Malonyl-CoA decarboxylase (mitochondrial), Methylmalonyl-CoA mutase (mitochondrial) and Methylmalonyl-CoA epimerase (mitochondrial). [HMDB] Methylmalonyl-CoA is an intermediate in the metabolism of Propanoate. It is a substrate for Malonyl-CoA decarboxylase (mitochondrial), Methylmalonyl-CoA mutase (mitochondrial) and Methylmalonyl-CoA epimerase (mitochondrial).

   

benzoyl-coenzyme A

{[5-(6-amino-9H-purin-9-yl)-2-[({[({3-[(2-{[2-(benzoylsulfanyl)ethyl]carbamoyl}ethyl)carbamoyl]-3-hydroxy-2,2-dimethylpropoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)methyl]-4-hydroxyoxolan-3-yl]oxy}phosphonic acid

C28H40N7O17P3S (871.1414)


   

Methylmalonic acid

Methylmalonic acid

C4H6O4 (118.0266)


A dicarboxylic acid that is malonic acid in which one of the methylene hydrogens is substituted by a methyl group. Methylmalonic acid (Methylmalonate) is an indicator of Vitamin B-12 deficiency in cancer. Methylmalonic acid (Methylmalonate) is an indicator of Vitamin B-12 deficiency in cancer.

   

Pipecolic acid

2-Pyrrolidineacetic acid

C6H11NO2 (129.079)


A piperidinemonocarboxylic acid in which the carboxy group is located at position C-2. L-Pipecolic acid (H-HoPro-OH) is a breakdown product of lysine, accumulates in body fluids of infants with generalized genetic peroxisomal disorders, such as Zellweger syndrome, neonatal adrenoleukodystrophy. L-Pipecolic acid (H-HoPro-OH) is a breakdown product of lysine, accumulates in body fluids of infants with generalized genetic peroxisomal disorders, such as Zellweger syndrome, neonatal adrenoleukodystrophy. Pipecolic acid, a metabolite of Lysine, is an important precursor of many useful microbial secondary metabolites. Pipecolic acid can be used as a diagnostic marker of Pyridoxine-dependent epilepsy[1][2]. Pipecolic acid, a metabolite of Lysine, is an important precursor of many useful microbial secondary metabolites. Pipecolic acid can be used as a diagnostic marker of Pyridoxine-dependent epilepsy[1][2].

   

malonic acid

Propanedioic acid

C3H4O4 (104.011)


An alpha,omega-dicarboxylic acid in which the two carboxy groups are separated by a single methylene group.

   

1-Acetylimidazole

1-Acetylimidazole

C5H6N2O (110.048)


   

FA 4:1;O2

xi-3-Hydroxy-2-oxobutanoic acid

C4H6O4 (118.0266)


Methylmalonic acid (Methylmalonate) is an indicator of Vitamin B-12 deficiency in cancer. Methylmalonic acid (Methylmalonate) is an indicator of Vitamin B-12 deficiency in cancer.

   

Malonyl CoA

Coenzyme A, S-(hydrogen propanedioate);S-(Hydrogen malonyl)coenzyme A

C24H38N7O19P3S (853.1156)


   

Coenzyme A, S-(hydrogen methylpropanedioate)

Coenzyme A, S-(hydrogen methylpropanedioate)

C25H40N7O19P3S (867.1312)


   

CYCLOHEXANECARBOXYLIC ACID

CYCLOHEXANECARBOXYLIC ACID

C7H12O2 (128.0837)


Cyclohexanecarboxylic acid is a Valproate structural analogue with anticonvulsant action[1].

   

Malonyl-CoA

Malonyl-CoA

C24H38N7O19P3S (853.1156)


The S-malonyl derivative of coenzyme A.

   

Phenylacetyl-CoA

Phenylacetyl-CoA

C29H42N7O17P3S (885.1571)


An acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of phenylacetic acid.

   

Benzoyl-coa

Benzoyl-coa

C28H40N7O17P3S (871.1414)


The simplest member of the class of benzoyl-CoAs that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of benzoic acid.

   

(S)-methylmalonyl-CoA

(S)-methylmalonyl-CoA

C25H40N7O19P3S (867.1312)


The (S)-enantiomer of methylmalonyl-CoA.