Lusianthridin (BioDeep_00000003746)

 

Secondary id: BioDeep_00000864294

natural product PANOMIX_OTCML-2023


代谢物信息卡片


2,5-Dihydroxy-7-methoxy-9,10-dihydrophenanthrene (14)

化学式: C15H14O3 (242.0943)
中文名称:
谱图信息: 最多检出来源 Chinese Herbal Medicine(otcml) 31.58%

分子结构信息

SMILES: c1c(c2c(cc1OC)CCc1c2ccc(c1)O)O
InChI: InChI=1S/C15H14O3/c1-18-12-7-10-3-2-9-6-11(16)4-5-13(9)15(10)14(17)8-12/h4-8,16-17H,2-3H2,1H3

描述信息

7-methoxy-9,10-dihydrophenanthrene-2,5-diol is a dihydrophenanthrene.
7-Methoxy-9,10-dihydrophenanthrene-2,5-diol is a natural product found in Dendrobium loddigesii, Pleione bulbocodioides, and other organisms with data available.

同义名列表

5 个代谢物同义名

2,5-Dihydroxy-7-methoxy-9,10-dihydrophenanthrene (14); 4,7-dihydroxy-2-methoxy-9,10-dihydrophenanthrene; 7-Methoxy-9,10-dihydrophenanthrene-2,5-diol; Lusianthridin; 4,7-Dihydroxy-2-methoxy-9,10-dihydrophenanthrene



数据库引用编号

19 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

13 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 9 ALDH1A1, LPIN1, MYC, MYD88, NLRP3, PTGS1, PTGS2, STAT3, TLR4
Peripheral membrane protein 3 GORASP1, PTGS1, PTGS2
Endosome membrane 2 MYD88, TLR4
Endoplasmic reticulum membrane 4 DGAT2, LPIN1, PTGS1, PTGS2
Mitochondrion membrane 1 ABCG2
Nucleus 6 ACACB, LPIN1, MYC, MYD88, NLRP3, STAT3
cytosol 9 ACACA, ACACB, ALDH1A1, DGAT2, GPT, LPIN1, MYD88, NLRP3, STAT3
mitochondrial membrane 1 ABCG2
nucleoplasm 4 ABCG2, LPIN1, MYC, STAT3
RNA polymerase II transcription regulator complex 1 STAT3
Cell membrane 2 ABCG2, TLR4
Cytoplasmic side 1 GORASP1
Cell projection, axon 1 ALDH1A1
Multi-pass membrane protein 3 ABCG2, DGAT2, PROM1
Golgi apparatus membrane 2 GORASP1, NLRP3
Synapse 1 ALDH1A1
cell surface 3 MYD88, PROM1, TLR4
Golgi apparatus 2 GORASP1, PTGS1
Golgi membrane 3 GORASP1, INS, NLRP3
Cytoplasm, cytosol 4 ACACA, ALDH1A1, LPIN1, NLRP3
plasma membrane 5 ABCG2, MYD88, PROM1, STAT3, TLR4
Membrane 5 ABCG2, DGAT2, MYC, NLRP3, TLR4
apical plasma membrane 2 ABCG2, PROM1
axon 1 ALDH1A1
caveola 1 PTGS2
extracellular exosome 4 ALDH1A1, GPT, PROM1, PTGS1
endoplasmic reticulum 5 DGAT2, LPIN1, NLRP3, PROM1, PTGS2
extracellular space 5 CRP, IL10, IL6, INS, PROM1
perinuclear region of cytoplasm 2 DGAT2, TLR4
mitochondrion 4 ACACA, ACACB, DGAT2, NLRP3
protein-containing complex 3 MYC, MYD88, PTGS2
intracellular membrane-bounded organelle 2 DGAT2, PTGS1
Microsome membrane 2 PTGS1, PTGS2
Single-pass type I membrane protein 1 TLR4
Secreted 5 CRP, IL10, IL6, INS, NLRP3
extracellular region 5 CRP, IL10, IL6, INS, NLRP3
mitochondrial outer membrane 2 ACACB, LPIN1
transcription regulator complex 1 STAT3
photoreceptor outer segment 2 PROM1, PTGS1
Nucleus membrane 1 LPIN1
nuclear membrane 1 LPIN1
external side of plasma membrane 1 TLR4
actin cytoskeleton 1 ACACA
nucleolus 1 MYC
Early endosome 1 TLR4
vesicle 1 PROM1
Apical cell membrane 2 ABCG2, PROM1
Cytoplasm, perinuclear region 1 DGAT2
Membrane raft 1 ABCG2
cis-Golgi network 1 GORASP1
perinuclear endoplasmic reticulum membrane 1 DGAT2
Cytoplasm, cytoskeleton, microtubule organizing center 1 NLRP3
Inflammasome 1 NLRP3
interphase microtubule organizing center 1 NLRP3
NLRP3 inflammasome complex 1 NLRP3
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
Cell projection, ruffle 1 TLR4
ruffle 1 TLR4
receptor complex 1 TLR4
neuron projection 2 PTGS1, PTGS2
cilium 1 PROM1
chromatin 2 MYC, STAT3
phagocytic cup 1 TLR4
Cell projection, cilium, photoreceptor outer segment 1 PROM1
brush border membrane 1 ABCG2
Nucleus, nucleolus 1 MYC
Cell projection, microvillus membrane 1 PROM1
microvillus membrane 1 PROM1
fibrillar center 1 ACACA
nuclear envelope 2 LPIN1, MYC
Endomembrane system 2 NLRP3, PTGS1
endosome lumen 1 INS
microvillus 1 PROM1
Lipid droplet 1 DGAT2
microtubule organizing center 1 NLRP3
Nucleus, nucleoplasm 1 MYC
lipopolysaccharide receptor complex 1 TLR4
secretory granule lumen 1 INS
Golgi lumen 1 INS
endoplasmic reticulum lumen 3 IL6, INS, PTGS2
transport vesicle 1 INS
RNA polymerase II transcription repressor complex 1 MYC
mitochondrial fatty acid beta-oxidation multienzyme complex 1 ACACB
Endoplasmic reticulum-Golgi intermediate compartment membrane 2 GORASP1, INS
Golgi apparatus, cis-Golgi network membrane 1 GORASP1
endoplasmic reticulum-Golgi intermediate compartment 1 PROM1
extrinsic component of cytoplasmic side of plasma membrane 1 MYD88
external side of apical plasma membrane 1 ABCG2
photoreceptor outer segment membrane 1 PROM1
prominosome 1 PROM1
Rough endoplasmic reticulum 1 MYC
extrinsic component of plasma membrane 1 MYD88
Myc-Max complex 1 MYC
interleukin-6 receptor complex 1 IL6
nucleoplasmic reticulum 1 MYC


文献列表

  • Xiaowen Tang, Qi Liao, Qinqin Li, Linshan Jiang, Wei Li, Jie Xu, Aizhen Xiong, Rufeng Wang, Jing Zhao, Zhengtao Wang, Lili Ding, Li Yang. Lusianthridin ameliorates high fat diet-induced metabolic dysfunction-associated fatty liver disease via activation of FXR signaling pathway. European journal of pharmacology. 2024 Feb; 965(?):176196. doi: 10.1016/j.ejphar.2023.176196. [PMID: 38006926]
  • Tao Li, Weixia Wang, Shumei Li, Cuiping Gong. Lusianthridin Exerts Streptozotocin-Induced Gestational Diabetes Mellitus in Female Rats via Alteration of TLR4/MyD88/NF-κB Signaling Pathway. Journal of oleo science. 2023 Aug; 72(8):775-785. doi: 10.5650/jos.ess23066. [PMID: 37468270]
  • Matthew J Sanders, Yann Ratinaud, Katyayanee Neopane, Nicolas Bonhoure, Emily A Day, Olivier Ciclet, Steve Lassueur, Martine Naranjo Pinta, Maria Deak, Benjamin Brinon, Stefan Christen, Gregory R Steinberg, Denis Barron, Kei Sakamoto. Natural (dihydro)phenanthrene plant compounds are direct activators of AMPK through its allosteric drug and metabolite-binding site. The Journal of biological chemistry. 2022 05; 298(5):101852. doi: 10.1016/j.jbc.2022.101852. [PMID: 35331736]
  • Zhengcai Ju, Qi Liao, Yuangui Yang, Huida Guan, Chao Ma, Xiaowen Tang, Li Yang, Zhengtao Wang. Identification of lusianthridin metabolites in rat liver microsomes by liquid chromatography combined with electrospray ionization time-of-flight mass spectrometry. Biomedical chromatography : BMC. 2021 Mar; 35(3):e5001. doi: 10.1002/bmc.5001. [PMID: 33063881]
  • Zhengcai Ju, Xiaowen Tang, Qi Liao, Huida Guan, Li Yang, Zhengtao Wang. Pharmacokinetic, bioavailability, and metabolism studies of lusianthridin, a dihydrophenanthrene compound, in rats by liquid chromatography/electrospray ionization tandem mass spectrometry. Journal of pharmaceutical and biomedical analysis. 2021 Feb; 195(?):113836. doi: 10.1016/j.jpba.2020.113836. [PMID: 33358433]
  • May Thazin Thant, Nutputsorn Chatsumpun, Wanwimon Mekboonsonglarp, Boonchoo Sritularak, Kittisak Likhitwitayawuid. New Fluorene Derivatives from Dendrobium gibsonii and Their α-Glucosidase Inhibitory Activity. Molecules (Basel, Switzerland). 2020 Oct; 25(21):. doi: 10.3390/molecules25214931. [PMID: 33113779]
  • Chalermporn Sarakulwattana, Wanwimon Mekboonsonglarp, Kittisak Likhitwitayawuid, Pornchai Rojsitthisak, Boonchoo Sritularak. New bisbibenzyl and phenanthrene derivatives from Dendrobium scabrilingue and their α-glucosidase inhibitory activity. Natural product research. 2020 Jun; 34(12):1694-1701. doi: 10.1080/14786419.2018.1527839. [PMID: 30580616]
  • Barbara Tóth, Judit Hohmann, Andrea Vasas. Phenanthrenes: A Promising Group of Plant Secondary Metabolites. Journal of natural products. 2018 03; 81(3):661-678. doi: 10.1021/acs.jnatprod.7b00619. [PMID: 29280630]
  • Ya-Ping Wu, Wen-Jian Liu, Wen-Jun Zhong, Yue-Juan Chen, Dan-Na Chen, Feng He, Lin Jiang. Phenolic compounds from the stems of Flickingeria fimbriata. Natural product research. 2017 Jul; 31(13):1518-1522. doi: 10.1080/14786419.2017.1278599. [PMID: 28278646]
  • Xue-Ming Zhou, Cai-Juan Zheng, Li-She Gan, Guang-Ying Chen, Xiao-Peng Zhang, Xiao-Ping Song, Gao-Nan Li, Chong-Ge Sun. Bioactive Phenanthrene and Bibenzyl Derivatives from the Stems of Dendrobium nobile. Journal of natural products. 2016 07; 79(7):1791-7. doi: 10.1021/acs.jnatprod.6b00252. [PMID: 27310249]
  • Ji Sang Hwang, Seon A Lee, Seong Su Hong, Xiang Hua Han, Chul Lee, Shin Jung Kang, Dongho Lee, Youngsoo Kim, Jin Tae Hong, Mi Kyeong Lee, Bang Yeon Hwang. Phenanthrenes from Dendrobium nobile and their inhibition of the LPS-induced production of nitric oxide in macrophage RAW 264.7 cells. Bioorganic & medicinal chemistry letters. 2010 Jun; 20(12):3785-7. doi: 10.1016/j.bmcl.2010.04.054. [PMID: 20483604]
  • Min Hye Yang, Kee Dong Yoon, Young-Won Chin, Ju Hyun Park, Jinwoong Kim. Phenolic compounds with radical scavenging and cyclooxygenase-2 (COX-2) inhibitory activities from Dioscorea opposita. Bioorganic & medicinal chemistry. 2009 Apr; 17(7):2689-94. doi: 10.1016/j.bmc.2009.02.057. [PMID: 19303782]
  • Hyekyung Yang, Sang Hyun Sung, Young Choong Kim. Antifibrotic phenanthrenes of Dendrobium nobile stems. Journal of natural products. 2007 Dec; 70(12):1925-9. doi: 10.1021/np070423f. [PMID: 18052323]
  • Yanet Hernández-Romero, Juana-Isela Rojas, Rafael Castillo, Alejandra Rojas, Rachel Mata. Spasmolytic effects, mode of action, and structure-activity relationships of stilbenoids from Nidema boothii. Journal of natural products. 2004 Feb; 67(2):160-7. doi: 10.1021/np030303h. [PMID: 14987052]