Palmitoylcarnitine (BioDeep_00000003254)
Main id: BioDeep_00000641215
Secondary id: BioDeep_00000405221, BioDeep_00001891269
human metabolite blood metabolite LipidSearch natural product
代谢物信息卡片
化学式: C23H45NO4 (399.33484100000004)
中文名称: 棕榈酰左旋肉碱, 棕榈酰-L-肉碱
谱图信息:
最多检出来源 Homo sapiens(lipidomics) 0.1%
分子结构信息
SMILES: CCCCCCCCCCCCCCCC(=O)OC(CC(=O)[O-])C[N+](C)(C)C
InChI: InChI=1S/C23H45NO4/c1-5-6-7-8-9-10-11-12-13-14-15-16-17-18-23(27)28-21(19-22(25)26)20-24(2,3)4/h21H,5-20H2,1-4H3
描述信息
D018977 - Micronutrients > D014815 - Vitamins
CONFIDENCE standard compound; INTERNAL_ID 250
同义名列表
数据库引用编号
22 个数据库交叉引用编号
- ChEBI: CHEBI:17490
- ChEBI: CHEBI:73067
- KEGG: C02990
- PubChem: 11953816
- PubChem: 461
- Metlin: METLIN36667
- Metlin: METLIN961
- ChEMBL: CHEMBL3392050
- ChEMBL: CHEMBL301722
- LipidMAPS: LMFA07070004
- MeSH: Palmitoylcarnitine
- CAS: 2364-67-2
- CAS: 1935-18-8
- MoNA: RP025003
- MoNA: RP025001
- MoNA: RP025002
- PMhub: MS000008638
- PubChem: 5899
- 3DMET: B00524
- NIKKAJI: J410.749G
- KNApSAcK: 17490
- LOTUS: LTS0183906
分类词条
相关代谢途径
Reactome(7)
BioCyc(0)
PlantCyc(0)
代谢反应
120 个相关的代谢反应过程信息。
Reactome(84)
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of lipids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Carnitine metabolism:
CAR + PALM-CoA ⟶ CoA-SH + L-PCARN
- Signaling Pathways:
ADORA2A,B + Ade-Rib ⟶ ADORA2A,B:Ade-Rib
- Signaling by Nuclear Receptors:
CAR + PALM-CoA ⟶ CoA-SH + L-PCARN
- Signaling by Retinoic Acid:
CAR + PALM-CoA ⟶ CoA-SH + L-PCARN
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Nuclear Receptors:
CAR + PALM-CoA ⟶ CoA-SH + L-PCARN
- Signaling by Retinoic Acid:
CAR + PALM-CoA ⟶ CoA-SH + L-PCARN
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Carnitine metabolism:
ATP + Ac-CoA + HCO3- ⟶ ADP + Mal-CoA + Pi
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Nuclear Receptors:
E2QW22 + E2RPT1 + ESR1:ER:PGR:P4 + F6UTY3 + J9P0C0 ⟶ ESR1:ESTG:PGR:P4:FOXA1:GATA3:TLE3:NRIP:EP300
- Signaling by Retinoic Acid:
CAR + PALM-CoA ⟶ CoA-SH + L-PCARN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Carnitine metabolism:
ATP + Ac-CoA + HCO3- ⟶ ADP + Mal-CoA + Pi
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Nuclear Receptors:
ESR1 dimer:ESTG + HSP90:ATP:PTGES3:FKBP52:PGR:P4 ⟶ ADP + ESR1:ER:PGR:P4 + F8W2D1 + HSP90:HSP90 + Pi + Q7SZQ8
- Signaling by Retinoic Acid:
CAR + PALM-CoA ⟶ CoA-SH + L-PCARN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Carnitine metabolism:
ATP + Ac-CoA + HCO3- ⟶ ADP + Mal-CoA + Pi
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Nuclear Receptors:
ESR1 dimer:ESTG + HSP90:ATP:PTGES3:FKBP52:PGR:P4 ⟶ ADP + ESR1:ER:PGR:P4 + HSP90:HSP90 + Pi + Q9VH95 + Q9VL78
- Signaling by Retinoic Acid:
CAR + PALM-CoA ⟶ CoA-SH + L-PCARN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Carnitine metabolism:
ATP + Ac-CoA + HCO3- ⟶ ADP + Mal-CoA + Pi
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Carnitine metabolism:
ATP + Ac-CoA + HCO3- ⟶ ADP + Mal-CoA + Pi
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Nuclear Receptors:
CAR + PALM-CoA ⟶ CoA-SH + L-PCARN
- Signaling by Retinoic Acid:
CAR + PALM-CoA ⟶ CoA-SH + L-PCARN
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Carnitine metabolism:
ATP + Ac-CoA + HCO3- ⟶ ADP + Mal-CoA + Pi
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Nuclear Receptors:
ESR1 dimer:ESTG + HSP90:ATP:PTGES3:FKBP52:PGR:P4 ⟶ ADP + ESR1:ER:PGR:P4 + HSP90:HSP90 + Immunophilin FKBP52 + Pi + cPGES
- Signaling by Retinoic Acid:
CAR + PALM-CoA ⟶ CoA-SH + L-PCARN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Carnitine metabolism:
ATP + Ac-CoA + HCO3- ⟶ ADP + Mal-CoA + Pi
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Nuclear Receptors:
ESR1 dimer:ESTG + HSP90:ATP:PTGES3:FKBP52:PGR:P4 ⟶ ADP + ESR1:ER:PGR:P4 + Fkbp4 + HSP90:HSP90 + Pi + Q9R0Q7
- Signaling by Retinoic Acid:
CAR + PALM-CoA ⟶ CoA-SH + L-PCARN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Carnitine metabolism:
ATP + Ac-CoA + HCO3- ⟶ ADP + Mal-CoA + Pi
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Nuclear Receptors:
ESR1 dimer:ESTG + HSP90:ATP:PTGES3:FKBP52:PGR:P4 ⟶ ADP + ESR1:ER:PGR:P4 + HSP90:HSP90 + Pi + Ptges3 + Q9QVC8
- Signaling by Retinoic Acid:
CAR + PALM-CoA ⟶ CoA-SH + L-PCARN
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of lipids:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Fatty acid metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Carnitine metabolism:
ATP + Ac-CoA + HCO3- ⟶ ADP + Mal-CoA + Pi
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Nuclear Receptors:
CAR + PALM-CoA ⟶ CoA-SH + L-PCARN
- Signaling by Retinoic Acid:
CAR + PALM-CoA ⟶ CoA-SH + L-PCARN
- Signaling Pathways:
AMP + p-AMPK heterotrimer ⟶ p-AMPK heterotrimer:AMP
- Signaling by Nuclear Receptors:
ESR1:ESTG + HSP90:ATP:PTGES3:FKBP52:PGR:P4 ⟶ ADP + ESR1:ER:PGR:P4 + H0ZSE5 + H0ZZA2 + HSP90-beta dimer + Pi
- Signaling by Retinoic Acid:
CAR + PALM-CoA ⟶ CoA-SH + L-PCARN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Import of palmitoyl-CoA into the mitochondrial matrix:
ATP + Ac-CoA + HCO3- ⟶ ADP + Mal-CoA + Pi
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Carnitine metabolism:
ATP + Ac-CoA + HCO3- ⟶ ADP + Mal-CoA + Pi
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Nuclear Receptors:
ESR1 dimer:ESTG + HSP90:ATP:PTGES3:FKBP52:PGR:P4 ⟶ A0A310SUH5 + ADP + ESR1:ER:PGR:P4 + HSP90:HSP90 + Pi + Q5U4Z0
- Signaling by Retinoic Acid:
CAR + PALM-CoA ⟶ CoA-SH + L-PCARN
BioCyc(2)
- mitochondrial L-carnitine shuttle:
L-carnitine + palmitoyl-CoA ⟶ O-palmitoyl-L-carnitine + coenzyme A
- mitochondrial L-carnitine shuttle:
L-carnitine + a long-chain acyl-CoA ⟶ an O-long-chain-acyl-L-carnitine + coenzyme A
Plant Reactome(0)
INOH(0)
PlantCyc(1)
- mitochondrial L-carnitine shuttle:
L-carnitine + a long-chain acyl-CoA ⟶ an O-long-chain-acyl-L-carnitine + coenzyme A
COVID-19 Disease Map(0)
PathBank(32)
- Fatty Acid Metabolism:
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Ethylmalonic Encephalopathy:
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Glutaric Aciduria Type I:
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Short-Chain Acyl-CoA Dehydrogenase Deficiency (SCAD Deficiency):
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Carnitine Palmitoyl Transferase Deficiency I:
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Long Chain Acyl-CoA Dehydrogenase Deficiency (LCAD):
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Very-Long-Chain Acyl-CoA Dehydrogenase Deficiency (VLCAD):
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Carnitine Palmitoyl Transferase Deficiency II:
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Medium Chain Acyl-CoA Dehydrogenase Deficiency (MCAD):
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Trifunctional Protein Deficiency:
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Fatty Acid Metabolism:
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Fatty Acid Metabolism:
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Ethylmalonic Encephalopathy:
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Short-Chain Acyl-CoA Dehydrogenase Deficiency (SCAD Deficiency):
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Carnitine Palmitoyl Transferase Deficiency I:
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Long Chain Acyl-CoA Dehydrogenase Deficiency (LCAD):
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Very-Long-Chain Acyl-CoA Dehydrogenase Deficiency (VLCAD):
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Carnitine Palmitoyl Transferase Deficiency II:
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Medium Chain Acyl-CoA Dehydrogenase Deficiency (MCAD):
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Trifunctional Protein Deficiency:
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Fatty Acid Metabolism:
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Fatty Acid Metabolism:
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Fatty Acid Metabolism:
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Fatty Acid Metabolism:
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Ethylmalonic Encephalopathy:
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Short-Chain Acyl-CoA Dehydrogenase Deficiency (SCAD Deficiency):
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Carnitine Palmitoyl Transferase Deficiency I:
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Long Chain Acyl-CoA Dehydrogenase Deficiency (LCAD):
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Very-Long-Chain Acyl-CoA Dehydrogenase Deficiency (VLCAD):
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Carnitine Palmitoyl Transferase Deficiency II:
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Medium Chain Acyl-CoA Dehydrogenase Deficiency (MCAD):
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Trifunctional Protein Deficiency:
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
PharmGKB(0)
21 个相关的物种来源信息
- 7458 - Apidae: LTS0183906
- 7459 - Apis: LTS0183906
- 7461 - Apis cerana: 10.1371/JOURNAL.PONE.0175573
- 7461 - Apis cerana: LTS0183906
- 6656 - Arthropoda: LTS0183906
- 7711 - Chordata: LTS0183906
- 7227 - Drosophila melanogaster: 10.1038/S41467-019-11933-Z
- 2759 - Eukaryota: LTS0183906
- 9604 - Hominidae: LTS0183906
- 9605 - Homo: LTS0183906
- 9606 - Homo sapiens:
- 9606 - Homo sapiens: 10.1007/S11306-015-0840-5
- 9606 - Homo sapiens: 10.1038/NBT.2488
- 9606 - Homo sapiens: LTS0183906
- 50557 - Insecta: LTS0183906
- 40674 - Mammalia: LTS0183906
- 33208 - Metazoa: LTS0183906
- 10066 - Muridae: LTS0183906
- 10088 - Mus: LTS0183906
- 10090 - Mus musculus: LTS0183906
- 10090 - Mus musculus: NA
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Ruirui Dong, Ningzhen Ye, Shaojie Zhao, Gaoying Wang, Yan Zhang, Tiejun Wang, Ping Zou, Jing Wang, Tingting Yao, Minjian Chen, Conghua Zhou, Ting Zhang, Liang Luo. Studies on Novel Diagnostic and Predictive Biomarkers of Intrahepatic Cholestasis of Pregnancy Through Metabolomics and Proteomics.
Frontiers in immunology.
2021; 12(?):733225. doi:
10.3389/fimmu.2021.733225
. [PMID: 34721396] - YueTao Liu, XinQi Li, AiPing Li, Ke Li, XueMei Qin. UHPLC Q-Exactive MS-based spleen metabolomics and lipidomics to explore the effect mechanisms of Danggui Buxue Decoction in anemia mice.
Journal of pharmaceutical and biomedical analysis.
2020 Jun; 185(?):113234. doi:
10.1016/j.jpba.2020.113234
. [PMID: 32171146] - Khalil Mallah, Jusal Quanico, Antonella Raffo-Romero, Tristan Cardon, Soulaimane Aboulouard, David Devos, Firas Kobeissy, Kazem Zibara, Michel Salzet, Isabelle Fournier. Matrix-Assisted Laser Desorption/Ionization-Mass Spectrometry Imaging of Lipids in Experimental Model of Traumatic Brain Injury Detecting Acylcarnitines as Injury Related Markers.
Analytical chemistry.
2019 09; 91(18):11879-11887. doi:
10.1021/acs.analchem.9b02633
. [PMID: 31412203] - Larissa Menezes Dos Reis, Douglas Adamoski, Rodolpho Ornitz Oliveira Souza, Carolline Fernanda Rodrigues Ascenção, Krishina Ratna Sousa de Oliveira, Felipe Corrêa-da-Silva, Fábio Malta de Sá Patroni, Marília Meira Dias, Sílvio Roberto Consonni, Pedro Manoel Mendes de Moraes-Vieira, Ariel Mariano Silber, Sandra Martha Gomes Dias. Dual inhibition of glutaminase and carnitine palmitoyltransferase decreases growth and migration of glutaminase inhibition-resistant triple-negative breast cancer cells.
The Journal of biological chemistry.
2019 06; 294(24):9342-9357. doi:
10.1074/jbc.ra119.008180
. [PMID: 31040181] - Shannon N Mostyn, Tristan Rawling, Sarasa Mohammadi, Susan Shimmon, Zachary J Frangos, Subhodeep Sarker, Arsalan Yousuf, Irina Vetter, Renae M Ryan, Macdonald J Christie, Robert J Vandenberg. Development of an N-Acyl Amino Acid That Selectively Inhibits the Glycine Transporter 2 To Produce Analgesia in a Rat Model of Chronic Pain.
Journal of medicinal chemistry.
2019 03; 62(5):2466-2484. doi:
10.1021/acs.jmedchem.8b01775
. [PMID: 30714733] - Takashi Tsuji, Morio Matsumoto, Masaya Nakamura, Takeshi Miyamoto, Mitsuru Yagi, Nobuyuki Fujita, Eijiro Okada, Narihito Nagoshi, Osahiko Tsuji, Kota Watanabe. Metabolite profiling of plasma in patients with ossification of the posterior longitudinal ligament.
Journal of orthopaedic science : official journal of the Japanese Orthopaedic Association.
2018 Nov; 23(6):878-883. doi:
10.1016/j.jos.2018.07.001
. [PMID: 30075996] - Sree V Chintapalli, Andriy Anishkin, Sean H Adams. Exploring the entry route of palmitic acid and palmitoylcarnitine into myoglobin.
Archives of biochemistry and biophysics.
2018 10; 655(?):56-66. doi:
10.1016/j.abb.2018.07.024
. [PMID: 30092229] - Margot Riggi, Karolina Niewola-Staszkowska, Nicolas Chiaruttini, Adai Colom, Beata Kusmider, Vincent Mercier, Saeideh Soleimanpour, Michael Stahl, Stefan Matile, Aurélien Roux, Robbie Loewith. Decrease in plasma membrane tension triggers PtdIns(4,5)P2 phase separation to inactivate TORC2.
Nature cell biology.
2018 09; 20(9):1043-1051. doi:
10.1038/s41556-018-0150-z
. [PMID: 30154550] - Fatima-Zahra Bouchouirab, Mélanie Fortin, Christophe Noll, Jean Dubé, André C Carpentier. Plasma Palmitoyl-Carnitine (AC16:0) Is a Marker of Increased Postprandial Nonesterified Incomplete Fatty Acid Oxidation Rate in Adults With Type 2 Diabetes.
Canadian journal of diabetes.
2018 Aug; 42(4):382-388.e1. doi:
10.1016/j.jcjd.2017.09.002
. [PMID: 29129455] - Dorottya Nagy-Szakal, Dinesh K Barupal, Bohyun Lee, Xiaoyu Che, Brent L Williams, Ellie J R Kahn, Joy E Ukaigwe, Lucinda Bateman, Nancy G Klimas, Anthony L Komaroff, Susan Levine, Jose G Montoya, Daniel L Peterson, Bruce Levin, Mady Hornig, Oliver Fiehn, W Ian Lipkin. Insights into myalgic encephalomyelitis/chronic fatigue syndrome phenotypes through comprehensive metabolomics.
Scientific reports.
2018 07; 8(1):10056. doi:
10.1038/s41598-018-28477-9
. [PMID: 29968805] - Yuiko Kamei, Daigo Kamei, Ken Tsuchiya, Michio Mineshima, Kosaku Nitta. Association between 4-year all-cause mortality and carnitine profile in maintenance hemodialysis patients.
PloS one.
2018; 13(8):e0201591. doi:
10.1371/journal.pone.0201591
. [PMID: 30133480] - Jie Liu, Gang Zhan, Dewei Chen, Jian Chen, Zhi-Bin Yuan, Er-Long Zhang, Yi-Xing Gao, Gang Xu, Bing-Da Sun, Wenting Liao, Yu-Qi Gao. UPLC‑QTOFMS‑based metabolomic analysis of the serum of hypoxic preconditioning mice.
Molecular medicine reports.
2017 Nov; 16(5):6828-6836. doi:
10.3892/mmr.2017.7493
. [PMID: 28901489] - Maria Chondronikola, Rabia Asghar, Xiaojun Zhang, Edgar L Dillon, William J Durham, Zhanpin Wu, Craig Porter, Maria Camacho-Hughes, Yingxin Zhao, Allan R Brasier, Elena Volpi, Melinda Sheffield-Moore, Nicola Abate, Labros Sidossis, Demidmaa Tuvdendorj. Palmitoyl-carnitine production by blood cells associates with the concentration of circulating acyl-carnitines in healthy overweight women.
Clinical nutrition (Edinburgh, Scotland).
2017 10; 36(5):1310-1319. doi:
10.1016/j.clnu.2016.08.019
. [PMID: 27624997] - Edgars Liepinsh, Marina Makrecka-Kuka, Elina Makarova, Kristine Volska, Karlis Vilks, Eduards Sevostjanovs, Unigunde Antone, Janis Kuka, Reinis Vilskersts, Daina Lola, Einars Loza, Solveiga Grinberga, Maija Dambrova. Acute and long-term administration of palmitoylcarnitine induces muscle-specific insulin resistance in mice.
BioFactors (Oxford, England).
2017 Sep; 43(5):718-730. doi:
10.1002/biof.1378
. [PMID: 28759135] - Paula M Miotto, Gregory R Steinberg, Graham P Holloway. Controlling skeletal muscle CPT-I malonyl-CoA sensitivity: the importance of AMPK-independent regulation of intermediate filaments during exercise.
The Biochemical journal.
2017 02; 474(4):557-569. doi:
10.1042/bcj20160913
. [PMID: 27941154] - Kenji Yamada, Hironori Kobayashi, Ryosuke Bo, Jamiyan Purevsuren, Yuichi Mushimoto, Tomoo Takahashi, Yuki Hasegawa, Takeshi Taketani, Seiji Fukuda, Seiji Yamaguchi. Efficacy of bezafibrate on fibroblasts of glutaric acidemia type II patients evaluated using an in vitro probe acylcarnitine assay.
Brain & development.
2017 Jan; 39(1):48-57. doi:
10.1016/j.braindev.2016.08.004
. [PMID: 27591119] - Gaokun Qiu, Yan Zheng, Hao Wang, Jie Sun, Hongxia Ma, Yang Xiao, Yizhun Li, Yu Yuan, Handong Yang, Xiulou Li, Xinwen Min, Ce Zhang, Chengwei Xu, Yue Jiang, Xiaomin Zhang, Meian He, Ming Yang, Zhibin Hu, Huiru Tang, Hongbing Shen, Frank B Hu, An Pan, Tangchun Wu. Plasma metabolomics identified novel metabolites associated with risk of type 2 diabetes in two prospective cohorts of Chinese adults.
International journal of epidemiology.
2016 10; 45(5):1507-1516. doi:
10.1093/ije/dyw221
. [PMID: 27694567] - Marieke G Schooneman, Gabriella A M Ten Have, Naomi van Vlies, Sander M Houten, Nicolaas E P Deutz, Maarten R Soeters. Transorgan fluxes in a porcine model reveal a central role for liver in acylcarnitine metabolism.
American journal of physiology. Endocrinology and metabolism.
2015 Aug; 309(3):E256-64. doi:
10.1152/ajpendo.00503.2014
. [PMID: 26037250] - Marina Makrecka, Janis Kuka, Kristine Volska, Unigunde Antone, Eduards Sevostjanovs, Helena Cirule, Solveiga Grinberga, Osvalds Pugovics, Maija Dambrova, Edgars Liepinsh. Long-chain acylcarnitine content determines the pattern of energy metabolism in cardiac mitochondria.
Molecular and cellular biochemistry.
2014 Oct; 395(1-2):1-10. doi:
10.1007/s11010-014-2106-3
. [PMID: 24878991] - Yangzhen Shao, Bjorn Redfors, David Benoist, Sigfus Gizurarson, Elmir Omerovic. Lipid metabolites and their differential pro-arrhythmic profiles: of importance in the development of a new anti-arrhythmic pharmacology.
Molecular and cellular biochemistry.
2014 Aug; 393(1-2):191-7. doi:
10.1007/s11010-014-2060-0
. [PMID: 24771065] - Huawei Zhang, Peng Fu, Beilei Ke, Shuping Wang, Min Li, Lin Han, Chengcheng Peng, Weidong Zhang, Runhui Liu. Metabolomic analysis of biochemical changes in the plasma and urine of collagen-induced arthritis in rats after treatment with Huang-Lian-Jie-Du-Tang.
Journal of ethnopharmacology.
2014 May; 154(1):55-64. doi:
10.1016/j.jep.2014.03.007
. [PMID: 24709313] - Réjane Morand, Massimiliano Donzelli, Manuel Haschke, Stephan Krähenbühl. Quantification of plasma carnitine and acylcarnitines by high-performance liquid chromatography-tandem mass spectrometry using online solid-phase extraction.
Analytical and bioanalytical chemistry.
2013 Nov; 405(27):8829-36. doi:
10.1007/s00216-013-7309-z
. [PMID: 23995505] - Thor Ueland, Asbjørn Svardal, Erik Øie, Erik T Askevold, Ståle H Nymoen, Bodil Bjørndal, Christen P Dahl, Lars Gullestad, Rolf K Berge, Pål Aukrust. Disturbed carnitine regulation in chronic heart failure--increased plasma levels of palmitoyl-carnitine are associated with poor prognosis.
International journal of cardiology.
2013 Sep; 167(5):1892-9. doi:
10.1016/j.ijcard.2012.04.150
. [PMID: 22622056] - Jill A Kanaley, Samyah Shadid, Michael T Sheehan, ZengKui Guo, Michael D Jensen. Hyperinsulinemia and skeletal muscle fatty acid trafficking.
American journal of physiology. Endocrinology and metabolism.
2013 Aug; 305(4):E540-8. doi:
10.1152/ajpendo.00143.2013
. [PMID: 23820622] - Karolina Tułodziecka, Magdalena Czeredys, Katarzyna A Nałęcz. Palmitoylcarnitine affects localization of growth associated protein GAP-43 in plasma membrane subdomains and its interaction with Gα(o) in neuroblastoma NB-2a cells.
Neurochemical research.
2013 Mar; 38(3):519-29. doi:
10.1007/s11064-012-0944-5
. [PMID: 23224819] - Karen Dixen, Astrid L Basse, Maria Murholm, Marie S Isidor, Lillian H L Hansen, M Christine H Petersen, Lise Madsen, Natasa Petrovic, Jan Nedergaard, Bjørn Quistorff, Jacob B Hansen. ERRγ enhances UCP1 expression and fatty acid oxidation in brown adipocytes.
Obesity (Silver Spring, Md.).
2013 Mar; 21(3):516-24. doi:
10.1002/oby.20067
. [PMID: 23404793] - Ulrikke Voss, Elin Sand, Björn Olde, Eva Ekblad. Enteric neuropathy can be induced by high fat diet in vivo and palmitic acid exposure in vitro.
PloS one.
2013; 8(12):e81413. doi:
10.1371/journal.pone.0081413
. [PMID: 24312551] - Xiaolei Shi, Dan Yao, Blake A Gosnell, Chi Chen. Lipidomic profiling reveals protective function of fatty acid oxidation in cocaine-induced hepatotoxicity.
Journal of lipid research.
2012 Nov; 53(11):2318-30. doi:
10.1194/jlr.m027656
. [PMID: 22904346] - Wenche Jørgensen, Peter Jelnes, Kasper A Rud, Lillian L Hansen, Niels Grunnet, Bjørn Quistorff. Progression of type 2 diabetes in GK rats affects muscle and liver mitochondria differently: pronounced reduction of complex II flux is observed in liver only.
American journal of physiology. Endocrinology and metabolism.
2012 Aug; 303(4):E515-23. doi:
10.1152/ajpendo.00103.2012
. [PMID: 22713504] - Xiao-Jun Zhang, Noe A Rodriguez, Lijian Wang, Demidmaa Tuvdendorj, Zhanpin Wu, Alai Tan, David N Herndon, Robert R Wolfe. Measurement of precursor enrichment for calculating intramuscular triglyceride fractional synthetic rate.
Journal of lipid research.
2012 Jan; 53(1):119-25. doi:
10.1194/jlr.m019901
. [PMID: 21934122] - Xudong Wang, Gail J Mick, Edmund Maser, Kenneth McCormick. Manifold effects of palmitoylcarnitine on endoplasmic reticulum metabolism: 11β-hydroxysteroid dehydrogenase 1, flux through hexose-6-phosphate dehydrogenase and NADPH concentration.
The Biochemical journal.
2011 Jul; 437(1):109-15. doi:
10.1042/bj20102069
. [PMID: 21492096] - Nolwenn Brandhonneur, Gilles Dollo, Maja Ratajczak-Enselme, Anne Laure Deniau, François Chevanne, Jean Pierre Estèbe, Alain Legrand, Pascal Le Corre. Ex vivo and in vivo diffusion of ropivacaine through spinal meninges: influence of absorption enhancers.
International journal of pharmaceutics.
2011 Feb; 404(1-2):36-41. doi:
10.1016/j.ijpharm.2010.10.049
. [PMID: 21056096] - Nobuyuki Doi, Mikio Tomita, Masahiro Hayashi. Absorption enhancement effect of acylcarnitines through changes in tight junction protein in Caco-2 cell monolayers.
Drug metabolism and pharmacokinetics.
2011; 26(2):162-70. doi:
10.2133/dmpk.dmpk-10-rg-071
. [PMID: 21206134] - Jean-Paul Bonnefont, Jean Bastin, Anthony Behin, Fatima Djouadi. Bezafibrate for an inborn mitochondrial beta-oxidation defect.
The New England journal of medicine.
2009 Feb; 360(8):838-40. doi:
10.1056/nejmc0806334
. [PMID: 19228633] - Zhi Liu, Abdul E Mutlib, Jianyao Wang, Rasmy E Talaat. Liquid chromatography/mass spectrometry determination of endogenous plasma acetyl and palmitoyl carnitines as potential biomarkers of beta-oxidation in mice.
Rapid communications in mass spectrometry : RCM.
2008 Nov; 22(21):3434-42. doi:
10.1002/rcm.3755
. [PMID: 18837479] - Muhammad A Abdul-Ghani, Florian L Muller, Yuhong Liu, Alberto O Chavez, Bogdan Balas, Pengou Zuo, Zhi Chang, Devjit Tripathy, Rucha Jani, Marjorie Molina-Carrion, Adriana Monroy, Franco Folli, Holly Van Remmen, Ralph A DeFronzo. Deleterious action of FA metabolites on ATP synthesis: possible link between lipotoxicity, mitochondrial dysfunction, and insulin resistance.
American journal of physiology. Endocrinology and metabolism.
2008 Sep; 295(3):E678-85. doi:
10.1152/ajpendo.90287.2008
. [PMID: 18593850] - John J Lehman, Sihem Boudina, Natasha Hausler Banke, Nandakumar Sambandam, Xianlin Han, Deanna M Young, Teresa C Leone, Richard W Gross, E Douglas Lewandowski, E Dale Abel, Daniel P Kelly. The transcriptional coactivator PGC-1alpha is essential for maximal and efficient cardiac mitochondrial fatty acid oxidation and lipid homeostasis.
American journal of physiology. Heart and circulatory physiology.
2008 Jul; 295(1):H185-96. doi:
10.1152/ajpheart.00081.2008
. [PMID: 18487436] - Hiromutsu Tominaga, Hideki Katoh, Keiichi Odagiri, Yasuyo Takeuchi, Hirotaka Kawashima, Masao Saotome, Tsuyoshi Urushida, Hiroshi Satoh, Hideharu Hayashi. Different effects of palmitoyl-L-carnitine and palmitoyl-CoA on mitochondrial function in rat ventricular myocytes.
American journal of physiology. Heart and circulatory physiology.
2008 Jul; 295(1):H105-12. doi:
10.1152/ajpheart.01307.2007
. [PMID: 18469143] - Sonja Primassin, Frank Ter Veld, Ertan Mayatepek, Ute Spiekerkoetter. Carnitine supplementation induces acylcarnitine production in tissues of very long-chain acyl-CoA dehydrogenase-deficient mice, without replenishing low free carnitine.
Pediatric research.
2008 Jun; 63(6):632-7. doi:
10.1203/pdr.0b013e31816ff6f0
. [PMID: 18317232] - Timothy K Tippin, Dhiren R Thakker. Biorelevant refinement of the Caco-2 cell culture model to assess efficacy of paracellular permeability enhancers.
Journal of pharmaceutical sciences.
2008 May; 97(5):1977-92. doi:
10.1002/jps.21118
. [PMID: 17724658] - K M Bushma. [The role of the functional state of kidney mitochondria in predisposition of hydronephrotic rabits to gentamicin nephrotoxicity].
Eksperimental'naia i klinicheskaia farmakologiia.
2008 May; 71(3):26-30. doi:
NULL
. [PMID: 18652252] - Katarzyna A Nałecz, Dorota Szczepankowska, Magdalena Czeredys, Natalia Kulikova, Stanisław Grześkiewicz. Palmitoylcarnitine regulates estrification of lipids and promotes palmitoylation of GAP-43.
FEBS letters.
2007 Aug; 581(21):3950-4. doi:
10.1016/j.febslet.2007.07.027
. [PMID: 17662726] - Ronald N Cortright, Kimberly M Sandhoff, Jessica L Basilio, Jason R Berggren, Robert C Hickner, Matthew W Hulver, G Lynis Dohm, Joseph A Houmard. Skeletal muscle fat oxidation is increased in African-American and white women after 10 days of endurance exercise training.
Obesity (Silver Spring, Md.).
2006 Jul; 14(7):1201-10. doi:
10.1038/oby.2006.137
. [PMID: 16899801] - Dayong Sun, Melanie G Cree, Xiao-Jun Zhang, Elisabet Bøersheim, Robert R Wolfe. Measurement of stable isotopic enrichment and concentration of long-chain fatty acyl-carnitines in tissue by HPLC-MS.
Journal of lipid research.
2006 Feb; 47(2):431-9. doi:
10.1194/jlr.d500026-jlr200
. [PMID: 16301738] - E Silvestri, M Moreno, A Lombardi, M Ragni, P de Lange, S E H Alexson, A Lanni, F Goglia. Thyroid-hormone effects on putative biochemical pathways involved in UCP3 activation in rat skeletal muscle mitochondria.
FEBS letters.
2005 Mar; 579(7):1639-45. doi:
10.1016/j.febslet.2005.02.022
. [PMID: 15757654] - Paul E Minkler, Stephen T Ingalls, Charles L Hoppel. Strategy for the isolation, derivatization, chromatographic separation, and detection of carnitine and acylcarnitines.
Analytical chemistry.
2005 Mar; 77(5):1448-57. doi:
10.1021/ac0487810
. [PMID: 15732930] - Sarah P Young, Dietrich Matern, Niels Gregersen, Robert D Stevens, Deeksha Bali, Hui-Ming Liu, Dwight D Koeberl, David S Millington. A comparison of in vitro acylcarnitine profiling methods for the diagnosis of classical and variant short chain acyl-CoA dehydrogenase deficiency.
Clinica chimica acta; international journal of clinical chemistry.
2003 Nov; 337(1-2):103-13. doi:
10.1016/j.cccn.2003.07.006
. [PMID: 14568186] - Ei Sekoguchi, Norihiro Sato, Akihiro Yasui, Shinji Fukada, Yuji Nimura, Hiroyuki Aburatani, Kyoji Ikeda, Akira Matsuura. A novel mitochondrial carnitine-acylcarnitine translocase induced by partial hepatectomy and fasting.
The Journal of biological chemistry.
2003 Oct; 278(40):38796-802. doi:
10.1074/jbc.m306372200
. [PMID: 12882971] - R Crescenzo, D Mainieri, G Solinas, J P Montani, J Seydoux, G Liverini, S Iossa, A G Dulloo. Skeletal muscle mitochondrial oxidative capacity and uncoupling protein 3 are differently influenced by semistarvation and refeeding.
FEBS letters.
2003 Jun; 544(1-3):138-42. doi:
10.1016/s0014-5793(03)00491-5
. [PMID: 12782304] - Maria Moreno, Assunta Lombardi, Pieter De Lange, Elena Silvestri, Maurizio Ragni, Antonia Lanni, Fernando Goglia. Fasting, lipid metabolism, and triiodothyronine in rat gastrocnemius muscle: interrelated roles of uncoupling protein 3, mitochondrial thioesterase, and coenzyme Q.
FASEB journal : official publication of the Federation of American Societies for Experimental Biology.
2003 Jun; 17(9):1112-4. doi:
10.1096/fj.02-0839fje
. [PMID: 12692085] - Katsuhiko Muraki. [Analyses of Ca-related ion channel currents and their involvement in Ca mobilization in smooth muscle and endothelial cells].
Nihon yakurigaku zasshi. Folia pharmacologica Japonica.
2003 Mar; 121(3):143-51. doi:
10.1254/fpj.121.143
. [PMID: 12673948] - Alexandra Meynier, Hafida Razik, Catherine Cordelet, Stéphane Grégoire, Luc Demaison. Involvement of oxygen free radicals in the respiratory uncoupling induced by free calcium and ADP-magnesium in isolated cardiac mitochondria: comparing reoxygenation in cultured cardiomyocytes.
Molecular and cellular biochemistry.
2003 Jan; 243(1-2):55-64. doi:
10.1023/a:1021650807032
. [PMID: 12619889] - K Gempel, S Kiechl, S Hofmann, H Lochmüller, U Kiechl-Kohlendorfer, J Willeit, W Sperl, A Rettinger, I Bieger, D Pongratz, K D Gerbitz, M F Bauer. Screening for carnitine palmitoyltransferase II deficiency by tandem mass spectrometry.
Journal of inherited metabolic disease.
2002 Feb; 25(1):17-27. doi:
10.1023/a:1015109127986
. [PMID: 11999976] - L Demaison, D Moreau, C Vergely-Vandriesse, S Grégoire, M Degois, L Rochette. Effects of dietary polyunsaturated fatty acids and hepatic steatosis on the functioning of isolated working rat heart under normoxic conditions and during post-ischemic reperfusion.
Molecular and cellular biochemistry.
2001 Aug; 224(1-2):103-16. doi:
10.1023/a:1011934603667
. [PMID: 11693187] - M T Ziolo, K L Sondgeroth, C H Harshbarger, J M Smith, G M Wahler. Effects of arrhythmogenic lipid metabolites on the L-type calcium current of diabetic vs. non-diabetic rat hearts.
Molecular and cellular biochemistry.
2001 Apr; 220(1-2):169-75. doi:
10.1023/a:1010992900387
. [PMID: 11451378] - I Tamai, R Ohashi, J I Nezu, Y Sai, D Kobayashi, A Oku, M Shimane, A Tsuji. Molecular and functional characterization of organic cation/carnitine transporter family in mice.
The Journal of biological chemistry.
2000 Dec; 275(51):40064-72. doi:
10.1074/jbc.m005340200
. [PMID: 11010964] - T Haruna, M Horie, M Takano, Y Kono, H Yoshida, H Otani, T Kubota, T Ninomiya, M Akao, S Sasayama. Alteration of the membrane lipid environment by L-palmitoylcarnitine modulates K(ATP) channels in guinea-pig ventricular myocytes.
Pflugers Archiv : European journal of physiology.
2000 Dec; 441(2-3):200-7. doi:
10.1007/s004240000428
. [PMID: 11211104] - D Z Liu, E L LeCluyse, D R Thakker. Dodecylphosphocholine-mediated enhancement of paracellular permeability and cytotoxicity in Caco-2 cell monolayers.
Journal of pharmaceutical sciences.
1999 Nov; 88(11):1161-8. doi:
10.1021/js990094e
. [PMID: 10564065] - Rosemary T Santangelo, M Hossein Nouri-Sorkhabi, Tania C Sorrell, Michelle Cagney, Sharon C A Chen, Philip W Kuchel, Lesley C Wright. Biochemical and functional characterisation of secreted phospholipase activities from Cryptococcus neoformans in their naturally occurring state.
Journal of medical microbiology.
1999 Aug; 48(8):731-740. doi:
10.1099/00222615-48-8-731
. [PMID: 10450996] - A I al Aqeel, M S Rashed, R J Wanders. Carnitine-acylcarnitine translocase deficiency is a treatable disease.
Journal of inherited metabolic disease.
1999 May; 22(3):271-5. doi:
10.1023/a:1005546408659
. [PMID: 10384385] - F Scaglia, Y Wang, N Longo. Functional characterization of the carnitine transporter defective in primary carnitine deficiency.
Archives of biochemistry and biophysics.
1999 Apr; 364(1):99-106. doi:
10.1006/abbi.1999.1118
. [PMID: 10087170] - S Iossa, L Lionetti, M P Mollica, A Barletta, G Liverini. Oxidative activity in mitochondria isolated from rat liver at different stages of development.
Cell biochemistry and function.
1998 Dec; 16(4):261-8. doi:
10.1002/(sici)1099-0844(1998120)16:4<261::aid-cbf796>3.0.co;2-1
. [PMID: 9857488] - I Schmidt, P Herpin. Carnitine palmitoyltransferase I (CPT I) activity and its regulation by malonyl-CoA are modulated by age and cold exposure in skeletal muscle mitochondria from newborn pigs.
The Journal of nutrition.
1998 May; 128(5):886-93. doi:
10.1093/jn/128.5.886
. [PMID: 9566999] - V A Tiurin, Iu Iu Tiurina, T V Sokolova, A Arduini. [The participation of palmitic acid in repair of synaptosome membranes during oxidative stress. The role of palmitoylcarnitine in adaptation mechanism].
Zhurnal evoliutsionnoi biokhimii i fiziologii.
1998 Jan; 34(1):3-10. doi:
"
. [PMID: 9720146] - D E Amacher, B A Martin. Tetracycline-induced steatosis in primary canine hepatocyte cultures.
Fundamental and applied toxicology : official journal of the Society of Toxicology.
1997 Dec; 40(2):256-63. doi:
10.1006/faat.1997.2389
. [PMID: 9441722] - R A Chalmers, C A Stanley, N English, J S Wigglesworth. Mitochondrial carnitine-acylcarnitine translocase deficiency presenting as sudden neonatal death.
The Journal of pediatrics.
1997 Aug; 131(2):220-5. doi:
10.1016/s0022-3476(97)70157-4
. [PMID: 9290607] - I I Tiurina, A Arduini, V A Tiurin, T V Sokolova, E Arrigoni-Martelli. [Palmitoylcarnitine-important component of lipid bilayer synaptosome membranes reparation system in oxidative stress].
Biulleten' eksperimental'noi biologii i meditsiny.
1997 Jun; 123(6):649-52. doi:
"
. [PMID: 9280517] - Q Y Liu, R L Rosenberg. Activation and inhibition of reconstituted cardiac L-type calcium channels by palmitoyl-L-carnitine.
Biochemical and biophysical research communications.
1996 Nov; 228(2):252-8. doi:
10.1006/bbrc.1996.1649
. [PMID: 8920902] - S C Leary, K N Barton, J S Ballantyne. Direct effects of 3,5,3'-triiodothyronine and 3,5-diiodothyronine on mitochondrial metabolism in the goldfish Carassius auratus.
General and comparative endocrinology.
1996 Oct; 104(1):61-6. doi:
10.1006/gcen.1996.0141
. [PMID: 8921356] - M P Veiga, M A Requero, F M Goñi, A Alonso. Effect of long-chain acyl-CoAs and acylcarnitines on gel-fluid and lamellar-hexagonal phospholipid phase transitions.
Molecular membrane biology.
1996 Jul; 13(3):165-72. doi:
10.3109/09687689609160593
. [PMID: 8905645] - A Arduini, A Peschechera, S Dottori, A F Sciarroni, F Serafini, M Calvani. High performance liquid chromatography of long-chain acylcarnitine and phospholipids in fatty acid turnover studies.
Journal of lipid research.
1996 Mar; 37(3):684-9. doi:
"
. [PMID: 8728329] - J X Kang, A Leaf. Protective effects of free polyunsaturated fatty acids on arrhythmias induced by lysophosphatidylcholine or palmitoylcarnitine in neonatal rat cardiac myocytes.
European journal of pharmacology.
1996 Feb; 297(1-2):97-106. doi:
10.1016/0014-2999(95)00701-6
. [PMID: 8851173] - C M Bernards, C Kern. Palmitoyl carnitine increases the transmeningeal flux of hydrophilic but not hydrophobic compounds in vitro.
Anesthesiology.
1996 Feb; 84(2):392-6. doi:
10.1097/00000542-199602000-00018
. [PMID: 8602671] - A Grynberg, L Demaison. Fatty acid oxidation in the heart.
Journal of cardiovascular pharmacology.
1996; 28 Suppl 1(?):S11-7. doi:
10.1097/00005344-199600003-00003
. [PMID: 8891866] - B Clarke, K M Wyatt, G R May, J G McCormack. On the roles of long-chain acyl carnitine accumulation and impaired glucose utilization in ischaemic contracture development and tissue damage in the guinea-pig heart.
Journal of molecular and cellular cardiology.
1996 Jan; 28(1):171-81. doi:
10.1006/jmcc.1996.0017
. [PMID: 8745225] - M A Requero, F M Goñi, A Alonso. The membrane-perturbing properties of palmitoyl-coenzyme A and palmitoylcarnitine. A comparative study.
Biochemistry.
1995 Aug; 34(33):10400-5. doi:
10.1021/bi00033a011
. [PMID: 7654694] - I Echabe, M A Requero, F M Goñi, J L Arrondo, A Alonso. An infrared investigation of palmitoyl-coenzyme A and palmitoylcarnitine interaction with perdeuterated-chain phospholipid bilayers.
European journal of biochemistry.
1995 Jul; 231(1):199-203. doi:
10.1111/j.1432-1033.1995.0199f.x
. [PMID: 7628471] - B M Tune, C Y Hsu. Toxicity of cephalosporins to fatty acid metabolism in rabbit renal cortical mitochondria.
Biochemical pharmacology.
1995 Mar; 49(5):727-34. doi:
10.1016/0006-2952(94)00497-a
. [PMID: 7887988] - C D McCallum, R M Epand. Insulin receptor autophosphorylation and signaling is altered by modulation of membrane physical properties.
Biochemistry.
1995 Feb; 34(6):1815-24. doi:
10.1021/bi00006a001
. [PMID: 7849042] - E Fantini, L Demaison, E Sentex, A Grynberg, P Athias. Some biochemical aspects of the protective effect of trimetazidine on rat cardiomyocytes during hypoxia and reoxygenation.
Journal of molecular and cellular cardiology.
1994 Aug; 26(8):949-58. doi:
10.1006/jmcc.1994.1116
. [PMID: 7799450] - N Inoue, K Hirata, H Akita, M Yokoyama. Palmitoyl-L-carnitine modifies the function of vascular endothelium.
Cardiovascular research.
1994 Jan; 28(1):129-34. doi:
10.1093/cvr/28.1.129
. [PMID: 7509258] - C Gruver, A J Pappano. Effect of membrane incorporation of 1-palmitoylcarnitine on surface charge of human erythrocytes.
Journal of molecular and cellular cardiology.
1993 Oct; 25(10):1275-84. doi:
10.1006/jmcc.1993.1138
. [PMID: 8263958] - T Sato, M Arita, T Kiyosue. Differential mechanism of block of palmitoyl lysophosphatidylcholine and of palmitoylcarnitine on inward rectifier K+ channels of guinea-pig ventricular myocytes.
Cardiovascular drugs and therapy.
1993 Aug; 7 Suppl 3(?):575-84. doi:
10.1007/bf00877623
. [PMID: 8251427] - D A Butterfield, A Rangachari. Acetylcarnitine increases membrane cytoskeletal protein-protein interactions.
Life sciences.
1993; 52(3):297-303. doi:
10.1016/0024-3205(93)90221-n
. [PMID: 8380879] - J B McMillin, R J Bick, C R Benedict. Influence of dietary fish oil on mitochondrial function and response to ischemia.
The American journal of physiology.
1992 Nov; 263(5 Pt 2):H1479-85. doi:
10.1152/ajpheart.1992.263.5.h1479
. [PMID: 1332513] - A Arduini, V Tyurin, Y Tyuruna, E Arrigoni-Martelli, F Molajoni, S Dottori, G Federici. Acyl-trafficking in membrane phospholipid fatty acid turnover: the transfer of fatty acid from the acyl-L-carnitine pool to membrane phospholipids in intact human erythrocytes.
Biochemical and biophysical research communications.
1992 Aug; 187(1):353-8. doi:
10.1016/s0006-291x(05)81500-1
. [PMID: 1520320] - P Chiodi, F Maccari, M T Ramacci. Tissue lipid accumulation by L-aminocarnitine, an inhibitor of carnitine-palmitoyltransferase-2. Studies in intact rats and isolated mitochondria.
Biochimica et biophysica acta.
1992 Jul; 1127(1):81-6. doi:
10.1016/0005-2760(92)90204-9
. [PMID: 1627637] - N N Gessler, N I Fedotcheva, M N Kondrashova, V Ia Bykhovskiĭ. [Effect of propionate pathway metabolites on the oxidative activity of liver mitochondria under normal conditions and in vitamin B12 deficiency].
Prikladnaia biokhimiia i mikrobiologiia.
1992 Jul; 28(4):607-13. doi:
NULL
. [PMID: 1528821] - A K Bhuiyan, S Jackson, D M Turnbull, A Aynsley-Green, J V Leonard, K Bartlett. The measurement of carnitine and acyl-carnitines: application to the investigation of patients with suspected inherited disorders of mitochondrial fatty acid oxidation.
Clinica chimica acta; international journal of clinical chemistry.
1992 May; 207(3):185-204. doi:
10.1016/0009-8981(92)90118-a
. [PMID: 1327583] - M Razanoelina, N Freund, J Bismuth, J P Geloso, E Delaval. Effect of lipid diet on mitochondrial palmitoyl-l-carnitine oxidation in kidney at postnatal development.
Journal of developmental physiology.
1991 Nov; 16(5):283-6. doi:
. [PMID: 1823914]
- S Iossa, A Barletta, G Liverini. Hepatic selective adjustments in short-term cold exposed rats.
Cell biochemistry and function.
1991 Oct; 9(4):275-80. doi:
10.1002/cbf.290090409
. [PMID: 1666984] - M Takahashi, Y Banno, Y Shikano, S Mori, Y Nozawa. Purification and characterization of lysophospholipase-transacylase of pathogenic fungus Candida albicans.
Biochimica et biophysica acta.
1991 Mar; 1082(2):161-9. doi:
10.1016/0005-2760(91)90190-s
. [PMID: 2007179] - R Y Man, W M Hu, T Mock, A A Kinnaird. Effects of palmitoyl carnitine and structural analogs on arterial blood pressure in the rat. A comparison with platelet-activating factor.
Journal of lipid mediators.
1991 Mar; 3(2):205-14. doi:
NULL
. [PMID: 1686730] - N I Fedotcheva, N N Gessler, V Ia Bykhovskiĭ, M N Kondrashova. [The effect of metabolites of the propionate pathway on the oxidative activity of liver mitochondria].
Biokhimiia (Moscow, Russia).
1991 Mar; 56(3):426-33. doi:
"
. [PMID: 1883904] - A Marzo, E Arrigoni Martelli, A Mancinelli, G Cardace, C Corbelletta, E Bassani, M Solbiati. Protein binding of L-carnitine family components.
European journal of drug metabolism and pharmacokinetics.
1991; Spec No 3(?):364-8. doi:
. [PMID: 1820909]
- C A Lemmi, R L Miller, J Rajfer. Inhibition of fatty acid-supported mitochondrial respiration by cyclosporine.
Biochemical medicine and metabolic biology.
1990 Dec; 44(3):266-70. doi:
10.1016/0885-4505(90)90071-8
. [PMID: 2288768] - D T O'Hagan, H Critchley, N F Farraj, A N Fisher, B R Johansen, S S Davis, L Illum. Nasal absorption enhancers for biosynthetic human growth hormone in rats.
Pharmaceutical research.
1990 Jul; 7(7):772-6. doi:
10.1023/a:1015884026056
. [PMID: 2395807] - C J Ellis, A G Dewhurst, M Cooper, D P Brenton, J R Dathan. Myoglobinuria: the importance of reaching a firm diagnosis--a patient with defective fatty acid oxidation.
Postgraduate medical journal.
1990 Mar; 66(773):235-7. doi:
10.1136/pgmj.66.773.235
. [PMID: 2362895] - J Martínková, I Tilser, V Krejcí, J Parízek, K Volenec. Effect of palmitoyl-DL-carnitine on the 3H-dihydroergotoxine intestinal absorption in rat.
Arzneimittel-Forschung.
1990 Feb; 40(2 Pt 1):145-9. doi:
NULL
. [PMID: 2334453]