16-Hydroxyhexadecanoic acid (BioDeep_00000002135)

 

Secondary id: BioDeep_00000265023

human metabolite PANOMIX_OTCML-2023 Endogenous


代谢物信息卡片


16-hydroxyhexadecanoic acid

化学式: C16H32O3 (272.2351322)
中文名称: 16-羟基十六酸, 16-羟基棕榈酸
谱图信息: 最多检出来源 Viridiplantae(plant) 0.02%

Reviewed

Last reviewed on 2024-10-09.

Cite this Page

16-Hydroxyhexadecanoic acid. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/16-hydroxyhexadecanoic_acid (retrieved 2024-11-09) (BioDeep RN: BioDeep_00000002135). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: C(CCCCCCCC(=O)O)CCCCCCCO
InChI: InChI=1S/C16H32O3/c17-15-13-11-9-7-5-3-1-2-4-6-8-10-12-14-16(18)19/h17H,1-15H2,(H,18,19)

描述信息

16-Hydroxyhexadecanoic acid, also known as 16-hydroxypalmitic acid, is a hydroxylated fatty acid where the terminal (omega) carbon has been hydroxylated. In animal tissues, a family of enzymes termed cytochromes P450s are involved in fatty acid oxidation, hydroxylating with high specificity at the energetically unfavourable terminal (omega) or omega-1 carbons. Hydroxy fatty acids primarily come from the consumption of plant products (vegetables or fruits) or cow’s milk. Omega hydroxy fatty acids are found in the structure of suberin, a lipid polyester present in plant cell walls, and of cutin, a lipid polyester which is a component of the plant cuticle. These apoplastic structures are important plant-environment interfaces that act as barriers limiting water and nutrient loss and protecting plants from radiation and pathogens. 16-Hydroxyhexadecanoic acid and 18-hydroxystearic acid are particularly abundant in cutin in the plant cuticle. 16-Hydroxyhexadecanoic acid has been proposed as a biomarker of beer consumption.
16-hydroxy-hexadecanoic acid, also known as 16-hydroxypalmitic acid or 16-oh 16:0, is a member of the class of compounds known as long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Thus, 16-hydroxy-hexadecanoic acid is considered to be a fatty acid lipid molecule. 16-hydroxy-hexadecanoic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). 16-hydroxy-hexadecanoic acid can be synthesized from hexadecanoic acid. 16-hydroxy-hexadecanoic acid is also a parent compound for other transformation products, including but not limited to, (3R)-3,16-dihydroxypalmitic acid, oscr#28, and 16-hydroxyhexadecanoyl-CoA. 16-hydroxy-hexadecanoic acid can be found in a number of food items such as other cereal product, hyacinth bean, red rice, and elliotts blueberry, which makes 16-hydroxy-hexadecanoic acid a potential biomarker for the consumption of these food products.

同义名列表

29 个代谢物同义名

omega hydroxy hexadecanoate (n-C16:0); omega-hydroxy hexadecanoic acid; omega hydroxy hexadecanoic acid; Omega-hydroxyhexadecanoic acid; 16-Hydroxy-hexadecanoic acid; 16-hydroxy hexadecanoic acid; 16-Hydoxy hexadecanoic acid; omega hydroxy hexadecanoate; 16-Hydroxyhexadecanoic acid; omega-hydroxy hexadecanoate; w-hydroxy hexadecanoic acid; Ω-hydroxyhexadecanoic acid; Omega-hydroxypalmitic acid; hydroxy hexadecanoic acid; 16-Hydroxy-hexadecanoate; 16-Hydroxy hexadecanoate; 16-Hydroxyhexadecanoate; 16-Hydoxy hexadecanoate; w-hydroxy hexadecanoate; 16-hydroxypalmitic acid; Ω-hydroxypalmitic acid; Omega-hydroxypalmitate; hydroxy hexadecanoate; 16-Hydroxypalmitate; Lanopalmitic acid; FA(16:0(16-OH)); Juniperic acid; Juniperate; 16-OH 16:0



数据库引用编号

16 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

7 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Morgan E Grams, Adrienne Tin, Casey M Rebholz, Tariq Shafi, Anna Köttgen, Ronald D Perrone, Mark J Sarnak, Lesley A Inker, Andrew S Levey, Josef Coresh. Metabolomic Alterations Associated with Cause of CKD. Clinical journal of the American Society of Nephrology : CJASN. 2017 Nov; 12(11):1787-1794. doi: 10.2215/cjn.02560317. [PMID: 28971980]
  • Jose Ramon Troche, Susan T Mayne, Neal D Freedman, Fatma M Shebl, Kristin A Guertin, Amanda J Cross, Christian C Abnet. Alcohol Consumption-Related Metabolites in Relation to Colorectal Cancer and Adenoma: Two Case-Control Studies Using Serum Biomarkers. PloS one. 2016; 11(3):e0150962. doi: 10.1371/journal.pone.0150962. [PMID: 26967509]
  • Kieu Thi Minh Pham, Yoshihiro Inoue, Ba Van Vu, Hanh Hieu Nguyen, Toru Nakayashiki, Ken-Ichi Ikeda, Hitoshi Nakayashiki. MoSET1 (Histone H3K4 Methyltransferase in Magnaporthe oryzae) Regulates Global Gene Expression during Infection-Related Morphogenesis. PLoS genetics. 2015 Jul; 11(7):e1005385. doi: 10.1371/journal.pgen.1005385. [PMID: 26230995]
  • Burkhardt S Schuett, Thomas J Millar. An investigation of the likely role of (O-acyl) ω-hydroxy fatty acids in meibomian lipid films using (O-oleyl) ω-hydroxy palmitic acid as a model. Experimental eye research. 2013 Oct; 115(?):57-64. doi: 10.1016/j.exer.2013.06.016. [PMID: 23792170]
  • Alfonso Fernández-Álvarez, Miriam Marín-Menguiano, Daniel Lanver, Alberto Jiménez-Martín, Alberto Elías-Villalobos, Antonio J Pérez-Pulido, Regine Kahmann, José I Ibeas. Identification of O-mannosylated virulence factors in Ustilago maydis. PLoS pathogens. 2012; 8(3):e1002563. doi: 10.1371/journal.ppat.1002563. [PMID: 22416226]
  • Johannes Freitag, Daniel Lanver, Christian Böhmer, Kay Oliver Schink, Michael Bölker, Björn Sandrock. Septation of infectious hyphae is critical for appressoria formation and virulence in the smut fungus Ustilago maydis. PLoS pathogens. 2011 May; 7(5):e1002044. doi: 10.1371/journal.ppat.1002044. [PMID: 21625538]
  • Anne-Laure Fameau, Bérénice Houinsou-Houssou, Jorge Luis Ventureira, Laurence Navailles, Frédéric Nallet, Bruno Novales, Jean-Paul Douliez. Self-assembly, foaming, and emulsifying properties of sodium alkyl carboxylate/guanidine hydrochloride aqueous mixtures. Langmuir : the ACS journal of surfaces and colloids. 2011 Apr; 27(8):4505-13. doi: 10.1021/la2002404. [PMID: 21405069]
  • Sapa Hima Rani, T H Anantha Krishna, Saikat Saha, Arvind Singh Negi, Ram Rajasekharan. Defective in cuticular ridges (DCR) of Arabidopsis thaliana, a gene associated with surface cutin formation, encodes a soluble diacylglycerol acyltransferase. The Journal of biological chemistry. 2010 Dec; 285(49):38337-47. doi: 10.1074/jbc.m110.133116. [PMID: 20921218]
  • Katrien Curvers, Hamed Seifi, Grégory Mouille, Riet de Rycke, Bob Asselbergh, Annelies Van Hecke, Dieter Vanderschaeghe, Herman Höfte, Nico Callewaert, Frank Van Breusegem, Monica Höfte. Abscisic acid deficiency causes changes in cuticle permeability and pectin composition that influence tomato resistance to Botrytis cinerea. Plant physiology. 2010 Oct; 154(2):847-60. doi: 10.1104/pp.110.158972. [PMID: 20709830]
  • Anna A Dobritsa, Zhentian Lei, Shuh-Ichi Nishikawa, Ewa Urbanczyk-Wochniak, David V Huhman, Daphne Preuss, Lloyd W Sumner. LAP5 and LAP6 encode anther-specific proteins with similarity to chalcone synthase essential for pollen exine development in Arabidopsis. Plant physiology. 2010 Jul; 153(3):937-55. doi: 10.1104/pp.110.157446. [PMID: 20442277]
  • Daniel Lanver, Artemio Mendoza-Mendoza, Andreas Brachmann, Regine Kahmann. Sho1 and Msb2-related proteins regulate appressorium development in the smut fungus Ustilago maydis. The Plant cell. 2010 Jun; 22(6):2085-101. doi: 10.1105/tpc.109.073734. [PMID: 20587773]
  • Nina Zellerhoff, Axel Himmelbach, Wubei Dong, Stephane Bieri, Ulrich Schaffrath, Patrick Schweizer. Nonhost resistance of barley to different fungal pathogens is associated with largely distinct, quantitative transcriptional responses. Plant physiology. 2010 Apr; 152(4):2053-66. doi: 10.1104/pp.109.151829. [PMID: 20172964]
  • Hui Li, Franck Pinot, Vincent Sauveplane, Danièle Werck-Reichhart, Patrik Diehl, Lukas Schreiber, Rochus Franke, Ping Zhang, Liang Chen, Yawei Gao, Wanqi Liang, Dabing Zhang. Cytochrome P450 family member CYP704B2 catalyzes the {omega}-hydroxylation of fatty acids and is required for anther cutin biosynthesis and pollen exine formation in rice. The Plant cell. 2010 Jan; 22(1):173-90. doi: 10.1105/tpc.109.070326. [PMID: 20086189]
  • Jong Ho Park, Mi Chung Suh, Tae Hyun Kim, Moon Chul Kim, Sung Ho Cho. Expression of glycine-rich protein genes, AtGRP5 and AtGRP23, induced by the cutin monomer 16-hydroxypalmitic acid in Arabidopsis thaliana. Plant physiology and biochemistry : PPB. 2008 Nov; 46(11):1015-8. doi: 10.1016/j.plaphy.2008.06.008. [PMID: 18657431]
  • Bruno Novales, Laurence Navailles, Monique Axelos, Frédéric Nallet, Jean-Paul Douliez. Self-assembly of fatty acids and hydroxyl derivative salts. Langmuir : the ACS journal of surfaces and colloids. 2008 Jan; 24(1):62-8. doi: 10.1021/la7020929. [PMID: 18044935]
  • Tae Hyun Kim, Jong Ho Park, Moon Chul Kim, Sung Ho Cho. Cutin monomer induces expression of the rice OsLTP5 lipid transfer protein gene. Journal of plant physiology. 2008; 165(3):345-9. doi: 10.1016/j.jplph.2007.06.004. [PMID: 17765359]
  • Maryse Laloi, Anne-Marie Perret, Laurent Chatre, Su Melser, Catherine Cantrel, Marie-Noëlle Vaultier, Alain Zachowski, Katell Bathany, Jean-Marie Schmitter, Myriam Vallet, René Lessire, Marie-Andrée Hartmann, Patrick Moreau. Insights into the role of specific lipids in the formation and delivery of lipid microdomains to the plasma membrane of plant cells. Plant physiology. 2007 Jan; 143(1):461-72. doi: 10.1104/pp.106.091496. [PMID: 17114270]
  • Jiraporn Thaniyavarn, Aree Chongchin, Nopparat Wanitsuksombut, Suthep Thaniyavarn, Pairoh Pinphanichakarn, Natthanant Leepipatpiboon, Masaaki Morikawa, Shigenori Kanaya. Biosurfactant production by Pseudomonas aeruginosa A41 using palm oil as carbon source. The Journal of general and applied microbiology. 2006 Aug; 52(4):215-22. doi: 10.2323/jgam.52.215. [PMID: 17116970]
  • Jean-Paul Douliez. Cutin and suberin monomers are membrane perturbants. Journal of colloid and interface science. 2004 Mar; 271(2):507-10. doi: 10.1016/j.jcis.2003.12.020. [PMID: 14972629]
  • Judy Schnurr, Jay Shockey, John Browse. The acyl-CoA synthetase encoded by LACS2 is essential for normal cuticle development in Arabidopsis. The Plant cell. 2004 Mar; 16(3):629-42. doi: 10.1105/tpc.017608. [PMID: 14973169]
  • J P Douliez, S Jégou, C Pato, D Mollé, V Tran, D Marion. Binding of two mono-acylated lipid monomers by the barley lipid transfer protein, LTP1, as viewed by fluorescence, isothermal titration calorimetry and molecular modelling. European journal of biochemistry. 2001 Jan; 268(2):384-8. doi: 10.1046/j.1432-1033.2001.01889.x. [PMID: 11168373]
  • J J Cohen, N E Madias, C J Wolf, W B Schwartz. Regulation of acid-base equilibrium in chronic hypocapnia. Evidence that the response of the kidney is not geared to the defense of extracellular (H+). The Journal of clinical investigation. 1976 Jun; 57(6):1483-9. doi: 10.1172/jci108418. [PMID: 6488]