(S)-4',5,7-Trihydroxy-6-prenylflavanone (BioDeep_00000000506)

 

Secondary id: BioDeep_00000270646

human metabolite PANOMIX_OTCML-2023


代谢物信息卡片


4H-1-BENZOPYRAN-4-ONE, 2,3-DIHYDRO-5,7-DIHYDROXY-2-(4-HYDROXYPHENYL)-6-(3-METHYL-2-BUTEN-1-YL)-, (2S)-

化学式: C20H20O5 (340.1311)
中文名称: (2S)-6-异戊烯基柚皮素, 6-异戊烯基柚皮素
谱图信息: 最多检出来源 Viridiplantae(plant) 75.22%

分子结构信息

SMILES: C1(O)C=C2O[C@]([H])(C3C=CC(O)=CC=3)CC(=O)C2=C(O)C=1C/C=C(\C)/C
InChI: InChI=1S/C20H20O5/c1-11(2)3-8-14-15(22)9-18-19(20(14)24)16(23)10-17(25-18)12-4-6-13(21)7-5-12/h3-7,9,17,21-22,24H,8,10H2,1-2H3

描述信息

6-prenylnaringenin is a trihydroxyflavanone having a structure of naringenin prenylated at C-6. It has a role as a T-type calcium channel blocker. It is a trihydroxyflavanone, a member of 4-hydroxyflavanones and a (2S)-flavan-4-one. It is functionally related to a (S)-naringenin.
6-Prenylnaringenin is a natural product found in Macaranga denticulata, Wyethia angustifolia, and other organisms with data available.
(S)-4,5,7-Trihydroxy-6-prenylflavanone is found in alcoholic beverages. (S)-4,5,7-Trihydroxy-6-prenylflavanone is isolated from Humulus lupulus (hops).
Isolated from Humulus lupulus (hops). 6-Prenylnaringenin is found in beer and alcoholic beverages.
(2S)-6-Prenylnaringenin is the most efficient compound in forebrain. (2S)-6-Prenylnaringenin acts as a GABAA positive allosteric modulator at α+β- binding interface[1].
(2S)-6-Prenylnaringenin is the most efficient compound in forebrain. (2S)-6-Prenylnaringenin acts as a GABAA positive allosteric modulator at α+β- binding interface[1].
(2S)-6-Prenylnaringenin is the most efficient compound in forebrain. (2S)-6-Prenylnaringenin acts as a GABAA positive allosteric modulator at α+β- binding interface[1].

同义名列表

19 个代谢物同义名

4H-1-BENZOPYRAN-4-ONE, 2,3-DIHYDRO-5,7-DIHYDROXY-2-(4-HYDROXYPHENYL)-6-(3-METHYL-2-BUTEN-1-YL)-, (2S)-; 4H-1-Benzopyran-4-one, 2,3-dihydro-5,7-dihydroxy-2-(4-hydroxyphenyl)-6-(3-methyl-2-butenyl)-, (2S)-; (2S)-2,3-DIHYDRO-5,7-DIHYDROXY-2-(4-HYDROXYPHENYL)-6-(3-METHYL-2-BUTEN-1-YL)-4H-1-BENZOPYRAN-4-ONE; (2S)-2,3-dihydro-5,7-dihydroxy-2-(4-hydroxyphenyl)-6-(3-methyl-2-butenyl)-4H-1-benzopyran-4-one; 5,7-dihydroxy-2-(4-hydroxyphenyl)-6-(3-methylbut-2-en-1-yl)-3,4-dihydro-2H-1-benzopyran-4-one; 2,3-Dihydro-5,7-dihydroxy-2-(4-hydroxyphenyl)-6-(3-methyl-2-butenyl)-4h-1-benzopyran-4-one; 5,7-dihydroxy-2-(4-hydroxyphenyl)-6-(3-methylbut-2-en-1-yl)-2,3-dihydro-1-benzopyran-4-one; (2S)-5,7-dihydroxy-2-(4-hydroxyphenyl)-6-(3-methylbut-2-enyl)-2,3-dihydrochromen-4-one; 5,7-Dihydroxy-2-(4-hydroxy-phenyl)-6-(3-methyl-but-2-enyl)-1-benzopyran-4-one; (S)-5,7-Dihydroxy-2-(4-hydroxyphenyl)-6-(3-methylbut-2-en-1-yl)chroman-4-one; (2S)-5,7-dihydroxy-2-(4-hydroxyphenyl)-6-(3-methylbut-2-enyl)chroman-4-one; 6-Prenylnaringenin, analytical standard; (S)-4,5,7-Trihydroxy-6-prenylflavanone; 5,7,4-Trihydroxy-6-prenylflavanone; YHWNASRGLKJRJJ-KRWDZBQOSA-N; (2S)-6-Prenylnaringenin; 6-Prenylnaringenin; YS03; 6-Prenylnaringenin



数据库引用编号

22 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

13 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 12 AHR, AHRR, CASP3, CYP1A1, DCX, ESR1, FDPS, HPGDS, KEAP1, LYPLA2, MSMP, MYC
Peripheral membrane protein 3 CYP1A1, CYP1B1, ESR1
Endoplasmic reticulum membrane 3 CYP19A1, CYP1A1, CYP1B1
Nucleus 8 AHR, AHRR, CASP3, DNMT1, ESR1, GABPA, KEAP1, MYC
cytosol 9 AHR, AHRR, CASP3, DCX, ESR1, FDPS, HPGDS, KEAP1, LYPLA2
nucleoplasm 11 AHR, AHRR, CASP3, DNMT1, ESR1, FDPS, GABPA, HPGDS, KEAP1, LYPLA2, MYC
Cell membrane 1 ESR1
Cytoplasmic side 1 ESR1
Multi-pass membrane protein 4 CACNA1I, CYP19A1, KCNA3, SLC45A2
glutamatergic synapse 3 CASP3, DCX, KCNA3
Golgi apparatus 1 ESR1
lysosomal membrane 1 GAA
mitochondrial inner membrane 1 CYP1A1
neuronal cell body 1 CASP3
presynaptic membrane 1 KCNA3
Lysosome 1 GAA
plasma membrane 4 CACNA1I, ESR1, GAA, KCNA3
Membrane 9 CACNA1I, CYP19A1, CYP1B1, ESR1, FDPS, GAA, KCNA3, MYC, SLC45A2
axon 1 KCNA3
extracellular exosome 2 GAA, LYPLA2
Lysosome membrane 1 GAA
endoplasmic reticulum 2 CYP19A1, KEAP1
extracellular space 1 MSMP
lysosomal lumen 1 GAA
perinuclear region of cytoplasm 1 KCNA3
mitochondrion 3 CYP1A1, CYP1B1, DNMT1
protein-containing complex 3 AHR, ESR1, MYC
intracellular membrane-bounded organelle 4 CYP1A1, CYP1B1, GAA, HPGDS
Microsome membrane 3 CYP19A1, CYP1A1, CYP1B1
postsynaptic density 1 CASP3
pericentric heterochromatin 1 DNMT1
Secreted 2 GAA, MSMP
extracellular region 1 GAA
mitochondrial matrix 1 FDPS
transcription regulator complex 2 AHR, ESR1
centriolar satellite 1 KEAP1
nucleolus 1 MYC
Melanosome membrane 1 SLC45A2
midbody 1 KEAP1
postsynaptic membrane 1 KCNA3
Mitochondrion inner membrane 1 CYP1A1
Membrane raft 1 KCNA3
microtubule 1 DCX
Peroxisome 1 FDPS
Cell projection, neuron projection 1 DCX
neuron projection 1 DCX
chromatin 5 AHR, AHRR, ESR1, GABPA, MYC
microtubule associated complex 1 DCX
cytoskeleton 1 DCX
Nucleus, nucleolus 1 MYC
actin filament 1 KEAP1
[Isoform 2]: Cell membrane 1 KCNA3
Cul3-RING ubiquitin ligase complex 1 KEAP1
nuclear envelope 1 MYC
female germ cell nucleus 1 DNMT1
aryl hydrocarbon receptor complex 2 AHR, AHRR
Nucleus, nucleoplasm 1 MYC
tertiary granule membrane 1 GAA
euchromatin 1 ESR1
replication fork 1 DNMT1
voltage-gated potassium channel complex 1 KCNA3
Golgi stack 1 LYPLA2
voltage-gated calcium channel complex 1 CACNA1I
azurophil granule membrane 1 GAA
RNA polymerase II transcription repressor complex 1 MYC
calyx of Held 1 KCNA3
[Isoform 1]: Nucleus 1 ESR1
ficolin-1-rich granule membrane 1 GAA
death-inducing signaling complex 1 CASP3
[Isoform 1]: Cell membrane 1 KCNA3
Rough endoplasmic reticulum 1 MYC
Myc-Max complex 1 MYC
inclusion body 1 KEAP1
autolysosome lumen 1 GAA
[Isoform 3]: Cytoplasm, perinuclear region 1 KCNA3
nuclear aryl hydrocarbon receptor complex 1 AHR
cytosolic aryl hydrocarbon receptor complex 1 AHR
nucleoplasmic reticulum 1 MYC


文献列表

  • Ali Y Benkherouf, Nora Logrén, Tamara Somborac, Maaria Kortesniemi, Sanna L Soini, Baoru Yang, Outi M H Salo-Ahen, Oskar Laaksonen, Mikko Uusi-Oukari. Hops compounds modulatory effects and 6-prenylnaringenin dual mode of action on GABAA receptors. European journal of pharmacology. 2020 Apr; 873(?):172962. doi: 10.1016/j.ejphar.2020.172962. [PMID: 32001220]
  • Yanjun Zhang, Dexiong Zhou, Wei Liu, Chenguo Li, Lili Hao, Gaorong Zhang, Shengping Deng, Ruiyun Yang, Jiangke Qin, Jun Li, Wei Deng. Cytotoxic Activity and Related Mechanisms of Prenylflavonoids Isolated from Mallotus conspurcatus Croizat. Chemistry & biodiversity. 2019 May; 16(5):e1800465. doi: 10.1002/cbdv.201800465. [PMID: 30779297]
  • Martin Ambrož, Kateřina Lněničková, Petra Matoušková, Lenka Skálová, Iva Boušová. Antiproliferative Effects of Hop-derived Prenylflavonoids and Their Influence on the Efficacy of Oxaliplatine, 5-fluorouracil and Irinotecan in Human ColorectalC Cells. Nutrients. 2019 Apr; 11(4):. doi: 10.3390/nu11040879. [PMID: 31010128]
  • Judy L Bolton, Tareisha L Dunlap, Atieh Hajirahimkhan, Obinna Mbachu, Shao-Nong Chen, Luke Chadwick, Dejan Nikolic, Richard B van Breemen, Guido F Pauli, Birgit M Dietz. The Multiple Biological Targets of Hops and Bioactive Compounds. Chemical research in toxicology. 2019 02; 32(2):222-233. doi: 10.1021/acs.chemrestox.8b00345. [PMID: 30608650]
  • Fumiko Sekiguchi, Tomoyo Fujita, Takahiro Deguchi, Sakura Yamaoka, Ken Tomochika, Maho Tsubota, Sumire Ono, Yamato Horaguchi, Maki Ichii, Mio Ichikawa, Yumiko Ueno, Nene Koike, Tadatoshi Tanino, Huy Du Nguyen, Takuya Okada, Hiroyuki Nishikawa, Shigeru Yoshida, Tsuyako Ohkubo, Naoki Toyooka, Kazuya Murata, Hideaki Matsuda, Atsufumi Kawabata. Blockade of T-type calcium channels by 6-prenylnaringenin, a hop component, alleviates neuropathic and visceral pain in mice. Neuropharmacology. 2018 08; 138(?):232-244. doi: 10.1016/j.neuropharm.2018.06.020. [PMID: 29913186]
  • Laura A Calvo-Castro, Markus Burkard, Nadine Sus, Gabriel Scheubeck, Christian Leischner, Ulrich M Lauer, Anja Bosy-Westphal, Verena Hund, Christian Busch, Sascha Venturelli, Jan Frank. The Oral Bioavailability of 8-Prenylnaringenin from Hops (Humulus Lupulus L.) in Healthy Women and Men is Significantly Higher than that of its Positional Isomer 6-Prenylnaringenin in a Randomized Crossover Trial. Molecular nutrition & food research. 2018 04; 62(7):e1700838. doi: 10.1002/mnfr.201700838. [PMID: 29363261]
  • Shuai Wang, Tareisha L Dunlap, Caitlin E Howell, Obinna C Mbachu, Emily A Rue, Rasika Phansalkar, Shao-Nong Chen, Guido F Pauli, Birgit M Dietz, Judy L Bolton. Hop (Humulus lupulus L.) Extract and 6-Prenylnaringenin Induce P450 1A1 Catalyzed Estrogen 2-Hydroxylation. Chemical research in toxicology. 2016 07; 29(7):1142-50. doi: 10.1021/acs.chemrestox.6b00112. [PMID: 27269377]
  • Christian Busch, Seema Noor, Christian Leischner, Markus Burkard, Ulrich M Lauer, Sascha Venturelli. Anti-proliferative activity of hop-derived prenylflavonoids against human cancer cell lines. Wiener medizinische Wochenschrift (1946). 2015 Jun; 165(11-12):258-61. doi: 10.1007/s10354-015-0355-8. [PMID: 25925225]
  • Corinna Urmann, Eleni Oberbauer, Sébastien Couillard-Després, Ludwig Aigner, Herbert Riepl. Neurodifferentiating potential of 8-prenylnaringenin and related compounds in neural precursor cells and correlation with estrogen-like activity. Planta medica. 2015 Mar; 81(4):305-11. doi: 10.1055/s-0034-1396243. [PMID: 25714726]
  • René F Ramos Alvarenga, J Brent Friesen, Dejan Nikolić, Charlotte Simmler, José G Napolitano, Richard van Breemen, David C Lankin, James B McAlpine, Guido F Pauli, Shao-Nong Chen. K-targeted metabolomic analysis extends chemical subtraction to DESIGNER extracts: selective depletion of extracts of hops (Humulus lupulus). Journal of natural products. 2014 Dec; 77(12):2595-604. doi: 10.1021/np500376g. [PMID: 25437744]
  • Kee W Tan, Janine Cooney, Dwayne Jensen, Yan Li, James W Paxton, Nigel P Birch, Arjan Scheepens. Hop-derived prenylflavonoids are substrates and inhibitors of the efflux transporter breast cancer resistance protein (BCRP/ABCG2). Molecular nutrition & food research. 2014 Nov; 58(11):2099-110. doi: 10.1002/mnfr.201400288. [PMID: 25044854]
  • LeeCole Legette, Chanida Karnpracha, Ralph L Reed, Jaewoo Choi, Gerd Bobe, J Mark Christensen, Rosita Rodriguez-Proteau, Jonathan Q Purnell, Jan F Stevens. Human pharmacokinetics of xanthohumol, an antihyperglycemic flavonoid from hops. Molecular nutrition & food research. 2014 Feb; 58(2):248-55. doi: 10.1002/mnfr.201300333. [PMID: 24038952]
  • L Delmulle, T Vanden Berghe, D De Keukeleire, P Vandenabeele. Treatment of PC-3 and DU145 prostate cancer cells by prenylflavonoids from hop (Humulus lupulus L.) induces a caspase-independent form of cell death. Phytotherapy research : PTR. 2008 Feb; 22(2):197-203. doi: 10.1002/ptr.2286. [PMID: 17726738]
  • Casey S Philbin, Steven J Schwartz. Resolution of diastereomeric flavonoid (1S)-(-)-camphanic acid esters via reversed-phase HPLC. Phytochemistry. 2007 Apr; 68(8):1206-11. doi: 10.1016/j.phytochem.2007.01.022. [PMID: 17363016]
  • Katharina E Effenberger, Steven A Johnsen, David G Monroe, Thomas C Spelsberg, Johannes J Westendorf. Regulation of osteoblastic phenotype and gene expression by hop-derived phytoestrogens. The Journal of steroid biochemistry and molecular biology. 2005 Sep; 96(5):387-99. doi: 10.1016/j.jsbmb.2005.04.038. [PMID: 16019205]
  • Olaf Schaefer, Rolf Bohlmann, Wolf-Dieter Schleuning, Kai Schulze-Forster, Michael Hümpel. Development of a radioimmunoassay for the quantitative determination of 8-prenylnaringenin in biological matrices. Journal of agricultural and food chemistry. 2005 Apr; 53(8):2881-9. doi: 10.1021/jf047897u. [PMID: 15826034]
  • N G Coldham, M J Sauer. Identification, quantitation and biological activity of phytoestrogens in a dietary supplement for breast enhancement. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2001 Dec; 39(12):1211-24. doi: 10.1016/s0278-6915(01)00081-3. [PMID: 11696395]