Chenodeoxycholic acid (BioDeep_00000000308)

 

Secondary id: BioDeep_00000229683, BioDeep_00000265146, BioDeep_00000275392, BioDeep_00000412598, BioDeep_00000419014, BioDeep_00002052735

human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite Bile acids PANOMIX LipidSearch BioNovoGene_Lab2019 natural product


代谢物信息卡片


(4R)-4-[(3R,5S,7R,8R,9S,10S,13R,14S,17R)-3,7-dihydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoic acid

化学式: C24H40O4 (392.2926)
中文名称: 鹅脱氧胆酸, 鹅去氧胆酸
谱图信息: 最多检出来源 Homo sapiens(bile_acids) 38.15%

Reviewed

Last reviewed on 2024-07-01.

Cite this Page

Chenodeoxycholic acid. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/chenodeoxycholic_acid (retrieved 2025-01-05) (BioDeep RN: BioDeep_00000000308). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: C[C@@]12[C@]([C@]3([C@@]([C@]4(C)[C@](C[C@H]3O)(C[C@H](O)CC4)[H])(CC1)[H])[H])(CC[C@@]2([C@@H](CCC(O)=O)C)[H])[H]
InChI: InChI=1S/C24H40O4/c1-14(4-7-21(27)28)17-5-6-18-22-19(9-11-24(17,18)3)23(2)10-8-16(25)12-15(23)13-20(22)26/h14-20,22,25-26H,4-13H2,1-3H3,(H,27,28)/t14-,15+,16-,17-,18+,19+,20-,22+,23+,24-/m1/s1

描述信息

Chenodeoxycholic acid is a dihydroxy-5beta-cholanic acid that is (5beta)-cholan-24-oic acid substituted by hydroxy groups at positions 3 and 7 respectively. It has a role as a human metabolite and a mouse metabolite. It is a bile acid, a dihydroxy-5beta-cholanic acid and a C24-steroid. It is a conjugate acid of a chenodeoxycholate.
Chenodeoxycholic acid (or Chenodiol) is an epimer of ursodeoxycholic acid (DB01586). Chenodeoxycholic acid is a bile acid naturally found in the body. It works by dissolving the cholesterol that makes gallstones and inhibiting production of cholesterol in the liver and absorption in the intestines, which helps to decrease the formation of gallstones. It can also reduce the amount of other bile acids that can be harmful to liver cells when levels are elevated.
Chenodeoxycholic acid (chenodiol) is a primary bile acid, synthesized in the liver and present in high concentrations in bile that is used therapeutically to dissolve cholesterol gallstones. Chronic therapy is associated with transient elevations in serum aminotransferase levels in up to 30\\\\\% of patients, but chenodiol has been linked to only rare instances of clinically apparent liver injury with jaundice.
Chenodeoxycholic acid is a natural product found in Ganoderma lucidum and Homo sapiens with data available.
A bile acid, usually conjugated with either glycine or taurine. It acts as a detergent to solubilize fats for intestinal absorption and is reabsorbed by the small intestine. It is used as cholagogue, a choleretic laxative, and to prevent or dissolve gallstones.
Chenodeoxycholic acid is a bile acid. Bile acids are steroid acids found predominantly in the bile of mammals. The distinction between different bile acids is minute, depending only on the presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g. membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues (PMID: 11316487, 16037564, 12576301, 11907135). Usually conjugated with either glycine or taurine. It acts as a detergent to solubilize fats for intestinal absorption and is reabsorbed by the small intestine. It is used as cholagogue, a choleretic laxative, and to prevent or dissolve gallstones.
A bile acid. Bile acids are steroid acids found predominantly in bile of mammals. The distinction between different bile acids is minute, depends only on presence or absence of hydroxyl groups on positions 3, 7, and 12.
A dihydroxy-5beta-cholanic acid that is (5beta)-cholan-24-oic acid substituted by hydroxy groups at positions 3 and 7 respectively.

Chenodeoxycholic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=474-25-9 (retrieved 2024-07-01) (CAS RN: 474-25-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Chenodeoxycholic Acid is a hydrophobic primary bile acid that activates nuclear receptors (FXR) involved in cholesterol metabolism.
Chenodeoxycholic Acid is a hydrophobic primary bile acid that activates nuclear receptors (FXR) involved in cholesterol metabolism.

同义名列表

170 个代谢物同义名

(4R)-4-[(3R,5S,7R,8R,9S,10S,13R,14S,17R)-3,7-dihydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoic acid; (4R)-4-[(3R,5S,7R,8R,9S,10S,13R,14S,17R)-3,7-dihydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoicacid; (4R)-4-[(1R,3aS,3bR,4R,5aS,7R,9aS,9bS,11aR)-4,7-dihydroxy-9a,11a-dimethyl-hexadecahydro-1H-cyclopenta[a]phenanthren-1-yl]pentanoic acid; (4R)-4-[(1S,2S,5R,7S,9R,10R,11S,14R,15R)-5,9-dihydroxy-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadecan-14-yl]pentanoic acid; (4R)-4-((1S,2S,7S,11S,5R,9R,10R,14R,15R)-5,9-dihydroxy-2,15-dimethyltetracyclo [8.7.0.0<2,7>.0<11,15>]heptadec-14-yl)pentanoic acid; (R)-4-((3R,5S,7R,8R,9S,10S,13R,14S,17R)-3,7-dihydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanoic acid; (4R)-4-[(1S,2S,5R,7S,9R,10R,11S,14R,15R)-5,9-dihydroxy-2,15-dimethyltetracyclo[8.7.0.0?,?.0??,??]heptadecan-14-yl]pentanoic acid; Chenodeoxycholic acid, European Pharmacopoeia (EP) Reference Standard; Cholan-24-oic acid, 3,7-dihydroxy-, (3-.alpha., 5-.beta., 7-.alpha.)-; (3ALPHA,5ALPHA,7BETA,8ALPHA,17ALPHA)-3,7-DIHYDROXYCHOLAN-24-OIC ACID; (3alpha,5alpha,7beta,8alpha,17alpha)-3,7-dihydroxycholan-24-oic acid; Cholan-24-oic acid, 3,7-dihydroxy-, (3-alpha,5-beta,7-alpha)- (9CI); (3beta,7beta,8xi,9xi,14xi,17alpha)-3,7-dihydroxycholan-24-oic acid; Cholan-24-oic acid, 3,7-dihydroxy-, (3.alpha.,5.beta.,7.alpha.)-; 3,7-Dihydroxycholan-24-oic acid, (3.alpha.,5.beta.,7.alpha.)- #; CHOLAN-24-OIC ACID, 3,7-DIHYDROXY-, (3.ALPHA.,5.BETA.,7.ALPHA.); Cholan-24-oic acid, 3,7-dihydroxy-, (3-alpha,5-beta,7-alpha)-; Cholan-24-oic acid, 3,7-dihydroxy-, (3alpha,5beta,7alpha)-; (3alpha,5beta,7alpha,8xi)-3,7-dihydroxycholan-24-oic acid; CHOLAN-24-OIC ACID, 3,7-DIHYDROXY-, (3alpha,5beta,7alpha); 5.beta.-Cholan-24-oic acid, 3.alpha.,7.alpha.-dihydroxy-; 3.alpha.,7.alpha.-Dihydroxy-5.beta.-cholan-24-oic acid; 5-beta-Cholan-24-oic acid, 3-alpha,7-alpha-dihydroxy-; (3alpha,5beta,7alpha)-3,7-dihydroxycholan-24-oic acid; Leadiant (formerly Chenodeoxycholic acid sigma-tau); 3-alpha,7-alpha-Dihydroxy-5-beta-cholan-24-oic acid; 3.alpha.,7.alpha.-Dihydroxy-5.beta.-cholanoic acid; 3.alpha.,7.alpha.-Dihydroxy-5.beta.-cholanic acid; Dihydroxy-3.alpha.,7.alpha.(5.beta.)Cholanic acid; 3alpha,7alpha-Dihydroxy-5beta-cholan-24-oic acid; Cholan-24-oic acid, 3,7-dihydroxy-, (3a,5b,7a)-; 3-alpha,7-alpha-Dihydroxycholansaeure [German]; URSODEOXYCHOLIC ACID IMPURITY A [EP IMPURITY]; 3alpha, 7alpha,-dihydroxy-5beta-cholanic acid; 3alpha, 7alpha-dihydroxy-5beta-cholanoic acid; URSODEOXYCHOLIC ACID IMPURITY A (EP IMPURITY); (3a,5b,7a)-3,7-dihydroxy-cholan-24-oic acid; 3alpha,7alpha-Dihydroxy-5beta-cholanic acid; Tramedico brand OF chenodeoxycholic acid; 3a,7a-dihydroxy-5b,14a,17b-cholanic acid; 3.alpha.,7.alpha.-Dihydroxycholanic acid; 3alpha,7alpha-Dihydroxy-5beta-cholanate; (3a,5b,7a)-3,7-dihydroxy-cholan-24-oate; 3.alpha.,7.alpha.-Dihydroxycholansaeure; Antigen brand OF chenodeoxycholic acid; 5beta-Cholanic acid-3alpha,7alpha-diol; 3-alpha,7-alpha-Dihydroxycholanic acid; Acidum chenodeoxycholicum (INN-Latin); 3a,7a-dihydroxy-5b-cholan-24-oic acid; Acide chenodeoxycholique (INN-French); Solvay brand OF chenodeoxycholic acid; Acido chenodeoxicholico [INN-Spanish]; Acido chenodeoxicholico (INN-Spanish); Estedi brand OF chenodeoxycholic acid; 3-alpha,7-alpha-Dihydroxycholansaeure; Zambon brand OF chenodeoxycholic acid; Acide chenodeoxycholique [INN-French]; Acidum chenodeoxycholicum [INN-Latin]; 0DBBBC66-0CFA-4DB9-97F4-5B1492756A02; 3alpha,7alpha-Dihydroxycholanic acid; CHENODEOXYCHOLIC ACID (EP MONOGRAPH); CHENODEOXYCHOLIC ACID [EP MONOGRAPH]; 3a,7a-dihydroxy-5b,14a,17b-cholanate; Falk brand OF chenodeoxycholic acid; CHENODEOXYCHOLIC ACID [EP IMPURITY]; CHENODEOXYCHOLIC ACID (EP IMPURITY); 3a,7a-dihydroxy-5b-cholan-24-oate; 3a,7a-dihydroxy-5b-cholanic acid; Chenodeoxycholic Acid, Free Acid; 7.alpha.-Hydroxylithocholic acid; Chenodeoxycholic acid (JP17/INN); 3Α,7α-dihydroxy-5β-cholanic acid; Chenodeoxycholic acid (JP16/INN); 7-alpha-Hydroxylithocholic acid; CHENODEOXYCHOLIC ACID [WHO-DD]; Chenodesoxycholsaeure [German]; 7alpha-hydroxylithocholic acid; Chenodeoxycholic acid, >=97\\%; CHENODEOXYCHOLIC ACID (MART.); CHENODEOXYCHOLIC ACID [MART.]; 3Α,7α-dihydroxy-5β-cholanate; 3,7-Dihydroxy-5-Cholanicacid; 3a,7a-dihydroxy-5b-cholanate; Chenodeoxycholic acid [INN]; CHENODEOXYCHOLIC ACID [JAN]; Anthropododesoxycholic acid; chAnodAsoxycholique (acide); 7a-Hydroxy-desoxycholsaeure; 7A-Hydroxylithocholic acid; 7Α-hydroxylithocholic acid; 7alpha-Hydroxylithocholate; Anthropodesoxycholic acid; Chenodeoxycholate, Sodium; acide chenodesoxycholique; (+)-chenodeoxycholic acid; Acidum chenodeoxycholicum; Anthropodeoxycholic acid; acido chenodesossicolico; Acide chenodeoxycholique; Sodium chenodeoxycholate; CHENODIOL [ORANGE BOOK]; Acido chenodeoxicholico; Acid, Gallodesoxycholic; Gallodesoxycholic acid; Chenodesoxycholic acid; acido quenodeoxicolico; 7Α-hydroxylithocholate; 7a-Hydroxylithocholate; Acid, Chenodeoxycholic; chenodeoxycholic acid; (+)-chenodeoxycholate; Chenodesoxycholsaeure; chenodeoxycholic-acid; Anthropodesoxycholate; Anthropodeoxycholate; Chendeoxycholic Acid; Gallodesoxycholate; Prestwick0_000285; Prestwick1_000285; CHENODIOL [VANDF]; Prestwick2_000285; Prestwick3_000285; Chenodeoxycholate; Spectrum5_002009; Chenodiol [USAN]; Chenodeoxycholic; Chenocholic acid; Chenodiol (USAN); UNII-0GEI24LG0J; Acid, Chenique; CHENODIOL [MI]; BPBio1_000210; Chenique Acid; Acid, Chenic; HSCI1_000210; Tox21_200491; Tox21_110412; Chenic acid; CHENIX (TN); SMP1_000064; Chenocedon; ST 24:1;O4; 0GEI24LG0J; Quenobilan; Chenophalk; Cholanorm; Chenodiol; Chenossil; Chenofalk; Chenodal; Chenocol; Hekbilin; Chenodex; Quenocol; Xenbilox; Chenorm; Henohol; Chenate; A05AA01; Chendal; Fluibil; Kebilis; Chendol; Chenix; Cdca; JN3; 3α,7α-Dihydroxy-5β-cholanic acid; 5β-Cholanic acid-3α,7α-diol; Chenodeoxycholic acid (CDCA); Chenodeoxycholate



数据库引用编号

32 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

22 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(22)

PharmGKB(0)

11 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 5 ALB, CASP3, FGF19, GPBAR1, NR0B2
Peripheral membrane protein 1 CYP27A1
Endoplasmic reticulum membrane 3 CYP7A1, CYP8B1, HMGCR
Mitochondrion membrane 1 CYP27A1
Nucleus 4 ALB, CASP3, NR0B2, NR1H4
cytosol 4 ALB, CASP3, GPT, LIPE
centrosome 1 ALB
nucleoplasm 3 CASP3, NR0B2, NR1H4
RNA polymerase II transcription regulator complex 1 NR1H4
Cell membrane 6 ABCB11, GPBAR1, LIPE, SLCO1B1, SLCO1B3, TNF
Multi-pass membrane protein 5 ABCB11, GPBAR1, HMGCR, SLCO1B1, SLCO1B3
cell surface 2 ABCB11, TNF
glutamatergic synapse 1 CASP3
Golgi apparatus 1 ALB
Golgi membrane 2 ABCB11, INS
mitochondrial inner membrane 1 CYP27A1
neuronal cell body 2 CASP3, TNF
Cytoplasm, cytosol 1 LIPE
endosome 1 ABCB11
plasma membrane 6 ABCB11, GCG, GPBAR1, SLCO1B1, SLCO1B3, TNF
Membrane 5 ABCB11, HMGCR, LIPE, SLCO1B1, SLCO1B3
apical plasma membrane 1 ABCB11
axon 1 CCK
basolateral plasma membrane 2 SLCO1B1, SLCO1B3
caveola 1 LIPE
extracellular exosome 3 ABCB11, ALB, GPT
endoplasmic reticulum 2 ALB, HMGCR
extracellular space 7 ALB, CCK, FGF19, GCG, IL6, INS, TNF
intercellular canaliculus 1 ABCB11
mitochondrion 1 CYP27A1
protein-containing complex 2 ALB, NR0B2
intracellular membrane-bounded organelle 2 CYP7A1, NR0B2
Microsome membrane 2 CYP7A1, CYP8B1
postsynaptic density 1 CASP3
Secreted 5 ALB, CCK, GCG, IL6, INS
extracellular region 7 ALB, CCK, FGF19, GCG, IL6, INS, TNF
Single-pass membrane protein 2 CYP7A1, CYP8B1
mitochondrial matrix 1 CYP27A1
anchoring junction 1 ALB
external side of plasma membrane 1 TNF
recycling endosome 2 ABCB11, TNF
Single-pass type II membrane protein 1 TNF
Apical cell membrane 1 ABCB11
Mitochondrion inner membrane 1 CYP27A1
Membrane raft 1 TNF
peroxisomal membrane 1 HMGCR
receptor complex 2 GPBAR1, NR1H4
ciliary basal body 1 ALB
chromatin 2 NR0B2, NR1H4
phagocytic cup 1 TNF
[Isoform 3]: Nucleus 1 NR1H4
centriole 1 ALB
spindle pole 1 ALB
blood microparticle 1 ALB
Basolateral cell membrane 2 SLCO1B1, SLCO1B3
Recycling endosome membrane 1 ABCB11
endosome lumen 1 INS
Lipid droplet 1 LIPE
Membrane, caveola 1 LIPE
euchromatin 1 NR1H4
Peroxisome membrane 1 HMGCR
basal plasma membrane 2 SLCO1B1, SLCO1B3
secretory granule lumen 2 GCG, INS
Golgi lumen 1 INS
endoplasmic reticulum lumen 4 ALB, GCG, IL6, INS
platelet alpha granule lumen 1 ALB
transport vesicle 1 INS
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
[Isoform 2]: Nucleus 1 NR1H4
[Isoform 1]: Nucleus 1 NR1H4
Basal cell membrane 2 SLCO1B1, SLCO1B3
death-inducing signaling complex 1 CASP3
[Isoform 4]: Nucleus 1 NR1H4
intracellular canaliculus 1 ABCB11
[Glucagon-like peptide 1]: Secreted 1 GCG
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
interleukin-6 receptor complex 1 IL6
ciliary transition fiber 1 ALB
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Jiaxuan Gao, Xiaoyang Xiang, Qunfang Yan, Yanrui Ding. CDCS-TCM: A framework based on complex network theory to analyze the causality and dynamic correlation of substances in the metabolic process of traditional Chinese medicine. Journal of ethnopharmacology. 2024 Jun; 328(?):118100. doi: 10.1016/j.jep.2024.118100. [PMID: 38537843]
  • Wei Zhao, Jie Han, Dingbo Tao, Hongliang Zheng. Cerebrotendinous xanthomatosis with tremor as the main manifestation: A case report. Medicine. 2024 Apr; 103(17):e37976. doi: 10.1097/md.0000000000037976. [PMID: 38669366]
  • Yifan Wang, He Yi, Weixia Sun, Hekai Yu, Wenxuan Tao, Xiaojin Yu, Dianrong Jia, Yingzhao Liu, Stephen J Pandol, Ling Li. Comparative Efficacy of Drug Interventions on NAFLD Over 24 Weeks: A Traditional and Network Meta-Analysis of Randomized Controlled Trials. Drugs. 2024 Apr; 84(4):425-439. doi: 10.1007/s40265-024-02015-6. [PMID: 38478331]
  • Kai Zhan, Haomeng Wu, Yongyin Xu, Kehan Rao, Huan Zheng, Shumin Qin, Yuanming Yang, Rui Jia, Weihuan Chen, Shaogang Huang. The function of the gut microbiota-bile acid-TGR5 axis in diarrhea-predominant irritable bowel syndrome. mSystems. 2024 Mar; 9(3):e0129923. doi: 10.1128/msystems.01299-23. [PMID: 38329942]
  • Reza Rahmani, Neda Eivazi, Solaleh Emamgholipour, Mahdi Aminian, Ali Jalilian, Maliheh Paknejad. The obeticholic acid can positively regulate the cancerous behavior of MCF7 breast cancer cell line. Molecular biology reports. 2024 Feb; 51(1):250. doi: 10.1007/s11033-023-09106-9. [PMID: 38302816]
  • Huanfen Lu, Zhenglan Ban, Kai Xiao, Madi Sun, Yongbo Liu, Fangman Chen, Tongfei Shi, Li Chen, Dan Shao, Ming Zhang, Wei Li. Hepatic-Accumulated Obeticholic Acid and Atorvastatin Self-Assembled Nanocrystals Potentiate Ameliorative Effects in Treatment of Metabolic-Associated Fatty Liver Disease. Advanced science (Weinheim, Baden-Wurttemberg, Germany). 2024 Jan; ?(?):e2308866. doi: 10.1002/advs.202308866. [PMID: 38196299]
  • Luciano Adorini, Kristoffer Rigbolt, Michael Feigh, Jonathan Roth, Mary Erickson. Increased hepatoprotective effects of the novel farnesoid X receptor agonist INT-787 versus obeticholic acid in a mouse model of nonalcoholic steatohepatitis. PloS one. 2024; 19(4):e0300809. doi: 10.1371/journal.pone.0300809. [PMID: 38662778]
  • Anila Kutty Narayanan, Sudhindran Surendran, Dinesh Balakrishnan, Unnikrishnan Gopalakrishnan, Shweta Malick, Arun Valsan, Cyriac Abby Philips, Christopher John Edward Watson. A Short Review on Obeticholic Acid: An Effective Modulator of Farnesoid X Receptor. Current reviews in clinical and experimental pharmacology. 2024; 19(3):225-233. doi: 10.2174/0127724328239536230919070001. [PMID: 38708917]
  • Qingtian Zhu, Chenchen Yuan, Xiaowu Dong, Yaodong Wang, Baiqiang Li, Bo Tu, Weiwei Chen, Xingmeng Xu, Weijuan Gong, Weiming Xiao, Yanbing Ding, Lianghao Hu, Weiqin Li, Guotao Lu. Bile acid metabolomics identifies chenodeoxycholic acid as a therapeutic agent for pancreatic necrosis. Cell reports. Medicine. 2023 Dec; 4(12):101304. doi: 10.1016/j.xcrm.2023.101304. [PMID: 38035885]
  • Hua Zheng, Yi-Chuang Xu, Tao Zhao, Zhi Luo, Dian-Guang Zhang, Chang-Chun Song, An-Gen Yu, Xiaoying Tan. Dietary chenodeoxycholic acid attenuates high-fat diet-induced growth retardation, lipid accumulation and bile acid metabolism disorder in the liver of yellow catfish Pelteobagrus fulvidraco. The British journal of nutrition. 2023 Oct; ?(?):1-14. doi: 10.1017/s0007114523002489. [PMID: 37905695]
  • Soumia Majait, Emma C E Meessen, Frederic Maxime Vaz, E Marleen Kemper, Samuel van Nierop, Steven W Olde Damink, Frank G Schaap, Johannes A Romijn, Max Nieuwdorp, Aad Verrips, Filip Krag Knop, Maarten R Soeters. Characterization of Postprandial Bile Acid Profiles and Glucose Metabolism in Cerebrotendinous Xanthomatosis. Nutrients. 2023 Oct; 15(21):. doi: 10.3390/nu15214625. [PMID: 37960277]
  • Jaclynn A Meshanni, Jordan M Lee, Kinal N Vayas, Rachel Sun, Chenghui Jiang, Grace L Guo, Andrew J Gow, Jeffrey D Laskin, Debra L Laskin. Suppression of lung oxidative stress, inflammation and fibrosis following nitrogen mustard exposure by the selective farnesoid X receptor agonist obeticholic acid. The Journal of pharmacology and experimental therapeutics. 2023 May; ?(?):. doi: 10.1124/jpet.123.001557. [PMID: 37188530]
  • Yongchao Mou, Ghata Nandi, Sukhada Mukte, Eric Chai, Zhenyu Chen, Jorgen E Nielsen, Troels T Nielsen, Chiara Criscuolo, Craig Blackstone, Matthew J Fraidakis, Xue-Jun Li. Chenodeoxycholic acid rescues axonal degeneration in induced pluripotent stem cell-derived neurons from spastic paraplegia type 5 and cerebrotendinous xanthomatosis patients. Orphanet journal of rare diseases. 2023 Apr; 18(1):72. doi: 10.1186/s13023-023-02666-w. [PMID: 37024986]
  • Aoxiang Zhuge, Shengjie Li, Yin Yuan, Shengyi Han, Jiafeng Xia, Qiangqiang Wang, Shuting Wang, Pengcheng Lou, Bo Li, Lanjuan Li. Microbiota-induced lipid peroxidation impairs obeticholic acid-mediated antifibrotic effect towards nonalcoholic steatohepatitis in mice. Redox biology. 2023 02; 59(?):102582. doi: 10.1016/j.redox.2022.102582. [PMID: 36584600]
  • Schuyler D Vickers, Stephanie A Shumar, Dominique C Saporito, Amina Kunovac, Quincy A Hathaway, Breeanna Mintmier, Judy A King, Rachel D King, Vazhaikkurichi M Rajendran, Aniello M Infante, John M Hollander, Roberta Leonardi. NUDT7 regulates total hepatic CoA levels and the composition of the intestinal bile acid pool in male mice fed a Western diet. The Journal of biological chemistry. 2023 01; 299(1):102745. doi: 10.1016/j.jbc.2022.102745. [PMID: 36436558]
  • Yuxiang Qiu, Ningsu Kang, Xi Wang, Yao Yao, Jun Cui, Xiaoyan Zhang, Lu Zheng. Loss of Farnesoid X receptor (FXR) accelerates dysregulated glucose and renal injury in db/db mice. PeerJ. 2023; 11(?):e16155. doi: 10.7717/peerj.16155. [PMID: 37790634]
  • Ciara M Fallon, Jessica S Smyth, Andrew Quach, Natalia Lajczak-McGinley, Aoibhlinn O'Toole, Kim E Barrett, Helen Sheridan, Stephen J Keely. Pentacyclic triterpenes modulate farnesoid X receptor expression in colonic epithelial cells: Implications for colonic secretory function. The Journal of biological chemistry. 2022 11; 298(11):102569. doi: 10.1016/j.jbc.2022.102569. [PMID: 36209824]
  • Chenlu Zhang, Yameng Liu, Ying Wang, Xiu Ge, Tingying Jiao, Jianpeng Yin, Kanglong Wang, Cuina Li, Shimeng Guo, Xin Xie, Cen Xie, Fajun Nan. Discovery of Betulinic Acid Derivatives as Potent Intestinal Farnesoid X Receptor Antagonists to Ameliorate Nonalcoholic Steatohepatitis. Journal of medicinal chemistry. 2022 10; 65(19):13452-13472. doi: 10.1021/acs.jmedchem.2c01394. [PMID: 36107013]
  • Jinting Liu, Yihong Wei, Wenbo Jia, Can Can, Ruiqing Wang, Xinyu Yang, Chaoyang Gu, Fabao Liu, Chunyan Ji, Daoxin Ma. Chenodeoxycholic acid suppresses AML progression through promoting lipid peroxidation via ROS/p38 MAPK/DGAT1 pathway and inhibiting M2 macrophage polarization. Redox biology. 2022 10; 56(?):102452. doi: 10.1016/j.redox.2022.102452. [PMID: 36084349]
  • Jennifer K Truong, Ashley L Bennett, Caroline Klindt, Ajay C Donepudi, Sudarshan R Malla, Kimberly J Pachura, Alex Zaufel, Tarek Moustafa, Paul A Dawson, Saul J Karpen. Ileal bile acid transporter inhibition in Cyp2c70 KO mice ameliorates cholestatic liver injury. Journal of lipid research. 2022 09; 63(9):100261. doi: 10.1016/j.jlr.2022.100261. [PMID: 35934110]
  • Daqian Yang, Xiangjuan Wei, Ziyi Zhang, Xi Chen, Ruijiao Zhu, Yuri Oh, Ning Gu. Tris (2-chloroethyl) phosphate (TCEP) induces obesity and hepatic steatosis via FXR-mediated lipid accumulation in mice: Long-term exposure as a potential risk for metabolic diseases. Chemico-biological interactions. 2022 Aug; 363(?):110027. doi: 10.1016/j.cbi.2022.110027. [PMID: 35780845]
  • Xiaoyue Li, Xinzhou Yao, Xinchen Zhang, Xiaohui Dong, Shuyan Chi, Beiping Tan, Shuang Zhang, Shiwei Xie. Effects of dietary chenodeoxycholic acid supplementation in a low fishmeal diet on growth performance, lipid metabolism, autophagy and intestinal health of Pacific white shrimp, Litopenaeus vannamei. Fish & shellfish immunology. 2022 Aug; 127(?):1088-1099. doi: 10.1016/j.fsi.2022.07.045. [PMID: 35872336]
  • Rumei Li, Milaine V Hovingh, Martijn Koehorst, Pim de Blaauw, Henkjan J Verkade, Jan Freark de Boer, Folkert Kuipers. Short-term obeticholic acid treatment does not impact cholangiopathy in Cyp2c70-deficient mice with a human-like bile acid composition. Biochimica et biophysica acta. Molecular and cell biology of lipids. 2022 08; 1867(8):159163. doi: 10.1016/j.bbalip.2022.159163. [PMID: 35470044]
  • Can Hu, Ya Li, Yujie Liu, Yong Lai, Li Ding. A Sensitive HPLC-MS/MS Method for Determination of Obeticholic Acid in Human Plasma: Application to a Pharmacokinetic Study in Healthy Volunteers. Journal of chromatographic science. 2022 Jul; 60(6):545-550. doi: 10.1093/chromsci/bmab098. [PMID: 34313291]
  • Qi Lai, Yanhua Ma, Jin Bai, Min Zhuang, Shaofei Pei, Ni He, Junlin Yin, Baomin Fan, Zhaoxiang Bian, Guangzhi Zeng, Chengyuan Lin. Mechanisms for Bile Acids CDCA- and DCA-Stimulated Hepatic Spexin Expression. Cells. 2022 07; 11(14):. doi: 10.3390/cells11142159. [PMID: 35883602]
  • Reena Yadav, Chinmayee Choudhury, Yashwant Kumar, Alka Bhatia. Virtual repurposing of ursodeoxycholate and chenodeoxycholate as lead candidates against SARS-Cov2-Envelope protein: A molecular dynamics investigation. Journal of biomolecular structure & dynamics. 2022 07; 40(11):5147-5158. doi: 10.1080/07391102.2020.1868339. [PMID: 33382021]
  • Lars-Olav Harnisch, Diana Mihaylov, Thomas Bein, Christian Apfelbacher, Michael Kiehntopf, Michael Bauer, Onnen Moerer, Michael Quintel. Determination of individual bile acids in acute respiratory distress syndrome reveals a specific pattern of primary and secondary bile acids and a shift to the acidic pathway as an adaptive response to the critical condition. Clinical chemistry and laboratory medicine. 2022 05; 60(6):891-900. doi: 10.1515/cclm-2021-1176. [PMID: 35313097]
  • Shingo Koyama, Yuma Okabe, Yuya Suzuki, Ryosuke Igari, Hiroyasu Sato, Chifumi Iseki, Kazuyo Tanji, Kyoko Suzuki, Yasuyuki Ohta. Differing clinical features between Japanese siblings with cerebrotendinous xanthomatosis with a novel compound heterozygous CYP27A1 mutation: a case report. BMC neurology. 2022 May; 22(1):193. doi: 10.1186/s12883-022-02711-4. [PMID: 35614401]
  • Shaopu Zhu, Kang Yang, Shiyi Yang, Li Zhang, Maoming Xiong, Jiawei Zhang, Bo Chen. A high bile acid environment promotes apoptosis and inhibits migration in pancreatic cancer. Bioengineered. 2022 03; 13(3):6719-6728. doi: 10.1080/21655979.2022.2045823. [PMID: 35245979]
  • Zongtao Zhou, Qiang Ren, Shixuan Jiao, Zongyu Cai, Xinqian Geng, Liming Deng, Bin Wang, Lijun Hu, Luyong Zhang, Ying Yang, Zheng Li. Discovery of new and highly effective quadruple FFA1 and PPARα/γ/δ agonists as potential anti-fatty liver agents. European journal of medicinal chemistry. 2022 Feb; 229(?):114061. doi: 10.1016/j.ejmech.2021.114061. [PMID: 34954593]
  • Zhenyuan Ma, Yibao Wei, Li Zhang, Xiaoqing Shi, Runlin Xing, Taiyang Liao, Nan Yang, Xiaochen Li, Lishi Jie, Peimin Wang. GCTOF-MS Combined LC-QTRAP-MS/MS Reveals Metabolic Difference Between Osteoarthritis and Osteoporotic Osteoarthritis and the Intervention Effect of Erxian Decoction. Frontiers in endocrinology. 2022; 13(?):905507. doi: 10.3389/fendo.2022.905507. [PMID: 35966099]
  • Szu-Yu Liu, Chia-Chang Huang, Ying-Ying Yang, Shiang-Fen Huang, Tzung-Yan Lee, Tzu-Hao Li, Ming-Chih Hou, Han-Chieh Lin. Obeticholic acid treatment ameliorates the cardiac dysfunction in NASH mice. PloS one. 2022; 17(12):e0276717. doi: 10.1371/journal.pone.0276717. [PMID: 36490253]
  • Yuanying Fang, Lamees Hegazy, Brian N Finck, Bahaa Elgendy. Recent Advances in the Medicinal Chemistry of Farnesoid X Receptor. Journal of medicinal chemistry. 2021 12; 64(24):17545-17571. doi: 10.1021/acs.jmedchem.1c01017. [PMID: 34889100]
  • Liping Wang, Qing Luo, Sijing Zeng, Yanmei Lou, Xiaoyan Li, Ming Hu, Linlin Lu, Zhongqiu Liu. Disordered farnesoid X receptor signaling is associated with liver carcinogenesis in Abcb11-deficient mice. The Journal of pathology. 2021 12; 255(4):412-424. doi: 10.1002/path.5780. [PMID: 34410012]
  • Sergei Pechenov, Jefferson Revell, Sarah Will, Jacqueline Naylor, Puneet Tyagi, Chandresh Patel, Lihuan Liang, Leo Tseng, Yue Huang, Anton I Rosenbaum, Kemal Balic, Anish Konkar, Joseph Grimsby, J Anand Subramony. Development of an orally delivered GLP-1 receptor agonist through peptide engineering and drug delivery to treat chronic disease. Scientific reports. 2021 11; 11(1):22521. doi: 10.1038/s41598-021-01750-0. [PMID: 34795324]
  • Branislava Teofilovic, Svetlana Golocorbin-Kon, Nebojsa Stilinovic, Nevena Grujic-Letic, Aleksandar Raškovic, Armin Mooranian, Hani Al-Salami, Momir Mikov. Pharmacological effects of novel microvesicles of basil, on blood glucose and the lipid profile: a preclinical study. Scientific reports. 2021 11; 11(1):22123. doi: 10.1038/s41598-021-01713-5. [PMID: 34764416]
  • Akihiko Kimura, Tatsuki Mizuochi, Hajime Takei, Akira Ohtake, Jun Mori, Kunihiro Shinoda, Takuji Hashimoto, Mureo Kasahara, Takao Togawa, Tsuyoshi Murai, Takashi Iida, Hiroshi Nittono. Bile Acid Synthesis Disorders in Japan: Long-Term Outcome and Chenodeoxycholic Acid Treatment. Digestive diseases and sciences. 2021 11; 66(11):3885-3892. doi: 10.1007/s10620-020-06722-4. [PMID: 33385262]
  • Xuan Qin, Yuanjin Zhang, Jian Lu, Shengbo Huang, Zongjun Liu, Xin Wang. CYP3A deficiency alters bile acid homeostasis and leads to changes in hepatic susceptibility in rats. Toxicology and applied pharmacology. 2021 10; 429(?):115703. doi: 10.1016/j.taap.2021.115703. [PMID: 34461081]
  • Xing-Ling Chen, Shu-Lan Su, Rui Liu, Da-Wei Qian, Li-Ling Chen, Li-Ping Qiu, Jin-Ao Duan. [Chemical constituents and pharmacological action of bile acids from animal:a review]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2021 Oct; 46(19):4898-4906. doi: 10.19540/j.cnki.cjcmm.20210630.201. [PMID: 34738383]
  • Yue-Lian Yang, Wei-Wei Zhou, Shan Wu, Wen-Li Tang, Zong-Wei Wang, Zu-Yi Zhou, Ze-Wen Li, Qing-Fa Huang, Yan He, Hong-Wei Zhou. Intestinal Flora is a Key Factor in Insulin Resistance and Contributes to the Development of Polycystic Ovary Syndrome. Endocrinology. 2021 10; 162(10):. doi: 10.1210/endocr/bqab118. [PMID: 34145455]
  • Yoshiaki Zaizen, Masaki Tominaga, Shuji Nagata, Tomoaki Hoshino. Cerebrotendinous xanthomatosis with radiological abnormalities of the chest. BMJ case reports. 2021 Sep; 14(9):. doi: 10.1136/bcr-2021-243715. [PMID: 34479889]
  • Pelin Teke Kısa, Gonca Kilic Yildirim, Burcu Ozturk Hismi, Sevil Dorum, Ozge Yilmaz Kusbeci, Ali Topak, Figen Baydan, Fatma Nazlı Durmaz Celik, Orhan Gorukmez, Zumrut Arslan Gulten, Arzu Ekici, Serhat Ozkan, Aylin Yaman, Nur Arslan. Patients with cerebrotendinous xanthomatosis diagnosed with diverse multisystem involvement. Metabolic brain disease. 2021 08; 36(6):1201-1211. doi: 10.1007/s11011-021-00714-7. [PMID: 33704661]
  • Fei Xiong, Zhongdaixi Zheng, Lingyu Xiao, Chuhong Su, Junbin Chen, Xiangfu Gu, Jiaqi Tang, Yue Zhao, Huiyu Luo, Longying Zha. Soyasaponin A2 Alleviates Steatohepatitis Possibly through Regulating Bile Acids and Gut Microbiota in the Methionine and Choline-Deficient (MCD) Diet-induced Nonalcoholic Steatohepatitis (NASH) Mice. Molecular nutrition & food research. 2021 07; 65(14):e2100067. doi: 10.1002/mnfr.202100067. [PMID: 34047448]
  • Suling Huang, Yanwei Wu, Zhuohui Zhao, Bing Wu, Kai Sun, Haoyu Wang, Li Qin, Fang Bai, Ying Leng, Wei Tang. A new mechanism of obeticholic acid on NASH treatment by inhibiting NLRP3 inflammasome activation in macrophage. Metabolism: clinical and experimental. 2021 07; 120(?):154797. doi: 10.1016/j.metabol.2021.154797. [PMID: 33984334]
  • Xiaojiao Li, Hong Zhang, Cuiyun Li, Wenbo Zheng, Meng Wang, Min Wu, Deming Yang, Yue Hu, Dandan Huo, Zhongnan Xu, Yanhua Ding, Li Liu. Comparison of the Pharmacokinetics of Generic Versus Branded Obeticholic Acid in a Chinese Population: Effects of Food and Sex. Clinical pharmacology in drug development. 2021 07; 10(7):797-806. doi: 10.1002/cpdd.905. [PMID: 33463088]
  • Fanzhi Kong, Xiaoyu Niu, Mingde Liu, Qiuhong Wang. Bile acids LCA and CDCA inhibited porcine deltacoronavirus replication in vitro. Veterinary microbiology. 2021 Jun; 257(?):109097. doi: 10.1016/j.vetmic.2021.109097. [PMID: 33933854]
  • Junxiao Li, Chuhe Liu, Zhenyu Zhou, Baokai Dou, Jinwen Huang, Leilei Huang, Peiyong Zheng, Shengjie Fan, Cheng Huang. Isotschimgine alleviates nonalcoholic steatohepatitis and fibrosis via FXR agonism in mice. Phytotherapy research : PTR. 2021 Jun; 35(6):3351-3364. doi: 10.1002/ptr.7055. [PMID: 33784797]
  • Lori W E van der Schoor, Henkjan J Verkade, Anna Bertolini, Sanne de Wit, Elvira Mennillo, Eva Rettenmeier, André A Weber, Rick Havinga, Petra Valášková, Jana Jašprová, Dicky Struik, Vincent W Bloks, Shujuan Chen, Andrea B Schreuder, Libor Vítek, Robert H Tukey, Johan W Jonker. Potential of therapeutic bile acids in the treatment of neonatal Hyperbilirubinemia. Scientific reports. 2021 05; 11(1):11107. doi: 10.1038/s41598-021-90687-5. [PMID: 34045606]
  • Lulu Sun, Jie Cai, Frank J Gonzalez. The role of farnesoid X receptor in metabolic diseases, and gastrointestinal and liver cancer. Nature reviews. Gastroenterology & hepatology. 2021 05; 18(5):335-347. doi: 10.1038/s41575-020-00404-2. [PMID: 33568795]
  • Yun-Ping Tang, Jing-Yu Gong, Kenneth D R Setchell, Wujuan Zhang, Jing Zhao, Jian-She Wang. Successful treatment of infantile oxysterol 7α-hydroxylase deficiency with oral chenodeoxycholic acid. BMC gastroenterology. 2021 Apr; 21(1):163. doi: 10.1186/s12876-021-01749-x. [PMID: 33849447]
  • Monica Gelzo, Maria Donata Di Taranto, Alvino Bisecco, Alessandra D'Amico, Rocco Capuano, Carola Giacobbe, Mafalda Caputo, Mario Cirillo, Gioacchino Tedeschi, Giuliana Fortunato, Gaetano Corso. A case of Cerebrotendinous Xanthomatosis with spinal cord involvement and without tendon xanthomas: identification of a new mutation of the CYP27A1 gene. Acta neurologica Belgica. 2021 Apr; 121(2):561-566. doi: 10.1007/s13760-019-01267-4. [PMID: 31875301]
  • Venkat Rao Valluri, Naresh Kumar Katari, Chirag Khatri, Siva Sankara Rao Yadlapalli, Krishnan Anand, Rambabu Gundla, Srinivasa Rao Polagani. A novel LC-MS/MS method for simultaneous estimation of obeticholic acid, glyco-obeticholic acid, tauro-obeticholic acid in human plasma and its application to a pharmacokinetic study. Journal of separation science. 2021 Apr; 44(7):1307-1323. doi: 10.1002/jssc.202001050. [PMID: 33395497]
  • Jingwen Zhou, Yidi Chen, Jun Yu, Tianci Li, Ziyu Lu, Yan Chen, Xiaolong Zhang, Fang Ye. The efficacy of novel metabolic targeted agents and natural plant drugs for nonalcoholic fatty liver disease treatment: A PRISMA-compliant network meta-analysis of randomized controlled trials. Medicine. 2021 Mar; 100(12):e24884. doi: 10.1097/md.0000000000024884. [PMID: 33761646]
  • Li Wu, Yuqiu Han, Zhipeng Zheng, Shuai Zhu, Jun Chen, Yuanyuan Yao, Siqing Yue, Andreas Teufel, Honglei Weng, Lanjuan Li, Baohong Wang. Obeticholic Acid Inhibits Anxiety via Alleviating Gut Microbiota-Mediated Microglia Accumulation in the Brain of High-Fat High-Sugar Diet Mice. Nutrients. 2021 Mar; 13(3):. doi: 10.3390/nu13030940. [PMID: 33803974]
  • Chi Ma, Yan-De Ren, Jia-Chen Wang, Cheng-Jian Wang, Ji-Ping Zhao, Tong Zhou, Hua-Wei Su. The clinical and imaging features of cerebrotendinous xanthomatosis: A case report and review of the literature. Medicine. 2021 Mar; 100(9):e24687. doi: 10.1097/md.0000000000024687. [PMID: 33655933]
  • Maaike Blankestijn, Ivo P van de Peppel, Ales Dvorak, Nikola Capkova, Libor Vitek, Johan W Jonker, Henkjan J Verkade. Induction of fecal cholesterol excretion is not effective for the treatment of hyperbilirubinemia in Gunn rats. Pediatric research. 2021 02; 89(3):510-517. doi: 10.1038/s41390-020-0926-2. [PMID: 32357361]
  • Shuo Wang, Jiang Chen, Hongyu Li, Xingshun Qi, Xu Liu, Xiaozhong Guo. Metabolomic Detection Between Pancreatic Cancer and Liver Metastasis Nude Mouse Models Constructed by Using the PANC1-KAI1/CD82 Cell Line. Technology in cancer research & treatment. 2021 Jan; 20(?):15330338211045204. doi: 10.1177/15330338211045204. [PMID: 34605330]
  • Yuan Gao, Li Li, Bei Li, Yutao Zhan. Response Rate and Impact on Lipid Profiles of Obeticholic Acid Treatment for Patients with Primary Biliary Cholangitis: A Meta-Analysis. Canadian journal of gastroenterology & hepatology. 2021; 2021(?):8829510. doi: 10.1155/2021/8829510. [PMID: 33511089]
  • André A Weber, Elvira Mennillo, Xiaojing Yang, Lori W E van der Schoor, Johan W Jonker, Shujuan Chen, Robert H Tukey. Regulation of Intestinal UDP-Glucuronosyltransferase 1A1 by the Farnesoid X Receptor Agonist Obeticholic Acid Is Controlled by Constitutive Androstane Receptor through Intestinal Maturation. Drug metabolism and disposition: the biological fate of chemicals. 2021 01; 49(1):12-19. doi: 10.1124/dmd.120.000240. [PMID: 33154041]
  • Suzanna L Attia, Samir Softic, Marialena Mouzaki. Evolving Role for Pharmacotherapy in NAFLD/NASH. Clinical and translational science. 2021 01; 14(1):11-19. doi: 10.1111/cts.12839. [PMID: 32583961]
  • Lin Guan, Peng Miao. Systematic review and meta-analysis of randomized controlled trials on the effects of obeticholic acid on the blood lipid profile: Insights into liver disorders and liver cancer. European journal of pharmacology. 2020 Dec; 889(?):173616. doi: 10.1016/j.ejphar.2020.173616. [PMID: 33035521]
  • Zhexin Ni, Shuai Sun, Yanli Bi, Jie Ding, Wen Cheng, Jin Yu, Ling Zhou, Mingqing Li, Chaoqin Yu. Correlation of fecal metabolomics and gut microbiota in mice with endometriosis. American journal of reproductive immunology (New York, N.Y. : 1989). 2020 12; 84(6):e13307. doi: 10.1111/aji.13307. [PMID: 32681566]
  • Junyou Li, Mengqi Liu, Yazhou Li, Dan-Dan Sun, Zhihao Shu, Qian Tan, Shimeng Guo, Rongrong Xie, Lixin Gao, Hongbo Ru, Yi Zang, Hong Liu, Jia Li, Yu Zhou. Discovery and Optimization of Non-bile Acid FXR Agonists as Preclinical Candidates for the Treatment of Nonalcoholic Steatohepatitis. Journal of medicinal chemistry. 2020 11; 63(21):12748-12772. doi: 10.1021/acs.jmedchem.0c01065. [PMID: 32991173]
  • Long Zhao, Zefeng Xuan, Wenfeng Song, Shiyu Zhang, Zequn Li, Guangyuan Song, Xingxin Zhu, Haiyang Xie, Shusen Zheng, Penghong Song. A novel role for farnesoid X receptor in the bile acid-mediated intestinal glucose homeostasis. Journal of cellular and molecular medicine. 2020 11; 24(21):12848-12861. doi: 10.1111/jcmm.15881. [PMID: 33029898]
  • Ying Wang, Matthew Wilkerson, Jibin Li, Wei Zhang, Albert Owens, Stephen Wright, Ismael Hidalgo. Assessment of Statin Interactions With the Human NTCP Transporter Using a Novel Fluorescence Assay. International journal of toxicology. 2020 Nov; 39(6):518-529. doi: 10.1177/1091581820953066. [PMID: 33078647]
  • Ken Takasone, Teruya Morizumi, Katsuya Nakamura, Yusuke Mochizuki, Tsuneaki Yoshinaga, Shingo Koyama, Yoshiki Sekijima. A Late-onset and Relatively Rapidly Progressive Case of Pure Spinal Form Cerebrotendinous Xanthomatosis with a Novel Mutation in the CYP27A1 Gene. Internal medicine (Tokyo, Japan). 2020 Oct; 59(20):2587-2591. doi: 10.2169/internalmedicine.5037-20. [PMID: 32581172]
  • Michael Camilleri, Priya Vijayvargiya. The Role of Bile Acids in Chronic Diarrhea. The American journal of gastroenterology. 2020 10; 115(10):1596-1603. doi: 10.14309/ajg.0000000000000696. [PMID: 32558690]
  • Iván L Csanaky, Andrew J Lickteig, Youcai Zhang, Curtis D Klaassen. Effects of patent ductus venosus on bile acid homeostasis in aryl hydrocarbon receptor (AhR)-null mice. Toxicology and applied pharmacology. 2020 09; 403(?):115136. doi: 10.1016/j.taap.2020.115136. [PMID: 32679164]
  • Ruibing Feng, Li-Juan Ma, Meng Wang, Conghui Liu, Rujie Yang, Huanxing Su, Yan Yang, Jian-Bo Wan. Oxidation of fish oil exacerbates alcoholic liver disease by enhancing intestinal dysbiosis in mice. Communications biology. 2020 09; 3(1):481. doi: 10.1038/s42003-020-01213-8. [PMID: 32879433]
  • Jianlong Du, Qiang Chen, Yongnan Li, Xiaojun Xiang, Wei Xu, Kangsen Mai, Qinghui Ai. Activation of the Farnesoid X Receptor (FXR) Suppresses Linoleic Acid-Induced Inflammation in the Large Yellow Croaker (Larimichthys crocea). The Journal of nutrition. 2020 09; 150(9):2469-2477. doi: 10.1093/jn/nxaa185. [PMID: 32614453]
  • Xuan Li, Min Liao, Qiong Pan, Qiaoling Xie, Hong Yang, Ying Peng, Qiao Li, Jiaquan Qu, Jin Chai. Combination therapy of obeticholic acid and ursodeoxycholic acid in patients with primary biliary cholangitis who respond incompletely to ursodeoxycholic acid: a systematic review. European journal of gastroenterology & hepatology. 2020 09; 32(9):1116-1122. doi: 10.1097/meg.0000000000001785. [PMID: 32649329]
  • Teerasak Wongwan, Varanuj Chatsudthipong, Sunhapas Soodvilai. Farnesoid X Receptor Activation Stimulates Organic Cations Transport in Human Renal Proximal Tubular Cells. International journal of molecular sciences. 2020 Aug; 21(17):. doi: 10.3390/ijms21176078. [PMID: 32846898]
  • Yu-Lien Tsai, Chih-Wei Liu, Chien-Fu Hsu, Chia-Chang Huang, Ming-Wei Lin, Shiang-Fen Huang, Tzu-Hao Li, Kuei-Chuan Lee, Yun-Cheng Hsieh, Ying-Ying Yang, Tzung-Yan Lee, Hsuan-Miao Liu, Yi-Hsiang Huang, Ming-Chih Hou, Han-Chieh Lin. Obeticholic acid ameliorates hepatorenal syndrome in ascitic cirrhotic rats by down-regulating the renal 8-iso-PGF2α-activated COX-TXA2 pathway. Clinical science (London, England : 1979). 2020 08; 134(15):2055-2073. doi: 10.1042/cs20200452. [PMID: 32725149]
  • Ines L Paraiso, Johana S Revel, Jaewoo Choi, Cristobal L Miranda, Parnian Lak, Chrissa Kioussi, Gerd Bobe, Adrian F Gombart, Jacob Raber, Claudia S Maier, Jan F Stevens. Targeting the Liver-Brain Axis with Hop-Derived Flavonoids Improves Lipid Metabolism and Cognitive Performance in Mice. Molecular nutrition & food research. 2020 08; 64(15):e2000341. doi: 10.1002/mnfr.202000341. [PMID: 32627931]
  • Vanessa Pataia, Saraid McIlvride, Georgia Papacleovoulou, Caroline Ovadia, Julie A K McDonald, Annika Wahlström, Eugène Jansen, Luciano Adorini, David Shapiro, Julian R Marchesi, Hanns-Ulrich Marschall, Catherine Williamson. Obeticholic acid improves fetal bile acid profile in a mouse model of gestational hypercholanemia. American journal of physiology. Gastrointestinal and liver physiology. 2020 08; 319(2):G197-G211. doi: 10.1152/ajpgi.00126.2020. [PMID: 32597707]
  • Jan Klouda, Karel Nesměrák, Pavel Kočovský, Jiří Barek, Karolina Schwarzová-Pecková. A novel voltammetric approach to the detection of primary bile acids in serum samples. Bioelectrochemistry (Amsterdam, Netherlands). 2020 Aug; 134(?):107539. doi: 10.1016/j.bioelechem.2020.107539. [PMID: 32361665]
  • Kris V Kowdley, Raj Vuppalanchi, Cynthia Levy, Annarosa Floreani, Pietro Andreone, Nicholas F LaRusso, Roshan Shrestha, James Trotter, David Goldberg, Simon Rushbrook, Gideon M Hirschfield, Thomas Schiano, Yuying Jin, Richard Pencek, Leigh MacConell, David Shapiro, Christopher L Bowlus. A randomized, placebo-controlled, phase II study of obeticholic acid for primary sclerosing cholangitis. Journal of hepatology. 2020 07; 73(1):94-101. doi: 10.1016/j.jhep.2020.02.033. [PMID: 32165251]
  • Ping An, Guangyan Wei, Pinzhu Huang, Wenda Li, Xiaolong Qi, Yi Lin, Kahini A Vaid, Jun Wang, Shucha Zhang, Yang Li, Yat Sun Or, Li-Juan Jiang, Yury V Popov. A novel non-bile acid FXR agonist EDP-305 potently suppresses liver injury and fibrosis without worsening of ductular reaction. Liver international : official journal of the International Association for the Study of the Liver. 2020 07; 40(7):1655-1669. doi: 10.1111/liv.14490. [PMID: 32329946]
  • Weiguo Sui, Qing Gan, Fuhua Liu, Minglin Ou, Bingguo Wang, Songbai Liao, Liusheng Lai, Huaizhou Chen, Ming Yang, Yong Dai. Dynamic Metabolomics Study of the Bile Acid Pathway During Perioperative Primary Hepatic Carcinoma Following Liver Transplantation. Annals of transplantation. 2020 Jun; 25(?):e921844. doi: 10.12659/aot.921844. [PMID: 32572018]
  • Yunhuan Liu, Kefei Chen, Fengyuan Li, Zelin Gu, Qi Liu, Liqing He, Tuo Shao, Qing Song, Fenxia Zhu, Lihua Zhang, Mengwei Jiang, Yun Zhou, Shirish Barve, Xiang Zhang, Craig J McClain, Wenke Feng. Probiotic Lactobacillus rhamnosus GG Prevents Liver Fibrosis Through Inhibiting Hepatic Bile Acid Synthesis and Enhancing Bile Acid Excretion in Mice. Hepatology (Baltimore, Md.). 2020 06; 71(6):2050-2066. doi: 10.1002/hep.30975. [PMID: 31571251]
  • Cheng Zhang, Yu Gan, Jin-Wei Lv, Ming-Qiang Qin, Wei-Rong Hu, Zhi-Bing Liu, Li Ma, Bing-Dong Song, Jian Li, Wei-Ying Jiang, Jian-Qing Wang, Hua Wang, De-Xiang Xu. The protective effect of obeticholic acid on lipopolysaccharide-induced disorder of maternal bile acid metabolism in pregnant mice. International immunopharmacology. 2020 Jun; 83(?):106442. doi: 10.1016/j.intimp.2020.106442. [PMID: 32248018]
  • F Anthony Romero, Christopher T Jones, Yingzi Xu, Martijn Fenaux, Randall L Halcomb. The Race to Bash NASH: Emerging Targets and Drug Development in a Complex Liver Disease. Journal of medicinal chemistry. 2020 05; 63(10):5031-5073. doi: 10.1021/acs.jmedchem.9b01701. [PMID: 31930920]
  • Roger W Chapman, Kate D Lynch. Obeticholic acid-a new therapy in PBC and NASH. British medical bulletin. 2020 05; 133(1):95-104. doi: 10.1093/bmb/ldaa006. [PMID: 32282030]
  • Zhibo Gai, Evelin Krajnc, Sophia L Samodelov, Michele Visentin, Gerd A Kullak-Ublick. Obeticholic Acid Ameliorates Valproic Acid-Induced Hepatic Steatosis and Oxidative Stress. Molecular pharmacology. 2020 05; 97(5):314-323. doi: 10.1124/mol.119.118646. [PMID: 32098797]
  • Donatella Chianelli, Paul V Rucker, Jason Roland, David C Tully, John Nelson, Xiaodong Liu, Badry Bursulaya, Eloy D Hernandez, Jane Wu, Mahavir Prashad, Thierry Schlama, Yugang Liu, Alan Chu, James Schmeits, David J Huang, Robert Hill, Dingjiu Bao, Jocelyn Zoll, Young Kim, Todd Groessl, Peter McNamara, Bo Liu, Wendy Richmond, Ignacio Sancho-Martinez, Andrew Phimister, H Martin Seidel, Michael K Badman, Sean B Joseph, Bryan Laffitte, Valentina Molteni. Nidufexor (LMB763), a Novel FXR Modulator for the Treatment of Nonalcoholic Steatohepatitis. Journal of medicinal chemistry. 2020 04; 63(8):3868-3880. doi: 10.1021/acs.jmedchem.9b01621. [PMID: 31940200]
  • Xin-Hua Wang, Zheng Li, Min-Hua Zang, Tian-Bao Yao, Jia-Liang Mao, Jun Pu. Circulating primary bile acid is correlated with structural remodeling in atrial fibrillation. Journal of interventional cardiac electrophysiology : an international journal of arrhythmias and pacing. 2020 Apr; 57(3):371-377. doi: 10.1007/s10840-019-00540-z. [PMID: 30915593]
  • Aad Verrips, Maria Teresa Dotti, Andrea Mignarri, Bianca M L Stelten, Sue Verma, Antonio Federico. The safety and effectiveness of chenodeoxycholic acid treatment in patients with cerebrotendinous xanthomatosis: two retrospective cohort studies. Neurological sciences : official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology. 2020 Apr; 41(4):943-949. doi: 10.1007/s10072-019-04169-8. [PMID: 31863326]
  • Armin Mooranian, Nassim Zamani, Corina M Ionescu, Ryu Takechi, Giuseppe Luna, Momir Mikov, Svetlana Goločorbin-Kon, Božica Kovačević, Hani Al-Salami. Oral gavage of nano-encapsulated conjugated acrylic acid-bile acid formulation in type 1 diabetes altered pharmacological profile of bile acids, and improved glycaemia and suppressed inflammation. Pharmacological reports : PR. 2020 Apr; 72(2):368-378. doi: 10.1007/s43440-019-00030-z. [PMID: 32048259]
  • Jiyu Zhou, Shuang Cui, Qingxian He, Yitong Guo, Xiaojie Pan, Pengfei Zhang, Ningning Huang, Chaoliang Ge, Guangji Wang, Frank J Gonzalez, Hong Wang, Haiping Hao. SUMOylation inhibitors synergize with FXR agonists in combating liver fibrosis. Nature communications. 2020 01; 11(1):240. doi: 10.1038/s41467-019-14138-6. [PMID: 31932588]
  • Line Zurkinden, Dmitri Sviridov, Bruno Vogt, Genevieve Escher. Downregulation of Cyp7a1 by Cholic Acid and Chenodeoxycholic Acid in Cyp27a1/ApoE Double Knockout Mice: Differential Cardiovascular Outcome. Frontiers in endocrinology. 2020; 11(?):586980. doi: 10.3389/fendo.2020.586980. [PMID: 33193099]
  • Shigeru Nishida, Michiyasu Ishizawa, Shigeaki Kato, Makoto Makishima. Vitamin D Receptor Deletion Changes Bile Acid Composition in Mice Orally Administered Chenodeoxycholic Acid. Journal of nutritional science and vitaminology. 2020; 66(4):370-374. doi: 10.3177/jnsv.66.370. [PMID: 32863311]
  • Mohammad Shadab Siddiqui, Mark L Van Natta, Margery A Connelly, Raj Vuppalanchi, Brent A Neuschwander-Tetri, James Tonascia, Cynthia Guy, Rohit Loomba, Srinivasan Dasarathy, Julia Wattacheril, Naga Chalasani, Arun J Sanyal. Impact of obeticholic acid on the lipoprotein profile in patients with non-alcoholic steatohepatitis. Journal of hepatology. 2020 01; 72(1):25-33. doi: 10.1016/j.jhep.2019.10.006. [PMID: 31634532]
  • Akira Honda, Teruo Miyazaki, Junichi Iwamoto, Takeshi Hirayama, Yukio Morishita, Tadakuni Monma, Hajime Ueda, Seiya Mizuno, Fumihiro Sugiyama, Satoru Takahashi, Tadashi Ikegami. Regulation of bile acid metabolism in mouse models with hydrophobic bile acid composition. Journal of lipid research. 2020 01; 61(1):54-69. doi: 10.1194/jlr.ra119000395. [PMID: 31645370]
  • Andrea Ferrigno, Giuseppina Palladini, Laura Giuseppina Di Pasqua, Clarissa Berardo, Plinio Richelmi, Massimiliano Cadamuro, Luca Fabris, Stefano Perlini, Luciano Adorini, Mariapia Vairetti. Obeticholic acid reduces biliary and hepatic matrix metalloproteinases activity in rat hepatic ischemia/reperfusion injury. PloS one. 2020; 15(9):e0238543. doi: 10.1371/journal.pone.0238543. [PMID: 32911524]
  • Ali Saeed, Jing Yang, Janette Heegsma, Albert K Groen, Saskia W C van Mil, Coen C Paulusma, Lu Zhou, Bangmao Wang, Klaas Nico Faber. Farnesoid X receptor and bile acids regulate vitamin A storage. Scientific reports. 2019 12; 9(1):19493. doi: 10.1038/s41598-019-55988-w. [PMID: 31862954]
  • Qingfa Chen, Hongling Ma, Xuewen Guo, Jia Liu, Ting Gui, Zhibo Gai. Farnesoid X Receptor (FXR) Aggravates Amyloid-β-Triggered Apoptosis by Modulating the cAMP-Response Element-Binding Protein (CREB)/Brain-Derived Neurotrophic Factor (BDNF) Pathway In Vitro. Medical science monitor : international medical journal of experimental and clinical research. 2019 Dec; 25(?):9335-9345. doi: 10.12659/msm.920065. [PMID: 31812977]
  • Jin Chen, Minghua Zheng, Jun Liu, Yan Luo, Wenjun Yang, Jing Yang, Juan Liu, Jingxing Zhou, Chengfu Xu, Faling Zhao, Mingming Su, Shufei Zang, Junping Shi. Ratio of Conjugated Chenodeoxycholic to Muricholic Acids is Associated with Severity of Nonalcoholic Steatohepatitis. Obesity (Silver Spring, Md.). 2019 12; 27(12):2055-2066. doi: 10.1002/oby.22627. [PMID: 31657148]
  • Li Ren, Qing Song, Yunhuan Liu, Lihua Zhang, Zhiming Hao, Wenke Feng. Probiotic Lactobacillus rhamnosus GG prevents progesterone metabolite epiallaopregnanolone sulfate-induced hepatic bile acid accumulation and liver injury. Biochemical and biophysical research communications. 2019 11; 520(1):67-72. doi: 10.1016/j.bbrc.2019.09.103. [PMID: 31575408]
  • Vasiliki Venetsanaki, Zacharoula Karabouta, Stergios A Polyzos. Farnesoid X nuclear receptor agonists for the treatment of nonalcoholic steatohepatitis. European journal of pharmacology. 2019 Nov; 863(?):172661. doi: 10.1016/j.ejphar.2019.172661. [PMID: 31536725]