Paeoniflorin (BioDeep_00000000163)

Main id: BioDeep_00000409317

Secondary id: BioDeep_00000398518

PANOMIX_OTCML-2023 Antitumor activity natural product


代谢物信息卡片


((2S,2aR,2a1S,3aR,4R,5aR)-4-Hydroxy-2-methyl-2a-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)hexahydro-2H-1,5-dioxa-2,4-methanocyclobuta[cd]pentalen-2a1-yl)methyl benzoate

化学式: C23H28O11 (480.1632)
中文名称: 芍药苷, 芍药甙
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: CC12CC3(C4CC1(C4(C(O2)O3)COC(=O)C5=CC=CC=C5)OC6C(C(C(C(O6)CO)O)O)O)O
InChI: InChI=1S/C23H28O11/c1-20-9-22(29)13-7-23(20,32-18-16(27)15(26)14(25)12(8-24)31-18)21(13,19(33-20)34-22)10-30-17(28)11-5-3-2-4-6-11/h2-6,12-16,18-19,24-27,29H,7-10H2,1H3

描述信息

Paeoniflorin is a terpene glycoside.
Peoniflorin is under investigation in clinical trial NCT02878863 (Paeoniflorin Combination of Hepatoprotective Drugs Versus Hepatoprotective Drugs Only for Auto-immune Hepatitis).
Paeoniflorin is a natural product found in Paeonia, Paeonia tenuifolia, and other organisms with data available.
See also: Paeonia lactiflora root (part of); Paeonia veitchii root (part of); Paeonia X suffruticosa root bark (part of).
D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents
D002491 - Central Nervous System Agents > D000700 - Analgesics
D000893 - Anti-Inflammatory Agents
D018501 - Antirheumatic Agents
Paeoniflorin is a heat shock protein-inducing compound and commonly exists in the plants of Paeoniaceae family, with various biological activities, including anticancer activity, anti-inflammatory activity, enhancing cognition and attenuating learning impairment, anti-oxidative stress, antiplatelet aggregation, expansion of blood vessels, and reducing blood viscosity[1][2][3].
Paeoniflorin is a heat shock protein-inducing compound and commonly exists in the plants of Paeoniaceae family, with various biological activities, including anticancer activity, anti-inflammatory activity, enhancing cognition and attenuating learning impairment, anti-oxidative stress, antiplatelet aggregation, expansion of blood vessels, and reducing blood viscosity[1][2][3].

同义名列表

26 个代谢物同义名

((2S,2aR,2a1S,3aR,4R,5aR)-4-Hydroxy-2-methyl-2a-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)hexahydro-2H-1,5-dioxa-2,4-methanocyclobuta[cd]pentalen-2a1-yl)methyl benzoate; ((2S,2aR,2a1S,3aR,4R,5aR)-4-Hydroxy-2-methyl-2a-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)hexahydro-2H-1,5-dioxa-2,4-methanocyclobuta[cd]pentalen-2a1-yl)methylbenzoate; .BETA.-D-GLUCOPYRANOSIDE, 5B-((BENZOYLOXY)METHYL)TETRAHYDRO-5-HYDROXY-2-METHYL-2,5-METHANO-1H-3,4-DIOXACYCLOBUTA(CD)PENTALEN-1A(2H)-YL, (1AR-(1A.ALPHA.,2.BETA.,3A.ALPHA.,5.ALPHA.,5A.ALPHA.,5B.ALPHA.))-; beta-D-Glucopyranoside, 5b-((benzoyloxy)methyl)tetrahydro-5-hydroxy-2-methyl-2,5-methano-1H-3,4-dioxacyclobuta(cd)pentalen-1a(2H)-yl, (1aR-(1a-alpha,2-beta,3a-alpha,5-alpha,5a-alpha,5b-alpha))-; beta-d-Glucopyranoside, 5b-((benzoyloxy)methyl)tetrahydro-5-hydroxy-2-methyl-2,5-methano-1H-3,4-dioxacyclobuta(cd)pentalen-1a(2H)-yl, (1aR-(1aalpha,2beta,3aalpha,5alpha,5aalpha,5balpha))-; [(1R,2S,3R,5R,6R,8S)-6-hydroxy-8-methyl-3-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-9,10-dioxatetracyclo[4.3.1.02,5.03,8]decan-2-yl]methyl benzoate; .BETA.-D-GLUCOPYRANOSIDE, (1AR,2S,3AR,5R,5AR,5BS)-5B-((BENZOYLOXY)METHYL)TETRAHYDRO-5-HYDROXY-2-METHYL-2,5-METHANO-1H-3,4-DIOXACYCLOBUTA(CD)PENTALEN-1A(2H)-YL; .beta.-D-Glucopyranoside, (1aR,2S,3aR,5R,5aR,5bS)-5b-[(benzoyloxy)methyl]tetrahydro-5-hydroxy-2-methyl-2,5-methano-1H-3,4-dioxacyclobuta[cd]pentalen-1a(2H)-yl; beta-D-Glucopyranoside, (1aS,2R,3aR,5R,5aR,5bS)-5b-((benzoyloxy)methyl)tetrahydro-5-hydroxy-2-methyl-2,5-methano-1H-3,4-dioxacyclobuta(cd)pentalen-1a(2H)-yl; beta-D-GLUCOPYRANOSIDE, (1AR,2S,3AR,5R,5AR,5BS)-5B-((BENZOYLOXY)METHYL)TETRAHYDRO-5-HYDROXY-2-METHYL-2,5-METHANO-1H-3,4-DIOXACYCLOBUTA(CD)PENTALEN-1A(2H)-YL; b-D-Glucopyranoside,(1aR,2S,3aR,5R,5aR,5bS)-5b-[(benzoyloxy)methyl]tetrahydro-5-hydroxy-2-methyl-2,5-methano-1H-3,4-dioxacyclobuta[cd]pentalen-1a(2H)-yl; 5b-((Benzoyloxy)methyl)tetrahydro-5-hydroxy-2-methyl-2,5-methano-lH-3,4-dioxacyclobuta(cd)pentalen-1a(2H)-yl-beta-D-glucopyranoside; [hydroxy-methyl-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydropyran-2-yl]oxy-[?]yl]methyl benzoate; Paeoniflorin, analytical standard; Paeoniflorin, >=98\\% (HPLC); PAEONIFLORIN [USP-RS]; peoniflorin sulfonate; PAEONIFLORIN (USP-RS); PEONIFLORIN [INCI]; UNII-21AIQ4EV64; Paeonia moutan; Paeoniflorin; Peoniflorin; 21AIQ4EV64; 1ST157242; Paeoniflorin



数据库引用编号

22 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

74 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 14 AKT1, ANG, BCL2, CASP3, IL13, JAK2, MAPK1, MAPK8, MYD88, PIK3CA, PTGS2, STAT3, TLR4, VEGFA
Peripheral membrane protein 2 JAK2, PTGS2
Endosome membrane 2 MYD88, TLR4
Endoplasmic reticulum membrane 3 BCL2, CD4, PTGS2
Nucleus 10 AKT1, ANG, BCL2, CASP3, JAK2, MAPK1, MAPK8, MYD88, STAT3, VEGFA
cytosol 10 AKT1, ANG, BCL2, CASP3, JAK2, MAPK1, MAPK8, MYD88, PIK3CA, STAT3
dendrite 1 ADORA1
centrosome 1 MAPK1
nucleoplasm 6 AKT1, CASP3, JAK2, MAPK1, MAPK8, STAT3
RNA polymerase II transcription regulator complex 1 STAT3
Cell membrane 4 ADORA1, AKT1, CD4, TLR4
lamellipodium 2 AKT1, PIK3CA
Multi-pass membrane protein 1 ADORA1
Synapse 3 ADORA1, MAPK1, MAPK8
cell cortex 1 AKT1
cell surface 3 MYD88, TLR4, VEGFA
glutamatergic synapse 3 AKT1, CASP3, JAK2
Golgi apparatus 2 MAPK1, VEGFA
Golgi membrane 1 INS
growth cone 1 ANG
neuronal cell body 3 ADORA1, ANG, CASP3
postsynapse 2 AKT1, JAK2
presynaptic membrane 1 ADORA1
plasma membrane 10 ADORA1, AKT1, CD4, IGHE, JAK2, MAPK1, MYD88, PIK3CA, STAT3, TLR4
presynaptic active zone 1 ADORA1
terminal bouton 1 ADORA1
Membrane 5 AKT1, BCL2, JAK2, TLR4, VEGFA
axon 1 MAPK8
basolateral plasma membrane 1 ADORA1
caveola 3 JAK2, MAPK1, PTGS2
endoplasmic reticulum 3 BCL2, PTGS2, VEGFA
extracellular space 7 ANG, IGHE, IL13, IL2, IL4, INS, VEGFA
perinuclear region of cytoplasm 2 PIK3CA, TLR4
adherens junction 1 VEGFA
intercalated disc 1 PIK3CA
mitochondrion 2 BCL2, MAPK1
protein-containing complex 4 AKT1, BCL2, MYD88, PTGS2
Microsome membrane 1 PTGS2
postsynaptic density 1 CASP3
Single-pass type I membrane protein 3 CD4, IGHE, TLR4
Secreted 6 ANG, IL13, IL2, IL4, INS, VEGFA
extracellular region 8 ANG, IGHE, IL13, IL2, IL4, INS, MAPK1, VEGFA
cytoplasmic side of plasma membrane 1 JAK2
Mitochondrion outer membrane 1 BCL2
Single-pass membrane protein 1 BCL2
mitochondrial outer membrane 1 BCL2
transcription regulator complex 1 STAT3
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 MAPK1
Nucleus membrane 1 BCL2
Bcl-2 family protein complex 1 BCL2
nuclear membrane 1 BCL2
external side of plasma membrane 3 CD4, IL13, TLR4
Secreted, extracellular space, extracellular matrix 1 VEGFA
actin cytoskeleton 1 ANG
dendritic spine 1 ADORA1
microtubule cytoskeleton 1 AKT1
nucleolus 1 ANG
Early endosome 3 CD4, MAPK1, TLR4
cell-cell junction 1 AKT1
vesicle 1 AKT1
postsynaptic membrane 1 ADORA1
Membrane raft 2 CD4, JAK2
pore complex 1 BCL2
Cell junction, focal adhesion 1 MAPK1
Cytoplasm, cytoskeleton, spindle 1 MAPK1
focal adhesion 2 JAK2, MAPK1
spindle 2 AKT1, MAPK1
axolemma 1 ADORA1
extracellular matrix 1 VEGFA
basement membrane 1 ANG
Mitochondrion intermembrane space 1 AKT1
mitochondrial intermembrane space 1 AKT1
secretory granule 1 VEGFA
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
Cell projection, ruffle 1 TLR4
Late endosome 1 MAPK1
ruffle 1 TLR4
receptor complex 1 TLR4
neuron projection 1 PTGS2
ciliary basal body 1 AKT1
chromatin 1 STAT3
IgE immunoglobulin complex 1 IGHE
phagocytic cup 1 TLR4
mitotic spindle 1 MAPK1
Chromosome 1 ANG
cytoskeleton 2 JAK2, MAPK1
Nucleus, nucleolus 1 ANG
[Isoform 2]: Cell membrane 1 IGHE
Endomembrane system 1 JAK2
endosome lumen 2 INS, JAK2
Membrane, caveola 1 MAPK1
Cytoplasm, Stress granule 1 ANG
cytoplasmic stress granule 1 ANG
euchromatin 1 JAK2
myelin sheath 1 BCL2
pseudopodium 1 MAPK1
lipopolysaccharide receptor complex 1 TLR4
ficolin-1-rich granule lumen 1 MAPK1
secretory granule lumen 1 INS
Golgi lumen 1 INS
endoplasmic reticulum lumen 4 CD4, INS, MAPK1, PTGS2
platelet alpha granule lumen 1 VEGFA
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
endocytic vesicle 1 ANG
transport vesicle 1 INS
azurophil granule lumen 1 MAPK1
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
calyx of Held 1 ADORA1
clathrin-coated endocytic vesicle membrane 1 CD4
extrinsic component of cytoplasmic side of plasma membrane 2 JAK2, MYD88
basal dendrite 1 MAPK8
death-inducing signaling complex 1 CASP3
extrinsic component of plasma membrane 2 JAK2, MYD88
granulocyte macrophage colony-stimulating factor receptor complex 1 JAK2
interleukin-12 receptor complex 1 JAK2
interleukin-23 receptor complex 1 JAK2
[Isoform 3]: Cell membrane 1 IGHE
T cell receptor complex 1 CD4
[Isoform 1]: Secreted 1 IGHE
IgE B cell receptor complex 1 IGHE
immunoglobulin complex, circulating 1 IGHE
angiogenin-PRI complex 1 ANG
asymmetric synapse 1 ADORA1
BAD-BCL-2 complex 1 BCL2
[N-VEGF]: Cytoplasm 1 VEGFA
[VEGFA]: Secreted 1 VEGFA
[Isoform L-VEGF189]: Endoplasmic reticulum 1 VEGFA
[Isoform VEGF121]: Secreted 1 VEGFA
[Isoform VEGF165]: Secreted 1 VEGFA
VEGF-A complex 1 VEGFA
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA


文献列表

  • Cuicui Xu, Xinke Wang, Jinlong Han, Zhengwei Gu, Qingmei Guo. LMD and LC-MS-based chemical constituents and pharmacological effects assessment for two different processing methods of the root of Paeonia lactiflora Pall. Journal of pharmaceutical and biomedical analysis. 2024 Aug; 245(?):116184. doi: 10.1016/j.jpba.2024.116184. [PMID: 38692214]
  • Tian Li, Na Mao, Zihao Xie, Jianing Wang, Fuyu Jin, Yaqian Li, Shupeng Liu, Wenchen Cai, Xuemin Gao, Zhongqiu Wei, Fang Yang, Hong Xu, Heliang Liu, Haibo Zhang, Dingjie Xu. Paeoniflorin mitigates MMP-12 inflammation in silicosis via Yang-Yin-Qing-Fei Decoction in murine models. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2024 Jul; 129(?):155616. doi: 10.1016/j.phymed.2024.155616. [PMID: 38669965]
  • Jialing Sun, Mengqing Ma, Xin Zhong, Jing Li, Jinyu Yi, Renjie Zhang, Xingning Liu, Lanfen Peng, Xinfeng Sun, Wenxing Feng, Rui Hu, Qi Huang, Minling Lv, Kongli Fan, Xiaozhou Zhou. Investigating the molecular mechanism of Qizhu anticancer prescription in inhibiting hepatocellular carcinoma based on high-resolution mass spectrometry and network pharmacology. Journal of ethnopharmacology. 2024 Jun; 328(?):117985. doi: 10.1016/j.jep.2024.117985. [PMID: 38417600]
  • Qiu-Yue Wang, Shu-Yu Liu, Dong-Hua Yu, Ping-Ping Chen, Yu Wang, Fang Lu, Shu-Min Liu. Evaluation of drug interactions of Saposhnikoviae Radix and its major components with astragaloside IV and paeoniflorin using in vitro and in vivo experiments. Journal of chromatography. A. 2024 May; 1723(?):464716. doi: 10.1016/j.chroma.2024.464716. [PMID: 38640881]
  • Tiantai Wu, Huan Zhang, Yang Jin, Ming Zhang, Qing Zhao, Herong Li, Shouli Wang, Yuan Lu, Shuaishuai Chen, Huakang Du, Ting Liu, Weiyu Guo, Wen Liu. The active components and potential mechanisms of Wuji Wan in the treatment of ethanol-induced gastric ulcer: An integrated metabolomics, network pharmacology and experimental validation. Journal of ethnopharmacology. 2024 May; 326(?):117901. doi: 10.1016/j.jep.2024.117901. [PMID: 38341112]
  • Shi-Yi Xu, Hui-Yan Cao, Rui-Hong Yang, Rong-Xue Xu, Xing-Yu Zhu, Wei Ma, Xiu-Bo Liu, Xue-Ying Yan, Peng Fu. Genus Paeonia monoterpene glycosides: A systematic review on their pharmacological activities and molecular mechanisms. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2024 May; 127(?):155483. doi: 10.1016/j.phymed.2024.155483. [PMID: 38432036]
  • Zixia Zhu, Cong Li, Xiaofan Gu, Xiaoting Wang, Gang Zhang, Meng Fan, Yun Zhao, Xuan Liu, Xiongwen Zhang. Paeoniflorin alleviated muscle atrophy in cancer cachexia through inhibiting TLR4/NF-κB signaling and activating AKT/mTOR signaling. Toxicology and applied pharmacology. 2024 Mar; 484(?):116846. doi: 10.1016/j.taap.2024.116846. [PMID: 38331105]
  • Hongxiao Xie, Zhiqiang Xie, Fei Luan, Jiuseng Zeng, Xiumeng Zhang, Li Chen, Nan Zeng, Rong Liu. Potential therapeutic effects of Chinese herbal medicine in postpartum depression: Mechanisms and future directions. Journal of ethnopharmacology. 2024 Jan; 324(?):117785. doi: 10.1016/j.jep.2024.117785. [PMID: 38262525]
  • Haowei Wu, Peipei Zhang, Jiedong Zhou, Songqing Hu, Jinjin Hao, Zuoquan Zhong, Haiju Yu, Juntao Yang, Hangyuan Guo, Jufang Chi. Paeoniflorin confers ferroptosis resistance by regulating the gut microbiota and its metabolites in diabetic cardiomyopathy. American journal of physiology. Cell physiology. 2024 Jan; ?(?):. doi: 10.1152/ajpcell.00565.2023. [PMID: 38223927]
  • Dan Liang, Lu Liu, Yulin Qi, Feng Nan, Ju Huang, Shiyun Tang, Jianyuan Tang, Nianzhi Chen. Jin-Gui-Shen-Qi Wan alleviates fibrosis in mouse diabetic nephropathy via MHC class II. Journal of ethnopharmacology. 2024 Jan; 324(?):117745. doi: 10.1016/j.jep.2024.117745. [PMID: 38228231]
  • Yaoyao Xiao, Lele Zhou, Wenkang Tao, Xuan Yang, Junying Li, Rulin Wang, Yanan Zhao, Can Peng, Caiyun Zhang. Preparation of paeoniflorin-glycyrrhizic acid complex transethosome gel and its preventive and therapeutic effects on melasma. European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences. 2024 Jan; 192(?):106664. doi: 10.1016/j.ejps.2023.106664. [PMID: 38061662]
  • Yong Jiang, Liu Xu, Nina Wei, Rui Chen, Yutong Wang, Li Wu, Weidong Li, Zheng Yan, Linwei Chen, Zhipeng Chen. Comparative pharmacokinetics of 11 major bioactive components between two dosage forms of Qixue Shuangbu Prescription in rats by ultra-high-performance liquid chromatography-tandem mass spectrometry. Journal of separation science. 2024 Jan; 47(1):e2300677. doi: 10.1002/jssc.202300677. [PMID: 37994256]
  • Qingchang Wu, Miao Chen, Yao Li, Xiangyun Zhao, Cailian Fan, Yi Dai. Paeoniflorin Alleviates Cisplatin-Induced Diminished Ovarian Reserve by Restoring the Function of Ovarian Granulosa Cells via Activating FSHR/cAMP/PKA/CREB Signaling Pathway. Molecules (Basel, Switzerland). 2023 Dec; 28(24):. doi: 10.3390/molecules28248123. [PMID: 38138611]
  • Shasha Liu, Ying Li, Caojie Wu. Paeoniflorin suppresses the apoptosis and inflammation of human coronary artery endothelial cells induced by oxidized low-density lipoprotein by regulating the Wnt/β-catenin pathway. Pharmaceutical biology. 2023 Dec; 61(1):1454-1461. doi: 10.1080/13880209.2023.2220360. [PMID: 37674320]
  • Ruo Man Wu, Chun Yan Wang, Jie Wang, Xiao Le Xu. Promoting reverse cholesterol transport contributes to the amelioration of atherosclerosis by paeoniflorin. European journal of pharmacology. 2023 Nov; 961(?):176137. doi: 10.1016/j.ejphar.2023.176137. [PMID: 37939989]
  • Li-Ling Si, Lu Niu, Xiao-Yan Wang, Hui Zhang, Ming-Liang Zhang, Shuang Xu, Xian-Qing Ren, Jin-Fa Tang, Wei-Xia Li. [Comparison of distribution of eight components from Liangxue Tuizi Mixture between normal and Henoch-Schonlein purpura rats]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2023 Nov; 48(21):5915-5931. doi: 10.19540/j.cnki.cjcmm.20230618.202. [PMID: 38114188]
  • Di Xing, Yihua Ma, Miaomiao Lu, Wenlin Liu, Hongli Zhou. Paeoniflorin alleviates hypoxia/reoxygenation injury in HK-2 cells by inhibiting apoptosis and repressing oxidative damage via Keap1/Nrf2/HO-1 pathway. BMC nephrology. 2023 10; 24(1):314. doi: 10.1186/s12882-023-03366-0. [PMID: 37884904]
  • Lin-Feng Tang, Hao Chang, Dan-Dan Wang, Zhu-Qing Liu, Lan Han, Dai-Yin Peng. [Active components and potential mechanism of Taohong Siwu Decoction in regulating ischemic stroke based on target cell trapping combined with network pharmacology, molecular docking, and experimental validation]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2023 Sep; 48(17):4761-4773. doi: 10.19540/j.cnki.cjcmm.20230423.403. [PMID: 37802815]
  • Meng Gao, Dongjian Zhang, Cuihua Jiang, Qiaomei Jin, Jian Zhang. Paeoniflorin inhibits hepatocellular carcinoma growth by reducing PD-L1 expression. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2023 Aug; 166(?):115317. doi: 10.1016/j.biopha.2023.115317. [PMID: 37597322]
  • Shijie Bi, Yanan Liu, Tianyi Lv, Yue Ren, Kaiyang Liu, Chaoqun Liu, Yanling Zhang. Preliminary exploration of method for screening efficacy markers compatibility in TCM prescriptions based on Q-markers: Anti-inflammatory activity of Dachaihu decoction as an example. Journal of ethnopharmacology. 2023 Aug; 312(?):116539. doi: 10.1016/j.jep.2023.116539. [PMID: 37088240]
  • Zhao Su, Beier Hu, Jing Li, Zhichun Zeng, Hu Chen, Yuhang Guo, Yun Mao, Wen Cao. Paeoniflorin inhibits colorectal cancer cell stemness through the miR-3194-5p/catenin beta-interacting protein 1 axis. The Kaohsiung journal of medical sciences. 2023 Aug; ?(?):. doi: 10.1002/kjm2.12736. [PMID: 37530655]
  • Liping Zhai, Hongyan Pei, Heping Shen, Yi Yang, Chenyang Han, Qiaobing Guan. Paeoniflorin suppresses neuronal ferroptosis to improve the cognitive behaviors in Alzheimer's disease mice. Phytotherapy research : PTR. 2023 Jul; ?(?):. doi: 10.1002/ptr.7946. [PMID: 37448137]
  • Yuzhuo Dong, Kazufumi Toume, Shu Zhu, Yanhong Shi, Takayuki Tamura, Kayo Yoshimatsu, Katsuko Komatsu. Metabolomics analysis of peony root using NMR spectroscopy and impact of the preprocessing method for NMR data in multivariate analysis. Journal of natural medicines. 2023 Jul; ?(?):. doi: 10.1007/s11418-023-01721-x. [PMID: 37432536]
  • Yudan Mei, Xiaoyu Tong, Yumei Hu, Wenjun Liu, Jiajia Wang, Kaihong Lv, Xu Li, Liang Cao, Zhenzhong Wang, Wei Xiao, Xia Gao. Comparative pharmacokinetics of six bioactive components of Shen-Wu-Yi-Shen tablets in normal and chronic renal failure rats based on UPLC-TSQ-MS/MS. Journal of ethnopharmacology. 2023 Jun; 317(?):116818. doi: 10.1016/j.jep.2023.116818. [PMID: 37348793]
  • Yang Liu, Chun-Yu He, Xue-Mei Yang, Wei-Cong Chen, Ming-Jia Zhang, Xiao-Dan Zhong, Wei-Guang Chen, Bing-Lian Zhong, Song-Qi He, Hai-Tao Sun. Paeoniflorin Coordinates Macrophage Polarization and Mitigates Liver Inflammation and Fibrogenesis by Targeting the NF-[Formula: see text]B/HIF-1α Pathway in CCl4-Induced Liver Fibrosis. The American journal of Chinese medicine. 2023 Jun; ?(?):1-19. doi: 10.1142/s0192415x2350057x. [PMID: 37317554]
  • Xiaoxia Liang, Ting Su, Pingzhou Wu, Yanting Dai, Yanmin Chen, QiQi Wang, Cheng Cao, Fenglian Chen, Qing Wang, Shuling Wang. Identification of paeoniflorin from Paeonia lactiflora pall. As an inhibitor of tryptophan 2,3-dioxygenase and assessment of its pharmacological effects on depressive mice. Journal of ethnopharmacology. 2023 Jun; ?(?):116714. doi: 10.1016/j.jep.2023.116714. [PMID: 37315645]
  • Kangchen Li, Xinguang Liu, Runsu Hou, Hulei Zhao, Peng Zhao, Yange Tian, Jiansheng Li. Uncovering mechanisms of Baojin Chenfei formula treatment for silicosis by inhibiting inflammation and fibrosis based on serum pharmacochemistry and network analysis. Ecotoxicology and environmental safety. 2023 May; 260(?):115082. doi: 10.1016/j.ecoenv.2023.115082. [PMID: 37257350]
  • Fengyan Zhao, Caiwang Peng, Hengli Li, Haodong Chen, Yantao Yang, Qidi Ai, Naihong Chen, Fang Liu. Paeoniae Radix Rubra extract attenuates cerebral ischemia injury by inhibiting ferroptosis and activating autophagy through the PI3K/Akt signalling pathway. Journal of ethnopharmacology. 2023 May; ?(?):116567. doi: 10.1016/j.jep.2023.116567. [PMID: 37172921]
  • Fu-Guang Wang, Yi Sun, Juan Cao, Xu-Ri Shen, Fu-Wang Liu, Shuang-Shuang Song, Xue-Qin Hou, Lei Yin. Effects of Danggui-Shaoyao-San on central neuroendocrine and pharmacokinetics in female ovariectomized rats. Journal of ethnopharmacology. 2023 May; ?(?):116609. doi: 10.1016/j.jep.2023.116609. [PMID: 37150422]
  • Lei Wang, Jinyan Lei, Zeyu Zhao, Jianwei Jia, Li Wang. Therapeutic effects of paeoniflorin on irritable bowel syndrome in rats. Journal of veterinary science. 2023 May; 24(3):e23. doi: 10.4142/jvs.22083. [PMID: 37271501]
  • Siqi Liu, Pengmin Ding, Mengjiao Wu, Zhihao Zhu, Jiayue Tao, Jing Wang, Zhe Xue, Rufeng Wang. Screening quality markers (Q-markers) of Xiaoer Chaige Tuire Oral Liquid by in vitro sequential metabolism and in vivo biopharmaceutical analysis. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2023 Apr; 116(?):154844. doi: 10.1016/j.phymed.2023.154844. [PMID: 37163902]
  • Wei-Chun Chen, Xiao-Yi Liang, Li-Yuan Xie, Ming-An Wu, Qi Shen, Li-Mei Yao, Wei Zhao, Shi-Jie Zhang, Qi Wang, Yong Liang, Wei-Rong Li. Comparative Study on the Pharmacokinetics of Paeoniflorin, White Peony Root Water Extract, and Taohong Siwu Decoction After Oral Administration in Rats. European journal of drug metabolism and pharmacokinetics. 2023 Apr; ?(?):. doi: 10.1007/s13318-023-00825-9. [PMID: 37079249]
  • Qi Wang, Huaqiang Li, Jinling You, Binjun Yan, Weifeng Jin, Menglan Shen, Yunjie Sheng, Bingqian He, Xinrui Wang, Xiongyu Meng, Luping Qin. An integrated strategy of spectrum-effect relationship and near-infrared spectroscopy rapid evaluation based on back propagation neural network for quality control of Paeoniae Radix Alba. Analytical sciences : the international journal of the Japan Society for Analytical Chemistry. 2023 Apr; ?(?):. doi: 10.1007/s44211-023-00334-4. [PMID: 37037970]
  • Weilan Yu, Xiaolin Liu, Dake Cai, Juntao Zheng, Biaochang Lao, Min Huang, Guoping Zhong. Regional distributions of curcumin and tetrahydrocurcumin in the liver and small intestine of rats when orally co-administered with quercetin and paeoniflorin. Biopharmaceutics & drug disposition. 2023 Apr; 44(2):183-191. doi: 10.1002/bdd.2346. [PMID: 36638836]
  • Vithleem Klontza, Konstantia Graikou, Antigoni Cheilari, Vasilios Kasapis, Christos Ganos, Nektarios Aligiannis, Ioanna Chinou. Phytochemical Study on Seeds of Paeonia clusii subsp. rhodia-Antioxidant and Anti-Tyrosinase Properties. International journal of molecular sciences. 2023 Mar; 24(5):. doi: 10.3390/ijms24054935. [PMID: 36902364]
  • Linwei Chen, Nina Wei, Yong Jiang, Chengye Yuan, Luwei Xu, Jindong Li, Min Kong, Yan Chen, Qin Wang. Comparative pharmacokinetics of seven bioactive components after oral administration of crude and processed Qixue Shuangbu Prescription in chronic heart failure rats by microdialysis combined with UPLC-MS/MS. Journal of ethnopharmacology. 2023 Mar; 303(?):116035. doi: 10.1016/j.jep.2022.116035. [PMID: 36513265]
  • Lin Peng, Zhe Ma, Wenhui Chu, Peisi Jiang, Yongqian Fu, Pan Wang. Identification and hepatoprotective activity of total glycosides of paeony with high content of paeoniflorin extracted from Paeonia lactiflora Pall. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2023 Mar; 173(?):113624. doi: 10.1016/j.fct.2023.113624. [PMID: 36681265]
  • Lijuan Ma, Xueqi Liu, Mengya Zhang, Lang Zhou, Ling Jiang, Li Gao, Xian Wang, Yuebo Huang, Hanxu Zeng, Yonggui Wu. Paeoniflorin alleviates ischemia/reperfusion induced acute kidney injury by inhibiting Slc7a11-mediated ferroptosis. International immunopharmacology. 2023 Mar; 116(?):109754. doi: 10.1016/j.intimp.2023.109754. [PMID: 36753983]
  • Shuang Yang, Qian-Qian DU, Qian-Xia Yue, Ye-Fen Sun, Chuan-Shan Jin, Wei Zhang, Lei Ma, Cong-Bin Liu, Dong-Mei Xie. [Analysis and evaluation on Paeoniae Radix Alba from different cultivars by UPLC-Q-TOF-MS and HPLC]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2023 Feb; 48(3):715-724. doi: 10.19540/j.cnki.cjcmm.20220618.201. [PMID: 36872235]
  • Xia'nan Sang, Xuedong Wan, Han Zhang, Jialiang Ying, Lu Wang, Qiao Yang, Qiyuan Shan, Min Hao, Minjing Qin, Qitong Zheng, Quan Chen, Xin Han, Gang Cao. The most bioactive fraction of stir-fried Radix Paeoniae Alba regulating IL-6/STAT3 signaling pathway in allergic asthma mouse. Journal of ethnopharmacology. 2023 Jan; 301(?):115821. doi: 10.1016/j.jep.2022.115821. [PMID: 36220510]
  • Fanchen Yan, Huang Ding, Zhengji Sun, Jingze Liu, Junxi Li, Dan Zhou, Wei Zhang. Glycoside combinations of Buyang Huanwu decoction ameliorate atherosclerosis via STAT3, HIF-1, and VEGF. Naunyn-Schmiedeberg's archives of pharmacology. 2023 Jan; ?(?):. doi: 10.1007/s00210-023-02389-6. [PMID: 36692827]
  • Rui-Xin Li, Cai-Lian Fan, Wan-Yi Xu, Wen Wei, Xiao-Xing Wang, Zi-Ting Li, Peng-Cheng Zhao, Zhi-Jian Su, Xi-Yang Tang, Zhi-Hong Yao, Yi Dai. Simultaneous determination of multiple constituents of Qi-Lin pill by UPLC-MS/MS: Applications to pharmacokinetics and testicular tissue distribution in rats. Journal of pharmaceutical and biomedical analysis. 2023 Jan; 223(?):115157. doi: 10.1016/j.jpba.2022.115157. [PMID: 36379101]
  • Xue-Er Zhang, Yao-Bin Pang, Qu Bo, Shuang-Yuan Hu, Ju-Yi Xiang, Zheng-Ru Yang, Xiao-Mei Zhang, An-Jing Chen, Jin-Hao Zeng, Xiao Ma, Jing Guo. Protective effect of paeoniflorin in diabetic nephropathy: A preclinical systematic review revealing the mechanism of action. PloS one. 2023; 18(9):e0282275. doi: 10.1371/journal.pone.0282275. [PMID: 37733659]
  • Xiao-Xiao Zhang, Jia-Qi Zuo, Yi-Ting Wang, Hui-Yun Duan, Ming-Hui Zhou, Hao-Jie Li, Yong-Hong Hu, Jun-Hui Yuan. PoDPBT, a BAHD acyltransferase, catalyses the benzoylation in paeoniflorin biosynthesis in Paeonia ostii. Plant biotechnology journal. 2023 01; 21(1):14-16. doi: 10.1111/pbi.13947. [PMID: 36221906]
  • Qian Zhang, Yuzhuo Wu, Maoxu Ge, Guiyang Xia, Huan Xia, Lingyan Wang, Xiaohong Wei, Hongwei He, Sheng Lin. Paeoniflorin-free subfraction of Paeonia lactiflora Pall. shows the potential of anti-hepatic fibrosis: an integrated analysis of network pharmacology and experimental validation. Journal of ethnopharmacology. 2022 Dec; 299(?):115678. doi: 10.1016/j.jep.2022.115678. [PMID: 36058476]
  • Xinyu Deng, Yubing Li, Xing Li, Zhenpeng Zhang, Shu Dai, Hefei Wu, Fangling Zhang, Qichao Hu, Yuan Chen, Jinhao Zeng, Xiao Ma. Paeoniflorin Protects against Acetaminophen-Induced Liver Injury in Mice via JNK Signaling Pathway. Molecules (Basel, Switzerland). 2022 Dec; 27(23):. doi: 10.3390/molecules27238534. [PMID: 36500627]
  • Bin Bao, Yonglin Zhao, Huan Gong, Songshan Shi, Huijun Wang, Shunchun Wang. Quantification of Paeoniflorin by Fully Validated LC-MS/MS Method: Its Application to Pharmacokinetic Interaction between Paeoniflorin and Verapamil. Molecules (Basel, Switzerland). 2022 Nov; 27(23):. doi: 10.3390/molecules27238337. [PMID: 36500431]
  • Jiawei Wang, Jianxia Wen, Xiao Ma, Ju Yang, Zhao Zhang, Shuying Xie, Shizhang Wei, Manyi Jing, Haotian Li, Liwei Lang, Xuelin Zhou, Yanling Zhao. Validation of MAPK signalling pathway as a key role of paeoniflorin in the treatment of intrahepatic cholestasis of pregnancy based on network pharmacology and metabolomics. European journal of pharmacology. 2022 Nov; 935(?):175331. doi: 10.1016/j.ejphar.2022.175331. [PMID: 36273619]
  • Xiao-Li Si, Yan Wang, Bo-Ni Song, Yan Zhang, Qing-Xia Yang, Zhi Li, Yan-Ping Luo, Yong-Qiang Duan, Xing-Ming Ma, Yan-Ying Zhang. Potential Chemoprevention of Paeoniflorin in Colitis-Associated Colorectal Cancer by Network Pharmacology, Molecular Docking, and In Vivo Experiment. Chemistry & biodiversity. 2022 Aug; 19(8):e202200295. doi: 10.1002/cbdv.202200295. [PMID: 35841592]
  • X F Hong, L Li, Z X Yang, J Yan. [Paeoniflorin improves myocardial injury via inhibition of Src/VE-cadherin pathway in septic rats]. Zhonghua nei ke za zhi. 2022 Jun; 61(6):652-658. doi: 10.3760/cma.j.cn112138-20210811-00545. [PMID: 35673745]
  • Di Zhang, Shiquan Chang, Xin Li, Huimei Shi, Bei Jing, Zhenni Chen, Yi Lin, Yachun Zheng, Guoqiang Qian, Yuwei Pan, Guoping Zhao. Therapeutic effect of paeoniflorin on chronic constriction injury of the sciatic nerve via the inhibition of Schwann cell apoptosis. Phytotherapy research : PTR. 2022 Jun; 36(6):2572-2582. doi: 10.1002/ptr.7472. [PMID: 35499270]
  • Xiao-Le Wang, Ya-Ting Wang, Zhen-Yu Guo, Ning-Ning Zhang, Yuan-Yuan Wang, Die Hu, Zhen-Zhen Wang, Yi Zhang. Efficacy of paeoniflorin on models of depression: A systematic review and meta-analysis of rodent studies. Journal of ethnopharmacology. 2022 May; 290(?):115067. doi: 10.1016/j.jep.2022.115067. [PMID: 35143936]
  • Xue Zhen Wang, Lei Xia, Xiao Yu Zhang, Qian Chen, Xiao Li, Yue Mou, Tong Wang, Ya Nan Zhang. The multifaceted mechanisms of Paeoniflorin in the treatment of tumors: State-of-the-Art. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2022 May; 149(?):112800. doi: 10.1016/j.biopha.2022.112800. [PMID: 35279012]
  • Lingchun Kong, Jingjing Li, Yuqin Yang, Huixin Tang, Hong Zou. Paeoniflorin alleviates the progression of retinal vein occlusion via inhibiting hypoxia inducible factor-1α/vascular endothelial growth factor/STAT3 pathway. Bioengineered. 2022 05; 13(5):13622-13631. doi: 10.1080/21655979.2022.2081755. [PMID: 35653799]
  • Zhu-Qing He, Peng-Fei Huan, Li Wang, Jian-Cheng He. Paeoniflorin ameliorates cognitive impairment in Parkinson's disease via JNK/p53 signaling. Metabolic brain disease. 2022 04; 37(4):1057-1070. doi: 10.1007/s11011-022-00937-2. [PMID: 35230626]
  • Lili Zhang, Lin Han, Jiang Ma, Tingchao Wu, Yu Wei, Linhua Zhao, Xiaolin Tong. Exploring the synergistic and complementary effects of berberine and paeoniflorin in the treatment of type 2 diabetes mellitus by network pharmacology. European journal of pharmacology. 2022 Mar; 919(?):174769. doi: 10.1016/j.ejphar.2022.174769. [PMID: 35151646]
  • Qing Guo, Suo Li, Xue Wang, Huan-Sheng Han, Xi-Jun Yin, Jing-Chun Li. Paeoniflorin improves the in vitro maturation of benzo(a)pyrene treated porcine oocytes via effects on the sonic hedgehog pathway. Theriogenology. 2022 Mar; 180(?):72-81. doi: 10.1016/j.theriogenology.2021.12.016. [PMID: 34953351]
  • Wei Guo, Xiao-Guang Yang, Yu-Lin Shi, Hong Wang. The effects and mechanism of paeoniflorin in promoting osteogenic differentiation of MC3T3-E1. Journal of orthopaedic surgery and research. 2022 Feb; 17(1):90. doi: 10.1186/s13018-022-02965-1. [PMID: 35164817]
  • Wei Peng, Yunhui Chen, Steve Tumilty, Lizhou Liu, Ling Luo, Haiyan Yin, Yongmei Xie. Paeoniflorin is a promising natural monomer for neurodegenerative diseases via modulation of Ca2+ and ROS homeostasis. Current opinion in pharmacology. 2022 02; 62(?):97-102. doi: 10.1016/j.coph.2021.11.009. [PMID: 34959127]
  • Li-Li Liu, Xie-Xie Chen, Yu-Ting Yin, Hui-Fa Ouyang, Yong-Mei Guan, Wei-Feng Zhu, Li-Hua Chen. [Pharmacokinetic behavior and brain tissue distribution of paeoniflorin combined with normal and toxic doses of strychnine in rats after percutaneous administration]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2022 Feb; 47(4):1064-1072. doi: 10.19540/j.cnki.cjcmm.20211102.202. [PMID: 35285207]
  • Xin Han, Shaoqi Hu, Qiao Yang, Xianan Sang, Dongxin Tang, Gang Cao. Paeoniflorin ameliorates airway inflammation and immune response in ovalbumin induced asthmatic mice: From oxidative stress to autophagy. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2022 Feb; 96(?):153835. doi: 10.1016/j.phymed.2021.153835. [PMID: 34799185]
  • Jingjing Wu, Dongmei Zhang, Linlin Hu, Xiaowei Zheng, Caihong Chen. Paeoniflorin alleviates NG-nitro-L-arginine methyl ester (L-NAME)-induced gestational hypertension and upregulates silent information regulator 2 related enzyme 1 (SIRT1) to reduce H2O2-induced endothelial cell damage. Bioengineered. 2022 02; 13(2):2248-2258. doi: 10.1080/21655979.2021.2024325. [PMID: 35030965]
  • Runjie Sun, Jiang Liu, Manya Yu, Mengting Xia, Yanyu Zhang, Xiaoqi Sun, Yunsheng Xu, Xing Cui. Paeoniflorin Ameliorates BiPN by Reducing IL6 Levels and Regulating PARKIN-Mediated Mitochondrial Autophagy. Drug design, development and therapy. 2022; 16(?):2241-2259. doi: 10.2147/dddt.s369111. [PMID: 35860525]
  • Dan Wang, Shiping Cheng, Guoming Zou, Xiongfei Ding. Paeoniflorin inhibits proliferation and migration of psoriatic keratinocytes via the lncRNA NEAT1/miR-3194-5p/Galectin-7 axis. Anti-cancer drugs. 2022 01; 33(1):e423-e433. doi: 10.1097/cad.0000000000001225. [PMID: 34459454]
  • Xinwei Yang, Xiao Li, Yanbo Zhu, YingYing Gao, Liping Xu. Paeoniflorin Upregulates Mitochondrial Thioredoxin of Schwann Cells to Improve Diabetic Peripheral Neuropathy Indicated by 4D Label-Free Quantitative Proteomics. Oxidative medicine and cellular longevity. 2022; 2022(?):4775645. doi: 10.1155/2022/4775645. [PMID: 35340203]
  • Wei Yu, Iqra Ilyas, Xuerui Hu, Suowen Xu, Hui Yu. Therapeutic potential of paeoniflorin in atherosclerosis: A cellular action and mechanism-based perspective. Frontiers in immunology. 2022; 13(?):1072007. doi: 10.3389/fimmu.2022.1072007. [PMID: 36618414]
  • Yanyan Hu, Wei Yang. Paeoniflorin Can Improve Acute Lung Injury Caused by Severe Acute Pancreatitis through Nrf2/ARE Pathway. Computational and mathematical methods in medicine. 2022; 2022(?):5712219. doi: 10.1155/2022/5712219. [PMID: 35586665]
  • Ting Zhang, Sheng Guo, Yang Niu, Kaidi Huang, Fanshu Bu, Hui Ren, Yiying Zhang, Erxin Shang, Jin-Ao Duan, Dawei Qian. The influence of essential oils from ZhaLi NuSi Prescription on the pharmacokinetics of its non-volatile components in normal rats. Biomedical chromatography : BMC. 2022 Jan; 36(1):e5257. doi: 10.1002/bmc.5257. [PMID: 34611921]
  • Junfu Ma, Qingliang Meng, Junping Zhan, Huilian Wang, Wei Fan, Yanqi Wang, Sudan Zhang, Hua Bian, Fuzeng Zheng. Paeoniflorin Suppresses Rheumatoid Arthritis Development via Modulating the Circ-FAM120A/miR-671-5p/MDM4 Axis. Inflammation. 2021 Dec; 44(6):2309-2322. doi: 10.1007/s10753-021-01504-0. [PMID: 34423389]
  • Yonglan Ruan, Jinying Ling, Fan Ye, Nuo Cheng, Fei Wu, Zongxiang Tang, Xiaolan Cheng, Hongquan Liu. Paeoniflorin alleviates CFA-induced inflammatory pain by inhibiting TRPV1 and succinate/SUCNR1-HIF-1α/NLPR3 pathway. International immunopharmacology. 2021 Dec; 101(Pt B):108364. doi: 10.1016/j.intimp.2021.108364. [PMID: 34844873]
  • Dongyi Wang, Fan Yang, Wei Shang, Zhiming Zhao, Junyi Shen, Hui Cai. Paeoniflorin-loaded pH-sensitive liposomes alleviate synovial inflammation by altering macrophage polarity via STAT signaling. International immunopharmacology. 2021 Dec; 101(Pt A):108310. doi: 10.1016/j.intimp.2021.108310. [PMID: 34749294]
  • Xing Wang, Jin Cheng Hao, Bo Shang, Kai Lin Yang, Xiao Zhou He, Zhao Liang Wang, Hui Ling Jing, Yan Jun Cao. Paeoniflorin ameliorates oxidase stress in Glutamate-stimulated SY5Y and prenatally stressed female offspring through Nrf2/HO-1 signaling pathway. Journal of affective disorders. 2021 11; 294(?):189-199. doi: 10.1016/j.jad.2021.07.054. [PMID: 34298225]
  • Sicong Li, Xuting Li, Dingsheng Yuan, Bin Wang, Rui Yang, Min Zhang, Jinliang Li, Fuqiang Zeng. Effects of paeoniflorin on the activities and mRNA expression of rat CYP1A2, CYP2C11 and CYP3A1 enzymes in vivo. Xenobiotica; the fate of foreign compounds in biological systems. 2021 Sep; 51(9):961-967. doi: 10.1080/00498254.2017.1404659. [PMID: 29160125]
  • Xiao-Le Wang, Si-Tong Feng, Ya-Ting Wang, Nai-Hong Chen, Zhen-Zhen Wang, Yi Zhang. Paeoniflorin: A neuroprotective monoterpenoid glycoside with promising anti-depressive properties. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2021 Sep; 90(?):153669. doi: 10.1016/j.phymed.2021.153669. [PMID: 34334273]
  • Yang Zhao, Xiangsheng Li, Jianzhou Chu, Yuxin Shao, Yizhao Sun, Yanfen Zhang, Zhongcheng Liu. Inhibitory effect of paeoniflorin on IgE-dependent and IgE-independent mast cell degranulation in vitro and vivo. Food & function. 2021 Aug; 12(16):7448-7468. doi: 10.1039/d1fo01421h. [PMID: 34195738]
  • Tingting Liu, Min Zhao, Yumeng Zhang, Zhaozhao Qiu, Yixin Zhang, Chunjie Zhao, Miao Wang. Pharmacokinetic-pharmacodynamic modeling analysis and anti-inflammatory effect of Wangbi capsule in the treatment of adjuvant-induced arthritis. Biomedical chromatography : BMC. 2021 Jul; 35(7):e5101. doi: 10.1002/bmc.5101. [PMID: 33625739]
  • Jie Cheng, Min Chen, Hui-Qi Wan, Xue-Qin Chen, Cheng-Fu Li, Ji-Xiao Zhu, Qing Liu, Guang-Hui Xu, Li-Tao Yi. Paeoniflorin exerts antidepressant-like effects through enhancing neuronal FGF-2 by microglial inactivation. Journal of ethnopharmacology. 2021 Jun; 274(?):114046. doi: 10.1016/j.jep.2021.114046. [PMID: 33753146]
  • Danyun Huang, Zhijun Li, Yue Chen, Yan Fan, Tao Yu. Paeoniflorin reduces the inflammatory response of THP-1 cells by up-regulating microRNA-124 : Paeoniflorin reduces the inflammatory response of THP-1 cells through microRNA-124. Genes & genomics. 2021 06; 43(6):623-631. doi: 10.1007/s13258-021-01083-2. [PMID: 33779948]
  • Feng Jiao, Kevin Varghese, Shaoxun Wang, Yedan Liu, Hongwei Yu, George W Booz, Richard J Roman, Ruen Liu, Fan Fan. Recent Insights Into the Protective Mechanisms of Paeoniflorin in Neurological, Cardiovascular, and Renal Diseases. Journal of cardiovascular pharmacology. 2021 06; 77(6):728-734. doi: 10.1097/fjc.0000000000001021. [PMID: 34001724]
  • Ting Wang, Xu Zhou, Ge Kuang, Rong Jiang, Xinyi Guo, Shengwang Wu, Jingyuan Wan, Liangjun Yin. Paeoniflorin modulates oxidative stress, inflammation and hepatic stellate cells activation to alleviate CCl4-induced hepatic fibrosis by upregulation of heme oxygenase-1 in mice. The Journal of pharmacy and pharmacology. 2021 Mar; 73(3):338-346. doi: 10.1093/jpp/rgaa042. [PMID: 33793876]
  • Chun-Ling Liang, Weihui Lu, Feifei Qiu, Dan Li, Huazhen Liu, Fang Zheng, Qunfang Zhang, Yuchao Chen, Chuanjian Lu, Bin Li, Zhenhua Dai. Paeoniflorin ameliorates murine lupus nephritis by increasing CD4+Foxp3+ Treg cells via enhancing mTNFα-TNFR2 pathway. Biochemical pharmacology. 2021 03; 185(?):114434. doi: 10.1016/j.bcp.2021.114434. [PMID: 33513343]
  • Ruonan Chen, Chenlin Shen, Qingqing Xu, Yaru Liu, Bo Li, Cheng Huang, Taotao Ma, Xiaoming Meng, Maomao Wu, Jun Li. The permeability characteristics and interaction of main components from Si-Ni-San in a MDCK epithelial cell monolayer model. Xenobiotica; the fate of foreign compounds in biological systems. 2021 Feb; 51(2):239-248. doi: 10.1080/00498254.2017.1359433. [PMID: 28745128]
  • Chengying Shen, Baode Shen, Junjun Zhu, Jing Wang, Hailong Yuan, Xiaofang Li. Glycyrrhizic acid-based self-assembled micelles for improving oral bioavailability of paeoniflorin. Drug development and industrial pharmacy. 2021 Feb; 47(2):207-214. doi: 10.1080/03639045.2020.1862178. [PMID: 33305640]
  • Di Zhang, Bing Yang, Shi-Quan Chang, Sheng-Suo Ma, Jian-Xin Sun, Lin Yi, Xing Li, Hui-Mei Shi, Bei Jing, Ya-Chun Zheng, Chun-Lan Zhang, Feng-Guo Chen, Guo-Ping Zhao. Protective effect of paeoniflorin on H2O2 induced Schwann cells injury based on network pharmacology and experimental validation. Chinese journal of natural medicines. 2021 Feb; 19(2):90-99. doi: 10.1016/s1875-5364(21)60010-9. [PMID: 33641788]
  • Zijing Liu, Jiawen Zhang, Peiyu Jiang, Zhi Yin, Yunyi Liu, Yixuan Liu, Xiaoyan Wang, Liang Hu, Yang Xu, Wentao Liu. Paeoniflorin inhibits the macrophage-related rosacea-like inflammatory reaction through the suppressor of cytokine signaling 3-apoptosis signal-regulating kinase 1-p38 pathway. Medicine. 2021 Jan; 100(3):e23986. doi: 10.1097/md.0000000000023986. [PMID: 33545988]
  • Ruiying Liu, Ying Zheng, Tao Han, Jie Lan, Laixi He, Jianyou Shi. Angiogenic Actions of Paeoniflorin on Endothelial Progenitor Cells and in Ischemic Stroke Rat Model. The American journal of Chinese medicine. 2021; 49(4):863-881. doi: 10.1142/s0192415x21500415. [PMID: 33829966]
  • Xia Luo, Xiaojing Wang, Shaowei Huang, Bo Xu, Shuang Luo, Yanyang Li, Qing Wang, Yanping Chen, Xiangliang Deng, Lingyun Liu, Lian Zhou. Paeoniflorin ameliorates experimental colitis by inhibiting gram-positive bacteria-dependent MDP-NOD2 pathway. International immunopharmacology. 2021 Jan; 90(?):107224. doi: 10.1016/j.intimp.2020.107224. [PMID: 33302036]
  • Zhuo-Wei Gao, Yu-Yun Huang, Jia-Qi Zhang, Jing-Yu Rong, Guan-Ying Qiao, Nan Chen, Guo-Dong Yu, Min Luo, Xiao-Fen Liu. Paeoniflorin elicits the anti-proliferative effects on glioma cell via targeting translocator protein 18 KDa. Journal of pharmacological sciences. 2021 Jan; 145(1):115-121. doi: 10.1016/j.jphs.2020.10.004. [PMID: 33357769]
  • Yanhong Wang, Qian Wang, Xibei Li, Gongwen Luo, Mou Shen, Jia Shi, Xueliang Wang, Lu Tang. Paeoniflorin Sensitizes Breast Cancer Cells to Tamoxifen by Downregulating microRNA-15b via the FOXO1/CCND1/β-Catenin Axis. Drug design, development and therapy. 2021; 15(?):245-257. doi: 10.2147/dddt.s278002. [PMID: 33519190]
  • Qilin Fan, Xiaojing Guan, Yuanlong Hou, Yali Liu, Wei Wei, Xiaoying Cai, Youying Zhang, Guangji Wang, Xiao Zheng, Haiping Hao. Paeoniflorin modulates gut microbial production of indole-3-lactate and epithelial autophagy to alleviate colitis in mice. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2020 Dec; 79(?):153345. doi: 10.1016/j.phymed.2020.153345. [PMID: 33002829]
  • Xiaoyu Dong, Zili He, Guangheng Xiang, Leyi Cai, Zhenjiang Xu, Cong Mao, Yongzeng Feng. Paeoniflorin promotes angiogenesis and tissue regeneration in a full-thickness cutaneous wound model through the PI3K/AKT pathway. Journal of cellular physiology. 2020 12; 235(12):9933-9945. doi: 10.1002/jcp.29808. [PMID: 32542807]
  • Yongjing Zhang, Shiling Hu, Shuai Ge, Jue Wang, Langchong He. Paeoniflorin inhibits IgE-mediated allergic reactions by suppressing the degranulation of mast cells though binding with FcϵRI alpha subunits. European journal of pharmacology. 2020 Nov; 886(?):173415. doi: 10.1016/j.ejphar.2020.173415. [PMID: 32771669]
  • Yulong Gu, Xianglan Piao, Dan Zhu. Simultaneous determination of calycosin, prim-O-glucosylcimifugin, and paeoniflorin in rat plasma by HPLC-MS/MS: application in the pharmacokinetic analysis of HQCF. The Journal of international medical research. 2020 Nov; 48(11):300060520972902. doi: 10.1177/0300060520972902. [PMID: 33213240]
  • Jing Zhang, Danni Wang, Xiaoyu Zhang, Jing Yang, Xin Chai, Yuefei Wang. Application of 'spider-web' mode in discovery and identification of Q-markers from Xuefu Zhuyu capsule. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2020 Oct; 77(?):153273. doi: 10.1016/j.phymed.2020.153273. [PMID: 32663710]
  • Yan-Xi Zhou, Xiao-Hong Gong, Hong Zhang, Cheng Peng. A review on the pharmacokinetics of paeoniflorin and its anti-inflammatory and immunomodulatory effects. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2020 Oct; 130(?):110505. doi: 10.1016/j.biopha.2020.110505. [PMID: 32682112]
  • Ying Chun Li, Xing Xing Zheng, Si Zhe Xia, Yang Li, Huan Huan Deng, Xing Wang, Yi Wei Chen, Yi Song Yue, Jiao He, Yan Jun Cao. Paeoniflorin ameliorates depressive-like behavior in prenatally stressed offspring by restoring the HPA axis- and glucocorticoid receptor- associated dysfunction. Journal of affective disorders. 2020 09; 274(?):471-481. doi: 10.1016/j.jad.2020.05.078. [PMID: 32663978]
  • R Q Yao, C Ren, L X Wang, N Dong, Y Wu, Y M Yao. [Influence of Xuebijing injection and its component paeoniflorin on immune function and survival rate of septic rats]. Zhonghua shao shang za zhi = Zhonghua shaoshang zazhi = Chinese journal of burns. 2020 Aug; 36(8):658-664. doi: 10.3760/cma.j.cn501120-20200430-00246. [PMID: 32829604]
  • Xiaojing Wang, Xia Luo, Zhongzheng Zhao, Shuang Luo, Jinyan Chen, Lian Zhou. [Paeoniflorin attenuates dextran sulfate sodium-induced ulcerative colitis in mice by inhibiting TLR5 expression and T cell activation]. Xi bao yu fen zi mian yi xue za zhi = Chinese journal of cellular and molecular immunology. 2020 Aug; 36(8):673-679. doi: . [PMID: 32958122]
  • Yong-Liang Zhu, Shuang-Long Li, Jun-Li Jin, Jia-Ao Fang, Xiang-Die Wang, Ling-Yun Chen, Xiang-Jun Qiu. Simultaneous determination of six components of Danzhi Xiaoyao Pill in beagle plasma by HPLC-MS/MS and a study of pharmacokinetic of paeoniflorin and geniposide after single-dose administration. Journal of pharmaceutical and biomedical analysis. 2020 Jul; 186(?):113269. doi: 10.1016/j.jpba.2020.113269. [PMID: 32247162]